
Foundations for Virtual TypesAtsushi Igarashi and Benjamin C. PierceDepartment of Computer & Information ScienceUniversity of Pennsylvania200 South 33rd St.Philadelphia, PA 19104, USAfigarasha,bcpierceg@saul.cis.upenn.eduAbstract. Virtual types have been proposed as a notation for genericprogramming in object-oriented languages|an alternative to the morefamiliar mechanism of parametric classes. The tradeo�s between the twomechanisms are a matter of current debate: for many examples, bothappear to o�er convenient (indeed almost interchangeable) solutions; inother situations, one or the other seems to be more satisfactory. How-ever, it has proved di�cult to draw rigorous comparisons between thetwo approaches, partly because current proposals for virtual types varyconsiderably in their details, and partly because the proposals themselvesare described rather informally, usually in the complicating context offull-scale language designs.Work on the foundations of object-oriented languages has already estab-lished a clear connection between parametric classes and the polymorphicfunctions found in familiar typed lambda-calculi. Our aim here is to ex-plore a similar connection between virtual types and dependent records.We present, by means of examples, a straightforward model of objectswith embedded type �elds in a typed lambda-calculus with subtyping,type operators, �xed points, dependent functions, and dependent recordswith both \bounded" and \manifest" type �elds (this combination of fea-tures can be viewed as a measure of the inherent complexity of virtualtypes). Using this model, we then discuss some of the major di�erencesbetween previous proposals and show why some can be checked staticallywhile others require run-time checks. We also investigate how the par-tial \duality" of virtual types and parametric classes can be understoodin terms of translations between universal and (dependent) existentialtypes.1 IntroductionLanguage support for generic programming plays an important role in the de-velopment of reusable libraries. In object-oriented languages, two di�erent ap-proaches to genericity have been considered. The more familiar one|basedclosely on the classical parametric polymorphism of functional languages suchas ML and Haskell|can be found, for example, in the template mechanism ofC++ [32] and the parametric classes in a number of proposed extensions to

Java [26, 25, 2, 3, 12, etc.]. An alternative approach, commonly called virtualtypes (or virtual classes), allows classes and objects to contain types as mem-bers, along with the usual �elds and methods.1 Virtual types were originallydeveloped in Beta [23] and have recently been proposed for Java [33].The static typing of virtual types is not yet clearly understood. Indeed, earlyproposals were statically unsafe, requiring extra runtime checks; more recentwork has produced several proposals for type-safe variants [35, 5]. These pro-posals vary substantially in their details, and have generally been presented inrather informal terms|and in the complicating context of full-scale languagedesigns|making them di�cult to evaluate and compare.Our goal in this paper is to establish a rigorous setting in which to understandand discuss the basic mechanisms of virtual types. Following a long line of pastwork on foundations for object-oriented programming (see [4] for history andcitations), we model objects and classes with virtual types as a particular styleof programming in a fairly standard typed lambda-calculus. On this basis, weexamine (1) the type-theoretic features that seem to be required for modelingvirtual types, (2) the similarities and di�erences between existing proposals, and(3) the type-theoretic intuitions behind the much-discussed \overlap" betweenvirtual types and parametric classes in practice.The rest of the paper is organized as follows. Section 2 reviews the ideaof virtual types by means of a standard example, the animal/cow class hierar-chy of Shang [31]. Section 3 sketches the main features of the typed lambda-calculus that forms the setting for our model. (The calculus is de�ned in fullin Appendix A, for expert readers.) Section 4 develops the encoding of the An-imal/Cow example in detail. Section 5 discusses the relation between virtualtypes and parametric classes as mechanisms for generic programming. Section 6reviews previous work on virtual types in the light of our model. Section 7sketches some directions for future work.Our presentation is self-contained, but somewhat technical at times. Famil-iarity with past work on modeling objects in typed lambda-calculi (e.g., [29],[19], [4], or Chapter 18 of [1]) will help the reader interested in following in de-tail. Another useful source of background is Harper and Lillibridge [18, 21] andLeroy's [20] papers on modeling module systems using dependent records with\manifest" bindings.2 Virtual TypesWe begin by reviewing the notion of virtual types through an example. Thisexample, used throughout the paper, is a variant of the animal/cow example ofShang [31]. (Our notation is Java-like, but does not exactly correspond to anyof the existing proposals for virtual types in Java.)We begin by de�ning a generic class of animals, along with its interface.1 Referring to this approach with the phrase \virtual types" is somewhat confusing,since|as we will see|these type members may or may not be \virtual" in the senseof virtual or abstract methods. But the terminology is standard.

interface AnimalI { virtual class Animaltype FoodType <: Food; implements AnimalI {void eat (FoodType f); virtual type FoodType <: Food;void eatALot (FoodType f); } virtual void eat (FoodType f);void eatALot (FoodType f) {eat(f); eat(f); }}Every animal has methods eat and eatALot, both accepting some food as anargument. The body of the eat method, which is speci�c to particular kinds ofanimals, is omitted; the virtualmarker defers the responsibility of providing animplementation to subclasses. (We use the C++ keyword virtual in preferenceto Java's abstract to avoid terminological confusion: locutions like \abstracttype" already have a well-established meaning.) The calls to eat from the bodyof the eatALot method will call whatever body is provided by the subclass.Similarly, the class Animal defers specifying exactly what kind of food a givenkind of animal likes to eat. The virtual member FoodType acts as placeholderfor this type, allowing it to be mentioned in the types of eat and eatALot, justas the declaration of eat provides a placeholder for its eventual implementation,allowing it to be referred to from the body of eatALot. Classes with virtual mem-bers (either types or methods) cannot be instantiated, since they are incomplete:they can only be subclassed.The interface AnimalI speci�es that every animal object has three members:a type FoodType and methods eat and eatALot. The FoodTypemember of everyanimal is known to be some kind of Food (FoodType<:Food), but, since di�erentanimals eat di�erent kinds of food, the exact identity of this type is not visible.It follows immediately that it is not possible to feed an animal without knowingwhat kind of animal it is: if a is an object of type AnimalI, then a's eat methodrequires an argument of type a.FoodType; but there is no way to obtain a valueof this type (except, perhaps, by building a nutrient-free empty value using new).Speci�c kinds of animals are modeled by classes inheriting from Animal. Forexample, here is a Cow class and its interface:interface CowI class Cow extends Animalextends AnimalI { implements CowI {type FoodType $ Grass; } final type FoodType $ Grass;void eat (FoodType f) { ... }}In Cow, the virtual method eat is given a concrete implementation (shown as\..."). Similarly, the virtual type member FoodType is given a concrete value,Grass. The annotation final on the FoodType member means that it cannotbe rede�ned by subclasses: every subclass of Cow is guaranteed to have Grassas its FoodType. The interface CowI re
ects the fact that FoodType is �nal: ine�ect, it tells the world that every cow eats food whose type is equal to Grass.Thus, given an object a of type CowI, we may validly obtain some grass fromany source and pass it to the eat or eatALot methods.Virtual types are also useful in more standard examples of generic pro-gramming. For example, a generic Bag class can be de�ned with a virtual type

ElementType. Then classes NatBag, StringBag, etc. can be de�ned by inherit-ing from Bag and giving ElementType a final binding to Nat or String. Otherexamples of generic programming with virtual types can be found in [23, 33].3 Summary of Type SystemIt is well understood [29, 6, etc.] how parametric classes|classes abstractedon type parameters|can be understood as polymorphic functions in a typedlambda-calculus. By analogy, objects with type members should clearly be mod-eled as some kind of records with type �elds. Fortunately, such records have beenstudied extensively in the type-theory literature (e.g. [9]). Indeed, even the con-straints on type members appearing in the interfaces AnimalI (FoodType<:Food)and CowI (FoodType$Grass) correspond to well-known constructions in thetyped lambda-calculi used by Harper and Lillibridge [18, 21] and Leroy [20] tomodel module systems. Records with type �elds constrained by <: are a gener-alization of partially abstract types [11]; records with type �elds constrained by$ correspond to translucent or manifest sums.The typed lambda-calculus sketched in this section is based directly on theseintuitions. In essence, it can be described as System F!� (the omega-order poly-morphic lambda-calculus with subtyping [8, 10, 27, 14]) plus dependent recordswith both \bounded" [11] and \manifest" [18, 21, 20] type �elds, plus dependentfunctions.2 We begin by brie
y reviewing the features of System F!� (Sections 3.1and 3.2); we then concentrate on explaining records with type �elds (Section 3.3)and dependent functions (Section 3.4), which are less familiar. Appendix A givesa more formal summary of the whole system.3.1 Functions, polymorphism, and parameterized typesThe core of the system is Girard's System F! [17]. This calculus can be viewed asa simple functional programming language with three distinct forms of abstrac-tion: (1) ordinary functions (i.e., terms abstracted over terms); (2) polymorphicfunctions (i.e., terms abstracted over types); and (3) parametric types (i.e., typesabstracted over types). We write all three forms with similar concrete syntax.For example,plustwo = �[x:Nat] succ(succ(x));is an ordinary function that adds two to its argument. Similarly,id = �[X:*] �[x:X] x;is the polymorphic identity function, and2 The system can also be described as an extension of Coquand and Huet's Calculusof Constructions [15] with subtyping and dependent records [13]. Experts will notethat we use an unstrati�ed presentation of dependent records; this renders the systeminconsistent as a logic, but the fix operator does that anyway.

double = �[X:*] �[f:X!X] �[x:X] f(f(x));is a polymorphic function that accepts a type X, a function f (of type X!X),and an argument x (of type X), and applies f twice to x. (The annotation X:*indicates that X is a type parameter.) Thus,plusfour = double Nat plustwo;is a fancy way of writing the function that adds four to its (numeric) argument.Parametric types are written in a similar style. For example,Pair = �[A:*] �[B:*] {|fst:A, snd:B|};is a convenient abbreviation for the parametric type of pairs, andPairNatNat = Pair Nat Nat;is the concrete type of pairs of numbers. The usual (polymorphic) operations onpairs can be de�ned as follows:fst = �[A:*] �[B:*] �[p: Pair A B] p.fst;snd = �[A:*] �[B:*] �[p: Pair A B] p.snd;pair = �[A:*] �[B:*] �[a:A] �[b:B] ({fst=a, snd=b} :: Pair A B);The types of these operations are:fst : 8[A:*] 8[B:*] Pair A B ! Asnd : 8[A:*] 8[B:*] Pair A B ! Bpair : 8[A:*] 8[B:*] A ! B ! Pair A B(In the following, we will often display de�ned terms together with their types.)Note that the de�nition of pair uses an explicit coercion (:: Pair A B) tocontrol how its type is printed by the typechecker. Leaving it o� results in ade�nition with exactly the same behaviorpair = �[A:*] �[B:*] �[a:A] �[b:B] {fst=a, snd=b};pair : 8[A:*] 8[B:*] A ! B ! {|fst:A, snd:B|}(since we have de�ned Pair A B to be interchangeable with {|fst:A,snd:B|}),but less intuitive for the reader.To ensure their well-formedness, types and type operators are assigned kinds,K, which have the form * or K!K. Type expressions of kind * (pronounced \type")are ordinary types; type expressions of kind *!* are functions from types totypes; etc.It is sometimes useful to write higher-order type operators|that is, typeoperators whose arguments are type operators. For example,BothBool = �[F:*!*!*] F Bool Bool;is higher-order type operator that, when applied to any operator O, yields thetype O Bool Bool. Thus:

mypair = pair Bool Bool true false :: BothBool Pair;A more natural example of higher-order type operators will be seen later in theObject type constructor: its argument I is itself an operator abstracted over the\self type" Rep.For constructing objects, we shall also need a �xed-point constructor. If tis a function from T to T, then fix T t is its �xed point. (Writing T explicitlysimpli�es the typechecking of fix in the presence of dependent types.)� ` t : T!T� ` fix T t : TFor example, here is how fix is used to construct a factorial function:fact = fix (Nat!Nat) �[f:Nat!Nat] �[n:Nat]if eq n 0 then 1 else times n (f (pred n)) :: Nat ! Nat;3.2 SubtypingNext, we add the familiar notion of subtyping. For example, subtyping of functiontypes is contravariant on the left and covariant on the right. The subtype relationhas a maximal element, called Top. Constraining a type variable to be a subtypeof Top is actually no constraint at all, so we can recover unbounded quanti�cationfrom bounded, writing �[X<:Top]t in place of �[X:*]t. (We will continue towrite �[X:*]t in what follows, for readability.)Subtyping is extended pointwise to type operators: �[X:K]S is a subtype of�[X:K]T if S is a subtype of T under all legal substitutions for X.�; X:K ` S <: T� ` �[X:K]S <: �[X:K]TFor example, �[T:*] Top!T is a subtype of �[T:*] Nat!T since Nat is asubtype of Top.3.3 Records with Type FieldsTo support records with type �elds, a bit of machinery is required. First, wemust deal with the fact that later �elds in a record may refer to earlier �elds byname|e.g., the type of the eat �eld must refer to the FoodType �eld. (Thus,in particular, the order of �elds is signi�cant in dependent records.) Second, wemust be able to deal with record-projection expressions like a.FoodType appear-ing in the types of values (e.g., a.eat). The second requirement in particulargoes somewhat beyond what can be expressed using ordinary existential types,taking us into the realm of dependent records.In general, a dependent record has the form {�ii21���n}, where each �i is a�eld of one of two forms: either a term �eld xi=ti or a type �eld Xi=Ti. Thename xi or Xi is not only used to project a record from outside but also is a

binder whose scope is the rest of the �elds in the record.3 For example, in therecord value r = {X=Nat,x=�[y:X]y+1}, X in the second �eld is bound by the�rst occurrence of X.A record type has the form {|Bii21���n|}, where Bi is a binding of one ofthree forms: a term binding x:T, a bounded type binding X<:T, or a mani-fest type binding X$T. (In examples, we will also use type bindings of theform X:* as an abbreviation for X<:Top.) For example, the record r abovehas type {|X$Nat,x:X!X|}. A less informative type also possessed by r is{|X<:Top,x:X!X|}, which hides the representation of X and corresponds to theusual existential type 9X.X!X. In order to remind us of a connection to existen-tial types, we sometimes write 9 before a �eld name in records or record types,like {|9X<:Top,x:X!X|}, although 9 itself doesn't have a signi�cant meaning.Formally, the typing rule for record introduction is:�; B1; : : : ; Bj�1 ` �j : Bj j21���n � ` {|Bii21���n|} : *� ` {�ii21���n} : {|Bii21���n|}Each �eld de�nition �i must satisfy the corresponding binding Bi under a contextaugmented with the information of the preceding �elds (�; B1; : : : ; Bi�1). Term�elds xi=ti satisfy bindings of the form xi:Ti; type �elds Xi=Ti satisfy manifesttype bindings Xi$Ti. (Note that we cannot directly derive a record type with abounded type binding using the rule above . For example, the type given to rabove is {|9X$Nat,x:X!X|}. If we want to hide the identity of X and give r theabstract type {|9X:*,x:X!X|}, we must use the usual subsumption rule plus therecord subtyping rules discussed below.)The rule for record projections is basically the same as the standard recordelimination rule: if a �eld x of t has binding x:T, then t.l has type T. If Tdepends on other �elds|that is, if the name Xi (or xi) occurs free in T|thenthe corresponding record projection t.Xi (or t.xi, resp.) should be substitutedfor Xi (or xi, resp.) to prevent the �eld name from escaping its scope.4� ` t : {|Bii21���n|} Bj=x:T� ` t.lj : fBV(Bi) 7! t.lii21���j�1gT3 Strictly speaking, these two mechanisms should be kept separate. In the full typingrules in Appendix A, each �eld is given two names: an external name, which can beused for projections, and an internal name, which binds the subsequent occurrencesin the record. The simpli�ed syntax presented in the body of the paper correspondsto the special case where the external and internal names are identical.)4 Experts will note that we give a somewhat simpler version of this rule than Harperand Lillibridge [18, 21] or Leroy's [20] formulations. The reason we can do this isthat we are not|at this stage|considering computational e�ects such as referencesor exceptions. If any \e�ectful" constructs are added to the system, our projectionrule needs to be re�ned to ensure soundness. This can be done in di�erent ways, butthe basic intuition is that a dependent projection t:lj should be allowed only if theexpression t is pure. Similar comments apply to application rule below.

We write BV(B) for the bound variable of the binding B; that is, BV(x:T) = x,BV(X$T) = X, and BV(X<:T) = X. We also write fX 7! Tg for capture-avoidingsubstitution of T for X.The subtyping rule for record types is:` �; B1; : : : ; Bn+k ok ` �; B01; : : : ; B0n ok �; B1; : : : ; Bj�1 ` Bj <: B0j j21���n� ` {|Bii21���n+k|} <: {|B0ii21���n|}As usual for ordinary (non-dependent) records, \width subtyping" is allowed:extra �elds (the n+1-st to n+k-th �elds) can be dropped. Also, correspondingbindings Bi and B0i are compared using a sub-binding relation. When both areterm bindings|i.e., Bi and B0i are of the form x:S and x:T|S should be asubtype of T: this captures ordinary \depth subtyping." For type bindings, wehave (X$T) <: (X<:S) <: (X<:U) if T <: S <: U; the �rst clause ((X$T) <: (X<:S))allows the exact identity of a type �eld to be replaced with an upper bound;the second ((X<:S) <: (X<:U)), corresponding to subtyping of bounded exis-tential types, allows us to loosen the bound of X. For example, we can derive{|9X$Nat,x:X!X|} <: {|9X:*,x:X!X|}. (As usual, this rule leads to an unde-cidable subtyping relation [28, 21].)3.4 Dependent FunctionsFor the encoding of classes, we will need to be able to give quite precise types tofunctions, showing the dependency of the type of the result on the value of theargument.In outline, the intuition is this. Suppose we write a functioncl = �[self:{|9T:*, x:T, f:T!T|}]{T=self.T, x=self.f(self.x), f=self.f};whose argument is a record containing a type, a value (of that type), and afunction (on that type), and whose result is a record with a similar shape, butwhere the value �eld is calculated by applying the argument's function �eld tothe argument's value �eld. The type of this functioncl : �[self: {|9T:*,x:T,f:T!T|}] {|9T$self.T, x:T, f:T!T|}expresses the fact that the T �eld of the result is identical to the T �eld of theargument. Next, suppose we create a record containing these three itemsr1 = {T=Nat, x=3, f=plusfour} :: {|9T:*, x:T, f:T!T|};r1 : {|9T:*, x:T, f:T!T|}and use the function cl to obtain another record of the same shape:r2 = cl r1;r2 : {|9T$r1.T, x:T, f:T!T|}

Notice that, because of the dependent typing of cl, the type of r2 exposes thefact that it was built from r1|in particular, that their type components areequal. Hence, it is legal to project the function �eld from r2 and apply it to thevalue �eld from r1:i = r2.f r1.x;i : r2.TIn the absence of dependent functions, the best type we could have given tocl would be:cl : {|9T:*,x:T,f:T!T|} ! {|9T:*, x:T, f:T!T|}If we build r2 from r1 using this less re�ned type for cl,r2 = cl r1;r2 : {|9T:*, x:T, f:T!T|}we obtain no information about the relation between r1's T �eld and r2's, andthe application r2.f r1.x is not allowed.In general, a function �[x:S]t has type �[x:S]T, where x is allowed to ap-pear in T. (When x does not appear in T, we write �[x:S]T as S!T, recoveringthe usual notation for function types as a special case of dependent functiontypes.) The rules for function abstraction and application are generalized ac-cordingly:` �; x:S ok �; x:S ` t : T� ` �[x:S]t : �[x:S]T � ` t : �[x:S]T � ` s : S� ` t s : fx 7! sgT4 Encoding Virtual TypesWith the formalities of our typed lambda-calculus now in hand, we can proceedto the technical heart of the paper: a straightforward encoding of the animalexample from Section 2 in terms of records with type �elds. For the sake ofconcreteness, we extend the familiar existential encoding of objects [29, 19].To avoid introducing additional complexities in the type theory, we give anencoding of purely functional objects; for example, we assume that an animal'seat method returns a new, satiated animal rather than side-e�ecting the inter-nals of the receiving animal.4.1 InterfacesTo get warmed up, let's begin with an example that does not involve virtualtypes: one-dimensional point objects with methods get to retrieve a currentcoordinate, set to move to a new coordinate, and bump to move a little from thepresent position.

In the simple existential encoding, the interface of an object is represented asa type operator of the form �[Rep:*]{|mi:Tii21���n|}, where the bound variableRep stands for the hidden type of the object's internal state, and where each Ti istype of the corresponding method mi. Each method takes the internal state of theobject as an explicit argument and, if appropriate, returns a new internal stateas its result. For example, the interface PointI of point objects is representedas PointI = �[Rep:*] {|get:Rep!Nat, set:Rep!Nat!Rep, bump:Rep!Rep|};PointI : * ! *Interfaces for objects with virtual types may include not only methods butalso type �elds, which declare the bounds of the virtual types. The interfaceAnimalI is represented asAnimalI = �[Rep:*]{|9FT<:Food, eat:Rep!FT!Rep, eatALot:Rep!FT!Rep|};The binding FT<:Food is a direct transliteration of the constraint on FT in Sec-tion 2. Similarly, the interface CowI is represented asCowI = �[Rep:*]{|9FT$Grass, eat:Rep!FT!Rep, eatALot:Rep!FT!Rep|};where the binding of FT is now manifest. Note that CowI is a subtype of AnimalI;this will later allow Cow objects to be regarded as animals.4.2 ObjectsIntuitively, an object with interface I comprises some hidden internal state, somemethods (described by I) that can manipulate that state, and some mechanismfor hiding the type of the state from outside view. In the simple existentialencoding, an existential quanti�er is used to achieve this hiding (it can also bedone with recursive types), so the type of our point objects is:Point = {|9Rep:*, state: Rep,meth: {|get:Rep!Nat, set:Rep!Nat!Rep, bump:Rep!Rep|}|};More generally, the type of objects with interface I is a record type includinga representation type Rep, a method vector �eld containing a record of typeI Rep, and a state �eld of type Rep. We can capture this structure uniformly byde�ning a (higher-order) type operator Object that takes I as a parameter:Object = �[I:*!*]{|9Rep:*, meth:I Rep, state:Rep|};Object : (*!*) ! *The type Point is now expressed concisely as:Point = Object PointI;

A point object|i.e., an element of type Point|can be constructed \fromscratch" as follows (we will see how to create points from classes in Section 4.3):PointR = {|x:Nat|};point = {9Rep=PointR,meth= fix (PointI Rep) �[self:PointI Rep]{get= �[s:Rep]s.x, set= �[s:Rep]�[n:Nat]{x=n},bump= �[s:Rep] self.set s (plus 1 (self.get s))},state= {x=0}} :: Point;PointR is the concrete representation type of the internal state. The method getjust returns the x �eld of state, while set returns a new state with the x �eldset to its second argument, n. The method bump is de�ned in terms of the othermethods get and set. In order to access other methods, the record of methodsis abstracted on a parameter self of type PointI Rep; the �xed-point operatoris used to \tie the knot," making self refer to the record itself.Invocation of the get method of a Point object requires simply extractingthe get �eld of the object's methods and applying it to the state �eld:x = point.meth.get point.state :: Nat;More generally, we can writeget = �[p:Point] p.meth.get p.state :: Point ! Nat;for the function that \sends the get message" to an arbitrary point object p.To send the set and bump messages to point objects, we need to do a littlemore work: the implementations of these methods return updated copies of justthe internal representation, which must then be repackaged with the originalmethods into complete objects:bump = �[p:Point]{9Rep=p.Rep, meth= p.meth,state= p.meth.bump p.state} :: Point ! Point;The construction of a Cow object is similar. The only signi�cant di�erenceis that the record of methods includes a type �eld FT, which should be given aconcrete de�nition of food for a cow. Furthermore, methods taking argumentsof FT can do grass-speci�c operation (such as enoughGrass) to the argument.Choosing the simple representationCowR = {|hungry:Bool|};for the internal state of cows, we can de�ne an element of the type Object CowIas follows:cow = {9Rep=CowR,meth= fix (CowI Rep) �[self:CowI Rep]{9FT=Grass,eat=�[s:Rep]�[f:FT]if enoughGrass f then {hungry=false} else s,eatALot=�[s:Rep]�[f:FT](self.eat (self.eat s f) f)},state= {hungry=true}} :: Object CowI;

Like the bump method of point objects, the eatALot method of cows is de�nedby invoking the eat method via the self parameter.Since we know FT is equal to Grass (by the de�nition of CowI), we can feedgrass to our cow:feed = �[c:Object CowI] �[g:Grass]{9Rep=c.Rep, meth=c.meth, state=c.meth.eatALot c.state g}:: Object CowI ! Grass ! Object CowI;satisfiedCow = feed cow grass :: Object CowI;4.3 ClassesSo far, virtual types have presented no special di�culties: the encodings of pointsand cows have been essentially identical. For encoding classes, however, the vir-tual types lead to some extra complications.A class is a data structure providing implementations for a collection of meth-ods and abstracted on a self-parameter. Concretely, a class whose instances areobjects with interface I is represented as a function taking self as an argumentand returning a record of methods of type I R, where R is the representationtype of the state. For example, a class of point objects can be de�ned as follows:pointClass = �[self: PointI PointR]{get=�[s:PointR]s.x, set=�[s:PointR]�[n:Nat]{x=n},bump=�[s:PointR]self.set s (plus 1 (self.get s))}:: PointI PointR!PointI PointR;To build a point object from the point class, we choose some particular repre-sentation (some element of type PointR) and calculate its record of methods bytaking the �xed point of the class:point = {9Rep=PointR, meth=fix (PointI Rep) pointClass, state={x=0}}:: Object PointI;The fact that the methods of pointClass are abstracted on self allows usto de�ne new subclasses of pointClass that inherit some of its behavior. Forexample, here is a class of colored point objects:CPointI = �[Rep:*] {|get:Rep!Nat, set:Rep!Nat!Rep,bump:Rep!Rep, color:Rep!Color|};cpointClass = �[self: CPointI PointR]let super = pointClass self in{get=super.get, set=super.set, bump=super.bump,color=�[s:PointR] red}:: CPointI PointR ! CPointI PointR;cpoint = {9Rep=PointR, meth=fix (CPointI Rep) cpointClass,state={x=0}} :: Object CPointI;The superclass's method suite super is obtained by application of pointClass to(cpointClass's) self. Note that, for brevity, we choose the same representation

type for both pointClass and cpointClass; it is easy to generalize this so thatcpointClass can add new instance variables (such as a color �eld), but theextra mechanism would make the examples harder to read.When virtual types are involved, we need to be a little more precise about thetyping of classes. Here, for example, is the de�nition of a generic animalClass.(Again, for brevity we use the same representation type (AnimalR) for bothanimalClass and cowClass.)AnimalR = {|hungry:Bool|};animalClass = �[self:AnimalI AnimalR]{9FT=self.FT, eat=self.eat,eatALot=�[s:AnimalR]�[f:FT]self.eat (self.eat s f) f}:: �[self: AnimalI AnimalR]{|9FT$self.FT, eat: AnimalR!FT!AnimalR,eatALot: AnimalR!FT!AnimalR|};This de�nition involves a few subtle points. First, since the type FT and themethod eat are virtual, their concrete de�nitions cannot be provided. Insteadof concrete de�nitions, the corresponding �elds of self are used. Second, typeof animalClass is not AnimalI AnimalR!AnimalI AnimalR, but a dependentfunction type (a more re�ned subtype of AnimalI AnimalR!AnimalI AnimalR).This typing is essential when we derive cowClass from animalClass, as we willsee below.In the de�nition of cowClass, the FT and eat �elds are �lled with their con-crete de�nitions and the eatALot method is inherited from animalClass. SincecowClass's self is passed to animalClass, self.eat in method eatALot referto the eat method of cowClass (not the virtual eat method of animalClass.)Now, since FT is not derived from self, the type of cowClass is just a (non-dependent) function type.cowClass = �[self:CowI CowR]let super = animalClass self in{9FT=Grass,eat=�[s:CowR]�[f:FT]if enoughGrass f then {hungry=false} else s,eatALot=super.eatALot}:: CowI CowR ! CowI CowR;The dependent function type of animalClass is critical for cowClass to bewell-typed: if animalClass had only type AnimalI AnimalR!AnimalI AnimalR,cowClass would be ill-typed since super.eatALot has type CowR!FT!CowRwhere FT <: Food, which is not a subtype of CowR!Grass!CowR. Thanks tothe dependent function type of cowClass, the projection super.eatALot hastype CowR!self.FT!CowR, which is exactly equal to CowR!Grass!CowR.Finally, a cow object can be created by instantiating cowClass in the usualway:cow = {9Rep=CowR, meth=fix (CowI Rep) cowClass,state={hungry=true}} :: Object CowI;

5 Generic Programming with Virtual TypesThe \overlap" between virtual types and parametric classes as alternative mech-anisms for achieving similar kinds of genericity has been remarked by severalauthors [5, 34, etc.]. To build a generic Bag class, for example, one can proceedin two ways. On one hand, we can make the type of the bag's elements a (virtual)�eld of the Bag class and obtain concrete instances by subclassing the genericBag class, overriding the member type �eld with the actual member type. On theother hand, we can make the element type a parameter to the class de�nition,essentially making the class into a polymorphic function, and obtain concrete in-stances by instantiating this polymorphic function with the actual member type.In this section, we �rst compare these two styles by means of a fully worked ex-ample, then comment on the general case. The overlap between the styles canbe viewed, in terms of our encoding, as a corollary of the inter-de�nability ofuniversal and existential polymorphism in the presence of dependent records.Generic programming was one of the �rst applications of virtual types. Thetypical pattern proceeds in two steps: (1) a generic class with a virtual type isde�ned, with generic implementations of its operations in terms of the virtualtype; (2) this class is then specialized, overriding the virtual type to some con-crete instance. For example, suppose we want to program with homogeneouscollections (bags) of objects of some type T. We start by building a generic Bagclass with a virtual type E (which stands for type of elements) and implementa-tions of the bag methods (put, get, etc.). Since the representation type of stateof bags is parameterized by E, the interface of bags takes a type operator Rep ofkind *!*, and the type of the state is actually represented as Rep E.BagI = �[Rep:*!*] {|9E:*, put:(Rep E)!E!(Rep E), get:(Rep E)!E|};Choosing lists of elements as our internal representation,BagR = �[E:*] {|elts:List(E)|};we can de�ne a generic bag class as follows:bagClass = �[self:BagI BagR]{9E=self.E,put=�[s:BagR E]�[e:E]({elts= cons E e s.elts} ::BagR E),get=�[s:BagR E] car E s.elts}:: �[self:BagI BagR]{|9E$self.E, put:BagR E!E!BagR E, get:BagR E!E|};The next step is to make a subclass with a concrete de�nition for the elementtype. The class natBagClass is de�ned by giving the concrete value Nat to thevirtual type E and by inheriting all methods from bagClass.NatBagI = �[Rep:*!*]{|9E$Nat,put:(Rep E)!E!(Rep E), get:(Rep E)!E|};natBagClass = �[self:NatBagI BagR]let super = bagClass self in{9E=Nat, put= super.put, get= super.get}:: NatBagI BagR ! NatBagI BagR;

The interfaces and classes here are fairly similar to the examples we saw inSection 4 (modulo the fact that the representation type here is a type operator);the construction of bag objects , however, requires a little explanation.NatBag = {|9Rep:*!*, 9meth:NatBagI Rep, state:Rep meth.E|};natBag = {9Rep=BagR, meth=fix (NatBagI Rep) natBagClass,state= {elts= (nil Nat)}} :: NatBag;The �rst observation is that the hidden state type is now a type operator. (In-tuitively, we \see" that the representation of the object may involve the virtualtype �eld E, but that is all we are allowed to know about the representation.)The second is that the order of the state �eld and the meth �eld is essential,since the type of the state depends both on Rep and on the E component of themeth. The code for invoking operations on bag objects is adjusted accordingly:sendget = �[b:NatBag] b.meth.get b.state :: NatBag!Nat;sendput = �[b:NatBag] �[e:Nat]{9Rep=b.Rep, meth= b.meth,state= b.meth.put b.state e} :: NatBag!Nat!NatBag;By contrast, let's look at how bags can be modeled in terms of parametricclasses. Instead of the element type being a member of the bag class, it will bea parameter to the class. Similarly, the interface BagI is parameterized by E:BagI = �[E:*] �[Rep:*] {|put:Rep!E!Rep, get:Rep!E|};bagClass = �[E:*] �[self:BagI E (BagR E)]{put= �[s:BagR E] �[e:E] {elts= cons E e s.elts},get= �[s:BagR E] car E s.elts}:: 8[E:*]BagI E (BagR E)!BagI E (BagR E);Note that bagClass has a polymorphic function type. (Also, note that Rep haskind * now, not *!*, since it is being supplied from the outside and there is noneed to apply it to anything in this de�nition.)The concrete instance natBagClass is now de�ned by instantiating bagClasswith the type parameter Nat.NatBagI = �[Rep:*]{|put:Rep!Nat!Rep, get:Rep!Nat|};natBagClass = bagClass Nat;A bag object is de�ned by instantiating the class in the usual way. (Here thereare no subtle dependencies between the type of the meth and state �elds.)NatBag = {|9Rep:*, meth:NatBagI Rep, state:Rep|};natBag = {9Rep=BagR Nat,meth=fix (NatBagI Rep) natBagClass,state= {elts= (nil Nat)}} :: NatBag;sendget = �[b:NatBag] b.meth.get b.state :: NatBag!Nat;sendput = �[b:NatBag] �[e:Nat]{9Rep=b.Rep, meth= b.meth,state= b.meth.put b.state e} :: NatBag!Nat!NatBag;

These examples illustrate the basic di�erence between virtual types and para-metric classes as mechanisms for generic programming. A parametric class is in-stantiated by type application, taking the element type directly as an argument.With virtual types, on the other hand, type parameterization is realized by adependent function whose argument has a type �eld in it. Since the get �elddepends on self.E, it will have type (List Nat)!Nat when the E �eld of thesupplied self record has been set to Nat.This correspondence can be viewed as an instance of a more general obser-vation: polymorphic functions can be encoded in terms of dependent functionson dependent records. A polymorphic abstraction �[X<:S]t of type 8[X<:S]Tcan be represented as the dependent function �[x:{|9X<:S|}](tfX 7! x.Xg) oftype �[x:{|9X<:S|}](TfX 7! x.Xg); it takes an argument {|9X$U|} where U issome subtype of S and behaves as a term of type TfX 7! {|9X$U|}.Xg, whichis equal to the type TfX 7! Ug of the corresponding polymorphic application(�[X<:S]t) U. The table below summarizes this encoding:8 9+�type 8[X<:S] T �[x:{|9X<:S|}] (TfX 7! x.Xg)abstraction �[X<:S] t �[x:{|9X<:S|}] (tfX 7! x.Xg)application t T t {9X=T}6 ComparisonsVirtual types (called virtual classes in the original proposal) were �rst introducedin Beta [24] by Madsen and M�ller-Pedersen [23] as a mechanism to achievegenericity in object-oriented languages. Later, Thorup [33] introduced virtualtypes as an extension for Java. In all of this work, virtual types in classes are infact not actually virtual in our sense: the interface of animal objects, accordingto their view, would better be modeled byAnimalI = �[Rep:*]{|9FT$Food, eat:Rep!FT!Rep, eatALot:Rep!FT!Rep|};where FT is declared equal to Food. However, they also allow type �elds to bespecialized, so thatCowI = �[Rep:*]{|9FT$Grass, eat:Rep!FT!Rep, eatALot:Rep!FT!Rep|};as before. Finally, they want to regard cows as animals, i.e., CowI <: AnimalI andObject CowI <: Object AnimalI. Taken together, these properties (speci�cally,the inclusion CowI <: AnimalI) yield a statically unsafe type system: we can takea cow, regard it as an animal, and feed it some meat (which has type Meat, asubtype of Food, and hence an acceptable argument to an Animal's eatmethod).Various approaches have been suggested to remedy this unsoundness. In Betaand in Thorup's proposed Java extension, run-time checks are added to methodslike eat to make sure that their arguments are actually acceptable. (In [22], itis observed that these checks can be omitted in the case where a type binding ismarked final.)

Torgersen [35] proposed a statically typesafe variant of virtual types, intro-ducing essentially the same distinction as we have made between virtual typebindings (which may be specialized in subclasses, but which block instantiationof the classes containing them) and �nal ones (which allow instantiation butblock further specialization in subclasses). Our model of objects with virtualtypes corresponds closely to his proposal.A possible criticism of Torgersen's idea is that, in general, it may lead toduplication of the class hierarchy. For one thing, if the class Animal containsvirtual types but no virtual methods (i.e., if eat is given a concrete genericimplementation), then we may want to instantiate the class Animal itself. Thisrequires making an explicit subclass (let's call it @Animal) of Animal in whichFT is equal to Food.Animal(FT<:Food)@Animal(FT$Food)<:? ?__? ?Cow(FT$Grass)<:�� ??��Also, rather than making Cow a leaf of the subclass hierarchy, we may wish toallow further specialization in subclasses. In this case, we should change theconstraint on FT to <:Grass, make Cow a virtual class, and introduce anotherleaf class @Cow in which FT$Grass.Animal(FT<:Food)@Animal(FT$Food)<:? ?__? ?Cow(FT<:Grass)<:�� ??��

@Cow(FT$Grass)<:? ?__? ?BrownCow(FT<:BrownGrass)<:�� ??��

@BrownCow(FT$BrownGrass)<:? ?__? ?Fortunately, the @ variants can be derived mechanically from the other classes,as Torgersen himself pointed out in his original paper. More recently, Bruce,Odersky and Wadler [5] have proposed another statically safe variant of virtualtypes, which can be viewed as making this idea explicit. (They do not presenttheir proposal in this light, but we �nd this to be a helpful way of understandingwhat they did.) In their system, virtual types are always introduced with <:constraints (they write \FT as Food"); for each class C, the \exact" class @C isautomatically provided. The new operator generates instance of exact classes,so that the expression new Cow () yields an object of type @Cow, which canbe regarded as a Cow by forgetting its \exactness," and further regarded as

an Animal (but not an @Animal) by ordinary subtyping. Note that their typesystem does not allow @ types to have non-trivial subtypes, whereas @Animal herehas many subtypes, which can be obtained by adding extra �elds to @Animal.Their restriction becomes crucial when binary methods are involved, since anobject type with binary methods will be expressed with recursive types wherethe recursion variable appears in contra-variant positions, which do not have anynon-trivial subtypes.Bruce, Odersky, and Wadler also pointed out that virtual types have an ad-vantage over parametric classes in de�ning mutually recursive classes such asalternating lists or the Subject/Observer pattern [16]. In the Subject/Observerpattern, a group of objects (called subjects) has a reference to another group ofobjects (called observers) and reports their own behavior to observers, which willsend back messages to subjects according to the reported behavior. Typically,a subject is realized by a class which has a virtual type bound to correspond-ing observers and vice versa. Then, generic subject (resp., observer) classes areextended to more speci�c classes, for example, window subject (resp., windowobserver) class by overriding virtual types with window observer (resp., windowsubject) and by implementing speci�c behavior of them. In [5], they used anextension of inner classes of Java to de�ne mutually recursive classes, extensions(window subject/observer) had to be de�ned simultaneously.Recently, Bruce and Vanderwaart [7] also used virtual types as a convenientdevice to de�ne mutually recursive object types \incrementally"|just as extend-ing an interface of Java, object types can be extended by adding speci�cationsof new methods. Since their language can de�ne object types separately fromclasses, a subject class and its corresponding observer class do not have to bede�ned simultaneously: virtual types will refer not to class names, but to objecttypes. R�emy and Vouillon [30] showed programming with virtual types can beexpressed in terms of parametric classes with mutually recursive types. Sincetheir language has not only separate notion of object types but type recon-struction, programmers do not even need to write object types. As we discussedin Section 5, it is not so surprising that classes involving virtual types can beexpressed in terms of parametric classes: an animal class would be just a para-metric class which has a FT as a type parameter and there is no generic animalobject types. However, they did not take into account type abstraction natureof virtual types. As for object types, our dependent record formulation seems tobe essential, especially in order for cows to be animals.7 Conclusions and Future WorkWe have presented a straightforward encoding of objects with virtual types in afairly standard (though quite powerful) type theory. In our model, objects areexpressed as dependent records with manifest and/or bounded type �elds; classesare modeled as dependent functions. The overlap between parametric classes andvirtual types can then be viewed as a consequence of the encodability of universal

polymorphism in terms of existential polymorphism with dependent functions.We are working to extend this encoding in two main directions:{ Imperative variants of the encoding, where methods like eat work by side-e�ecting mutable instance variables.{ Recursive and mutually recursive classes involving virtual types, such as thewell-known subject-observer example.The second of these seems relatively straightforward. The �rst, somewhat sur-prisingly (and disappointingly) does not|the technicalities of the underlyingtype theory required to achieve soundness when imperative features are com-bined with dependent types become astonishingly subtle.An obvious question is whether other type-theoretic encodings of simpleobjects|for example, the standard recursive-records encoding [4]|could be usedinstead of the existential encoding presented here. Surprisingly, we have not beenable to extend a naive recursive-records encoding to include virtual types. Intu-itively, the problem is that Animal in this encoding would be a recursive typewhose body is a dependent record type with an FT �eld. But now every unfold-ing of the recursive type produces a di�erent FT �eld, whose (abstract) type isincomparable with all the others.Another interesting question is whether the type theory in which we areworking here is the simplest possible for the task. All of the features describedin Section 3|in particular, both dependent records and dependent functions|are used by our encoding, but it is possible that a di�erent encoding could getby with less.Finally, it would be worthwhile to formalize the translation from a high-level language with virtual types into low-level structures like the ones we haveexplored here. The interesting point is to see how much of of the type-theoreticcomplexity of the target language will also show up in the typing rules of thehigh-level language.AcknowledgmentsThis work was supported by Indiana University, the University of Pennsylva-nia, and the National Science Foundation under grant CCR-9701826, PrincipledFoundations for Programming with Objects. Igarashi is a research fellow of theJapan Society for the Promotion of Science.Discussions with Kim Bruce, Bob Harper, Didier R�emy, and Philip Wadlerdeepened our understanding of this material. Comments from the FOOL andECOOP referees helped us improve the �nal presentation.References[1] Mart��n Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding type parameteri-zation to the Java language. In Object Oriented Programing: Systems, Languages,and Applications (OOPSLA), October 1997.[3] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Makingthe future safe for the past: Adding genericity to the Java programming language.In Craig Chambers, editor, Object Oriented Programing: Systems, Languages, andApplications (OOPSLA), ACM SIGPLAN Notices volume 33 number 10, pages183{200, Vancouver, BC, October 1998.[4] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encod-ings. Information and Computation, 1998. To appear in a special issue with papersfrom Theoretical Aspects of Computer Software (TACS), September, 1997. An ear-lier version appeared as an invited lecture in the Third International Workshopon Foundations of Object Oriented Languages (FOOL 3), July 1996.[5] Kim B. Bruce, Martin Odersky, and Philip Wadler. A statically safe alternativeto virtual types. In Proceedings of the European Conference on Object-OrientedProgramming (ECOOP), 1998.[6] Kim B. Bruce, Angela Schuett, and Robert van Gent. PolyTOIL: A type-safe poly-morphic object-oriented language. In W. Oltho�, editor, Proceedings of ECOOP'95, LNCS 952, pages 27{51, Aarhus, Denmark, August 1995. Springer-Verlag.[7] Kim B. Bruce and Joseph C. Vanderwaart. Semantics-driven language design:Statically type-safe virtual types in object-oriented languages. In Fifteenth Con-fertence on the Mathematical Foundations of Programming Semantics, April 1999.[8] Luca Cardelli. Notes about F!<:. Unpublished manuscript, October 1990.[9] Luca Cardelli. Typeful programming. In E. J. Neuhold and M. Paul, editors,Formal Description of Programming Concepts. Springer-Verlag, 1991. An earlierversion appeared as DEC Systems Research Center Research Report #45, Febru-ary 1989.[10] Luca Cardelli and Giuseppe Longo. A semantic basis for Quest. Journal of Func-tional Programming, 1(4):417{458, October 1991. Preliminary version in ACMConference on Lisp and Functional Programming, June 1990. Also available asDEC SRC Research Report 55, Feb. 1990.[11] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, andpolymorphism. Computing Surveys, 17(4):471{522, December 1985.[12] Robert Cartwright and Guy L. Steele Jr. Compatible genericity with run-timetypes for the Java programming language. In Craig Chambers, editor, Object Ori-ented Programing: Systems, Languages, and Applications (OOPSLA), SIGPLANNotices volume 33 number 10, pages 201{215, Vancouver, BC, Octover 1998. ACM.[13] Gang Chen and Giuseppe Longo. Subtyping parametric and dependent types. InKamareddine et al., editor, Type Theory and Term Rewriting, September 1996.Invited lecture.[14] Adriana B. Compagnoni. Decidability of higher-order subtyping with intersectiontypes. In Computer Science Logic, September 1994. Kazimierz, Poland. SpringerLecture Notes in Computer Science 933, June 1995. Also available as Universityof Edinburgh, LFCS technical report ECS-LFCS-94-281, titled \Subtyping in F !̂is decidable".[15] Thierry Coquand and G�erard Huet. The Calculus of Constructions. Informationand Computation, 76(2/3):95{120, February/March 1988.[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-terns: Elements of Reusable Object-Oriented Software. Addison Wesley, Mas-sachusetts, 1994.

[17] Jean-Yves Girard. Interpr�etation fonctionelle et �elimination des coupures del'arithm�etique d'ordre sup�erieur. PhD thesis, Universit�e Paris VII, 1972. A sum-mary appeared in the Proceedings of the Second Scandinavian Logic Symposium(J.E. Fenstad, editor), North-Holland, 1971 (pp. 63{92).[18] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-ordermodules with sharing. In Proceedings of the Twenty-First ACM Symposium onPrinciples of Programming Languages (POPL), Portland, Oregon, pages 123{137,Portland, OR, January 1994.[19] Martin Hofmann and Benjamin Pierce. A unifying type-theoretic framework forobjects. Journal of Functional Programming, 5(4):593{635, October 1995. Pre-vious versions appeared in the Symposium on Theoretical Aspects of ComputerScience, 1994, (pages 251{262) and, under the title \An Abstract View of Objectsand Subtyping (Preliminary Report)," as University of Edinburgh, LFCS technicalreport ECS-LFCS-92-226, 1992.[20] Xavier Leroy. Manifest types, modules and separate compilation. In Conferencerecord of POPL '94: 21st ACM SIGPLAN-SIGACT Symposium on Principles ofProgramming Languages, pages 109{122, Portland, OR, January 1994.[21] Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Sys-tems. PhD thesis, School of Computer Science, Carnegie Mellon University, Pitts-burgh, PA, May 1997.[22] Ole Lehrmann Madsen, Boris Magnusson, and Birger M�ller-Pedersen. Strongtyping of object-oriented languages revisited. In Proceedings of the Conference onObject-Oriented Programming Systems, Languages, and Applications (OOPSLA)and European Conference on Object-Oriented Programming (ECOOP), pages 140{150, Ottawa, ON Canada, October 1990. ACM Press, New York, NY , USA.Published as SIGPLAN Notices, volume 25, number 10.[23] Ole Lehrmann Madsen and Birger M�ller-Pedersen. Virtual classes: A power-ful mechanism in object-oriented programming. In Object Oriented Programing:Systems, Languages, and Applications (OOPSLA), 1989.[24] Ole Lehrmann Madsen, Birger M�ller-Pedersen, and Kristen Nygaard. Object-Oriented Programming in the Beta Programming Language. Addison-Wesley, 1993.[25] Andrew C. Myers, Joseph A. Bank, and Barbara Liskov. Parametrized types forJava. In ACM Symposium on Principles of Programming Languages (POPL),January 1997.[26] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory intopractice. In ACM Symposium on Principles of Programming Languages (POPL),1997.[27] Benjamin Pierce and Martin Ste�en. Higher-order subtyping. In IFIP WorkingConference on Programming Concepts, Methods and Calculi (PROCOMET), 1994.Full version in Theoretical Computer Science, vol. 176, no. 1{2, pp. 235{282, 1997(corrigendum in TCS vol. 184 (1997), p. 247).[28] Benjamin C. Pierce. Bounded quanti�cation is undecidable. Information andComputation, 112(1):131{165, July 1994. Also in Carl A. Gunter and John C.Mitchell, editors, Theoretical Aspects of Object-Oriented Programming: Types, Se-mantics, and Language Design (MIT Press, 1994). A preliminary version appearedin POPL '92.[29] Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations forobject-oriented programming. Journal of Functional Programming, 4(2):207{247,April 1994. A preliminary version appeared in Principles of Programming Lan-guages, 1993, and as University of Edinburgh technical report ECS-LFCS-92-225,under the title \Object-Oriented Programming Without Recursive Types".

[30] Dedier R�emy and J�erôme Vouillon. On the (un)reality of virtual types, November1998. manuscript.[31] David Shang. Are cows animals? Object Currents 1, 1996. http://www.sigs.com/objectcurrents/.[32] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley Longman,Reading, MA, third edition, 1997.[33] Kresten Krab Thorup. Genericity in Java with virtual types. In Proceedings of theEuropean Conference on Object-Oriented Programming (ECOOP), volume 1241 ofLecture Notes in Computer Science, pages 444{471. Springer-Verlag, 1997.[34] Kresten Krab Thorup and Mads Torgersen. Unifying genericity: Combining thebene�ts of virtual types and parametrized classes. In Proceedings of the EuropeanConference on Object-Oriented Programming (ECOOP). Springer-Verlag, June1999.[35] Mads Torgersen. Vitrual types are statically safe. In 5th Workshop on Foundationsof Object-Oriented Languages (FOOL), January 1998.A Summary of CalculusThis appendix summarizes the syntax, reduction rules, and typing rules of thetype system used in this paper. All of the individual features of this calculus havebeen studied carefully in the literature, and their combination here is believed(but has not been proved!) to be sound. All of the examples in the paper havebeen checked mechanically by our implementation.A.1 SyntaxThe sets of kinds K, types T, bindings B, terms t, �elds �, and contexts � are de�nedby the following grammar:K ::=* proper typesK!K operator kindT ::=X type variableTop Top type8[X<:T]T polymorphic func. type�[x:T]T dependent func. type�[X:K]T type operatorT T type op. application{|li/Bii21���n|}type of recordst.l type �eld projectionB ::=X<:T bounded type bindingX$T manifest type bindingx:T term binding

t ::=x variable�[X<:T]t polymorphic abstraction�[x:T]t abstractiont T polymorphic applicationt t application{li/�ii21���n}record introt.l record projectionfix T t �xed-point operator� ::=X=T type �eldx=t term �eld� ::=� empty context�; B extended by binding�; X:K extended by type binding

A.2 Reduction(�[x:T]s) t�!fx 7! tgs (�[X<:S]t) T�!fX 7! Tgts={li/�ii21���n} �j = x=ts.lj�!fBV(�i) 7! s.lii21���j�1gt fix T s�!s (fix T s)A.3 Judgments` � ok � is a well-formed context� ` T : K T is a type constructor of kind K� ` t : T t is a term of type T� ` � : B � is a �eld of binding B � ` S <: T S is a subtype of T� ` B1 <: B2 B1 is a subbinding of B2� ` S$ T S and T are equivalent� ` B1 $ B2 B1 and B2 are equivalentContext Well-formedness` � ok ` � ok X 62 dom(�)` �;X:K ok` � ok X 62 dom(�) � ` T : K` �;X<:T ok ` � ok X 62 dom(�) � ` T : K` �;X$T ok` � ok x 62 dom(�) � ` T : *` �;x:T okKinding Rules� ` Top : * X:K 2 �� ` X : KX$T 2 � � ` T : K� ` X : K X<:T 2 � � ` T : K� ` X : K` �; X<:S ok �; X<:S ` T : *� ` 8[X<:S]T : * ` �;x:S ok �;x:S ` T : *� ` �[x:S]T : *` �;X:K1 ok �;X:K1 ` T : K2� ` �[X:K1]T : K1!K2 � ` T : K1!K2 � ` U : K1� ` T U : K2` �;B1; : : : ;Bn ok� ` {|li/Bii21���n|} : * � ` t : {|li/Bii21���n|}Bj=X<:T �; B1; : : : ;Bj�1 ` T : K� ` t.lj : KTyping Rules x:T 2 �� ` x : T ` �;X<:S ok �;X<:S ` t : T� ` �[X<:S]t : 8[X<:S]T� ` t : 8[X<:T]U � ` S <: T� ` t S : fX 7! SgU ` �;x:S ok �;x:S ` t : T� ` �[x:S]t : �[x:S]T

� ` t : �[x:S]T � ` s : S� ` t s : fx 7! sgT �;B1; : : : ; Bj�1 ` �j : Bj j21���n� ` {|li/Bii21���n|} : *� ` {li/�ii21���n} : {|li/Bii21���n|}� ` t : {|li/Bii21���n|} Bj=x:T� ` t.lj : fBV(Bi) 7! t.lii21���j�1gT � ` t : T!T� ` fix T t : T� ` t : S � ` S <: T� ` t : TTyping Rules for Record Fields� ` T : K� ` (X=T) : (X$T) � ` t : T� ` (x=t) : (x:T)Subtyping Rules� ` S$ T� ` S <: T � ` S <: T � ` T <: U� ` S <: UX<:T 2 �� ` X <: T � ` T : *� ` T <: Top` �;X<:S1 ok ` �;X<:S2 ok� ` S2 <: S1 �;X<:S2 ` T1 <: T2� ` 8[X<:S1]T1 <: 8[X<:S2]T2 ` �;x:S1 ok ` �;x:S2 ok� ` S2 <: S1 �;x:S2 ` T1 <: T2� ` �[x:S1]T1 <: �[x:S2]T2` �;X:K ok �; X:K ` S <: T� ` �[X:K]S <: �[X:K]T � ` S <: T � ` S U : K� ` S U <: T U` �; B1; : : : ;Bn+k ok` �;B01; : : : ;B0n ok�;B1; : : : ;Bj�1 ` Bj <: B0j j21���n� ` {|li/Bii21���n+k|} <: {|li/B0ii21���n|} � ` t : {|li/Bii21���n|} Bj=X<:T� ` t.lj <: fBV(Bi) 7! t.lii21���j�1gTSub-binding Rules� ` S <: T� ` (X<:S) <: (X<:T) � ` S <: T� ` (X$S) <: (X<:T)� ` S$ T� ` (X$S) <: (X$T) � ` S <: T� ` (x:S) <: (x:T)Type Equivalence Rules� ` T : K� ` T$ T � ` S$ T� ` T$ S� ` S$ T � ` T$ U� ` S$ U X$T 2 �� ` X$ T

` �;X<:S1 ok� ` S1 $ S2 �;X<:S1 ` T1 $ T2� ` 8[X<:S1]T1 $ 8[X<:S2]T2 ` �;x:S1 ok� ` S1 $ S2 �;x:S1 ` T1 $ T2� ` �[x:S1]T1 $ �[x:S2]T2` �;X:K ok�;X:K ` S$ T� ` �[X:K]S$ �[X:K]T � ` S1 T1 : K� ` S1 $ S2 � ` T1 $ T2� ` S1 T1 $ S2 T2� ` (�[X:K1]S) T : K2� ` (�[X:K1]S) T$ fX 7! TgS � ` t : {|li/Bii21���n|} Bj=X$T� ` t.lj $ fBV(Bi) 7! t.lii21:::j�1gT` �;B1; : : : ;Bn ok ` �;B01; : : : ;B0n ok�;B1; : : : ;Bj�1 ` Bj $ B0j j21���n� ` {|li/Bii21���n|}$ {|li/B0ii21���n|}Binding Equivalence Rules� ` S$ T� ` (X<:S)$ (X<:T) � ` S$ T� ` (X$S)$ (X$T)� ` S$ T� ` (x:S)$ (x:T)

