
Poor Man's Genericity for JavaBoris Bokowski and Markus DahmFreie Universit�at BerlinInstitut f�ur InformatikTakustr. 9, 14195 Berlinfbokowski,dahmg@inf.fu-berlin.deAbstract. A number of proposals have been made as to how Java can bechanged to support parameterized types. We present a new proposal thatdoes not try to provide more powerful constructs or cleaner semantics,but instead minimizes the changes that need to be made to existing Javacompilers. In particular, we found that changing only one method inSun's Java compiler already results in a reasonable implementation ofparameterized types, which we call "Poor Man's Genericity" (PMG).We have implemented our solution based on simple byte{code trans-formations both at compile{time and at load{time. The paper explainshow our solution works, and compares it to other proposals. We alsodescribe how the drawbacks of our approach can be overcome by makingadditional, but minimal changes to an existing Java compiler.1 IntroductionRecently, a number of proposals for adding parametric polymorphism (genericclasses) to Java [5] have been published, namely Pizza [7], GJ [2], Virtual Types[8], Genja [4], a proposal from the MIT [6], and a proposal from Sun and StanfordUniversity [1]. These proposals di�er in a number of aspects:1. the suggested syntax extensions,2. the expressiveness that can be achieved,3. the translation scheme being used,4. the level of integration with the Java type system, in particular, whetherbasic types may be used as actual type parameters,5. the resulting runtime performance, and6. implementation issues.In this paper, we concentrate on the last aspect; in particular, we aim atminimizing the changes that need to be made to existing Java compilers. Eachof the proposals that have been made so far requires a new compiler to bewritten, or an existing compiler to be modi�ed extensively. Our approach yieldsa much cheaper implementation than any of the other proposals in terms of howmany modi�cations to an existing Java compiler are needed. Particularly, in the

case of Sun's Java compiler, only one method needs to be changed for compilingparameterized classes.1We think that trying to implement parametric polymorphism by makingas few modi�cations as possible to an existing Java compiler is worthwile fortwo reasons: First, it is interesting to see that the language feature "parametricpolymorphism" can be implemented in a way such that it is orthogonal to therest of the language. Second, our solution shows an easy{to{follow upgrade pathfor incorporating parametric polymorphism in Java. Today, a large number ofJava compilers and integrated development environments exist already. Whenintroducing a new language feature like parametric polymorphism into Java,one important consideration for Sun should be to minimize the e�ort for othercompiler and tool vendors to implement that feature.The main idea of Poor Man's Genericity is to modify the way in which thecompiler loads byte{code �les (".class" �les), employing byte{code transforma-tion to generate instances of generic classes dynamically, both at compile{timeand at load{time. It was inspired by the load{time expansion technique usedin the proposal of Sun and Stanford University [1]. By introducing so{calledplaceholder types, this idea can be used at compile{time as well. The idea canbe applied to Sun's compiler as well as to any other Java compiler.The basic idea of our implementation is described in section 2. Section 3discusses the properties of the resulting parametric polymorphism. As will beexplained in section 4, our solution has a number of drawbacks, which is whywe call it "Poor Man's Genericity". However, we explain how these drawbackscan be overcome by further changes to the compiler, all of which are simple andlocal changes. In section 5, we compare our proposal with related work. Section6 concludes the paper.2 Basic ideaThe problem of compiling parameterized types can be split in two parts, namely,compiling code that de�nes parameterized types, and compiling code that makesuse of parameterized types. Before we explain our solutions to these problems,we give a short introduction explaining what parameterized types are and howwe would like to de�ne and use such types.2.1 Parameterized TypesParameterized types, a feature of object{oriented programming languages thatis considered to be missing from Java, are a mechanism that allow classes orinterfaces to be parameterized with other types. By providing actual type pa-rameters, parameterized types can be used like any other user{de�ned type. Aconsequence of the fact that Java currently does not allow parameterized types1 Our implementation is available at http://www.inf.fu-berlin.de/~bokowski/pmgjava/index.html.

can be observed in virtually any Java program that uses generic classes like, forexample, Stack. Each time an object is obtained from a Stack, a type cast isneeded before methods speci�c to that object's type can be called on it. If Stackwas a class that is parameterized by the type of the objects that can be stored,these casts would not be required.Assume that we want to de�ne a class Stack which can hold instances of ageneric type A. We would write a class that is parameterized with A, so that wecan refer to the generic type A in the body of the class. Using Pizza's syntax [7],one could image a simple Stack class being de�ned as follows:public class Stack<A> {private A[] store = new A[100];private int size = 0;public void push(A a) {store[size++] = a;}public A pop() {return store[--size];}}To actually use a Stack, an actual type parameter must be provided for A. Astack of String objects, for example, could be used as follows.public static void main(String args[]) {Stack<String> s = new Stack<String>();s.push("Hello");System.out.println(s.pop().length()); // access to length()// without casting}2.2 Compiling De�nitions of Parameterized TypesTo solve the problem of compiling code that de�nes a parameterized type, thecompiler need not be modi�ed at all. Rather, we propose to allow parameterizedtypes to be de�ned as normal Java source code following certain conventions.Consider what remains of the above de�nition of Stack, after its header has beenstripped away:private A[] store = new A[100];private int size = 0;public void push(A a) {store[size++] = a;}public A pop() {return store[--size];}

A Java compiler could compile this code without problems if it knew type A.But nothing prevents us from de�ning an empty interface named A, acting as aplaceholder type, so that the compiler will accept the above code:interface A {}Now only a part of the solution for compiling code that de�nes a parame-terized type remains, that is, a naming convention for distinguishing betweenordinary types and parameterized types. This is accomplished by including thenames of all formal type parameters in the name of a parameterized type. Aclass or an interface is a parameterized type if its name consists of a base name,which is followed by the names of all formal type parameters, where each suchparameter name is enclosed by two '$$' characters.2The '$' character is allowed to occur in Java identi�ers, but its use is dis-couraged for normal programs, making it available for name mangling schemes.Thus, for example, the resulting name for our parameterized class Stack wouldbe Stack$$A$$, and the resulting name for a class Hashtable that is parameter-ized with both a key type K and a value type V would be Hashtable$$K$$$$V$$.Note that this syntax, which admittedly is somehow awkward, can be hiddenfrom the programmer by means of a preprocessor, which will be introduced insection 4.4.To sum up, here is the complete implementation of our simple Stack$$A$$,which can be compiled by an unmodi�ed Java compiler:interface A {}public class Stack$$A$$ {private A[] store = new A[100];private int size = 0;public void push(A elem) {store[size++] = elem;}public A pop() {return store[--size];}}So far, we have described how de�nitions of parameterized types can becompiled, but we have not explained how these types can actually be used. Inthe next section, we give a solution for this second problem.2.3 Compiling Instantiations of Parameterized TypesAssume now that we want to use our Stack$$A$$ for storing color values, rep-resented by objects of class Color:2 This name mangling scheme is compatible with the standard mangling scheme forinner classes.

public class Color {public byte r, g, b;public Color(byte r_, g_, b_) { r=r_; g=g_; b=b_; }}We would like to write code that looks as follows:Stack$$Color$$ s = new Stack$$Color$$();s.push(new Color(255,0,0));s.push(new Color(0,255,0));System.out.println(s.pop().r);System.out.println(s.pop().r);When given to an unmodi�ed Java compiler, the �rst line would obviouslyresult in an error message like "Can't �nd class Stack$$Color$$". Obviously, ade�nition for Stack$$Color$$ is not available. However, we could provide sucha de�nition dynamically, if we changed the way in which input �les are loadedby the compiler. The idea is to load an instantiation of Stack$$A$$ derivedby replacing all references to "A" by references to "Color" in the loaded copyof the original �le. As we will see in section 3.4, this transformation producesvalid byte{code. A very similar technique was already used in [1] for load{timeexpansion of parameterized types instead of compile{time expansion.In Sun's Java compiler, a single method is responsible for loading compiledbyte{code �les of a given name. It can be modi�ed as follows: If the �le that isto be loaded has a name that follows our naming convention for parameterizedclasses and interfaces, appropriate byte{code for an instantiation of a parameter-ized type is generated. Otherwise, the normal procedure for loading byte{code�les is followed.In the case of Stack$$A$$, appropriate byte{code is generated in four steps:1. The base name "Stack" of the type that the compiler tries to load is ex-tracted.2. An existing byte{code �le that has the same name, but di�erent names forthe parameters, is searched. In our case, "Stack$$A$$" is found. It is nowknown that the formal parameter "A" needs to be replaced by the actualparameter "Color".3. Therefore, the �le is loaded into memory, and all references to type "A" arereplaced by references to type "Color". For this purpose, a class library formanipulating byte{code [3] is used. As has been noted in [1], the formatof the byte{code �le makes it very easy to perform these replacements, asall references to class and interface types are stored independently from theactual byte code instructions in the �rst part of the �le called the "constantpool".4. Finally, the resulting byte{code is returned to the compiler.

3 What has been accomplishedIn this section, we will characterize our proposal in terms of the translationscheme being used (3.1), the interactions between ordinary types, parameterizedtypes, and type parameters (3.2), and the possibilities for constraining genericity(3.3). Also, we will show that our approach is type{safe and that it allows statictype checking (3.4).In order to make the text more readable, we will use Pizza{style syntaxin the following sections where appropriate. Section 3.2 presents examples fortranslating mangled names into Pizza's syntax. In section 4.2, we describe howmangled names can be hidden from the programmer.3.1 Heterogeneous TranslationWhen compiling generic source code, the compiler may generate specialized bytecode for every instantiation of a parameterized type (heterogeneous translation),or it may generate generic code that works for all instantiations (homogeneoustranslation). When compiling for the Java Virtual Machine, both approacheshave their pros and cons.A homogeneous translation scheme requires less memory at run{time becauseall instantiations of a parameterized type use the same byte{code. However, forthe current Java Virtual Machine, runtime type checks need to be inserted intocode that uses parameterized types, reducing run{time performance, althoughit can be ensured at compile{time that these checks will always succeed. Mostimportantly, primitive types (like boolean or int) cannot be used as actual typeparameters, but must be put into appropriate wrapper classes. Other problemsare mismatches between parameterized types and arrays (described in [7]), andthe inability to refer to individual instances of parameterized types at runtime(e.g., for casts, or instanceof).A heterogeneous translation scheme results in better runtime performancebecause no runtime checks need to be inserted into the code, at the cost ofhigher memory requirements. With a heterogeneous translation, it is possible toallow basic types as actual type parameters. Moreover, the semantic problemsindicated above can be avoided.Our solution is based on a heterogeneous translation scheme. However, wedo not allow primitive types as actual type parameters, because the requiredbyte{code transformations would be much more complicated.3.2 Parameterized Types and Type ParametersWhen introducing parameterized types into a language, essentially three newkinds of types are introduced, namely parameterized types, such as Stack<A>,instantiations of parameterized types, such as Stack<Color>, and formal typeparameters, such as A. To achieve a clean integration into the language, it isdesirable that wherever a normal type could appear in the original language,each of these new kinds of types is allowed. Also, all kinds of types should be

usable as actual type parameters. To make things even more complicated, it isalso desirable to allow incomplete instantiations of parameterized types, such asHashtable<K, Color>.For example, interfaces may extend parameterized interfaces, a formal typeparameter can be used to declare arrays with that element type, a parameterizedclass may inherit from an incomplete instantiation of another parameterizedclass, and instantiations of parameterized types may be used as actual typeparameters (nesting).With our approach, all of the above combinations are allowed, with oneexception that is due to the heterogeneous translation scheme: Primitive typessuch as, e.g., boolean, char or float are not allowed as actual type parameters.Note that the convention of enclosing each type parameter within two '$$'characters leads to four consecutive '$$' characters between two type parameters,as in Hashtable$$K$$$$V$$. Thus, multiple parameters of a generic type can bedistinguished from cases where an actual type parameter is itself a parameterizedtype. For example, translating our names into valid names of Pizza classes,Hashtable$$Hashtable$$K$$$$V$$$$$$V$$ would result in Hashtable<Hash-table<K, V>, V>, whereas Hashtable$$K$$$$Hashtable$$K$$$$V$$$$ re-sults in Hashtable<K, Hashtable<K, V>>.It would of course be preferable to use square or angular brackets for typeparameters, but unfortunately, the Java Language Speci�cation [5] does allowonly one special character ($)in Java identi�ers.3.3 Constrained GenericitySo far, we have required that all formal type parameters are declared as emptyinterfaces, such that on objects whose type is such a formal type parameter, onlymethods of class Object may be called. Clearly, it is desirable to constrain thepossible actual type parameters for a parameterized class, making it possible tocall other methods on such objects in a type{safe way. In fact, it is possible tospecify such constraints by declaring the placeholder types in other ways thanas empty interfaces.Generally, there are two main approaches for specifying such constraints. Oneapproach is to require that all actual type parameters be a subtype of a giventype. This approach is chosen by most of the other proposals. Another approachfor specifying constraints is chosen by the MIT proposal, called "where clauses"[6]. Interestingly, our proposal allows both approaches to coexist.Type Constraints by Subtyping By letting the placeholder type extendother types, type constraints can be speci�ed that require actual type parametersto be subtypes of those extended types. If actual type parameters are requiredto be classes, the placeholder type can be a class as well. For example, it wouldmake sense that a class EventForwarder<E> required actual type parametersfor E to be subclasses of java.awt.Event. In our solution, this constraint wouldbe speci�ed in the placeholder class E that the compiler needs for compiling thegeneric class:

class E extends java.awt.Event {}Note that the body of this class is still required to be empty. As a secondexample, assume that in the implementation of a class SortedVector<O>, actualparameter types for O are required to implement an interface Comparable. In ourapproach, this constraint can be expressed by de�ning the placeholder interfaceO as an interface extending Comparable. Again, the placeholder type has anempty body.public interface Comparable {boolean lessThan(Object other);}interface O extends Comparable {}Type Constraints by Conformance The second approach for specifyingconstraints does not require actual type parameters to be subtypes of certainprede�ned types, but only requires that certain methods can be called on objectsof that type. In our solution, it is possible to specify these kinds of constraintsas well, by including method signatures in the body of the placeholder class. Forexample, using the MIT proposal, the constraint that an actual parameter typeshould include a method void notify(), without requiring that this type is asubtype of, say, Notifiable, would be speci�ed as follows:class Notifier[N] where N { void notify(); } {N[] clients;int howmany = 0;void start() {for(int i=0; i < howmany; i++)clients[i].notify();}}Using our approach, the same constraint is speci�ed as follows. (Note thatthis constraint, like in the MIT proposal, does not require that actual typeparameters for N be subtypes of N.)abstract class N { abstract void notify(); }class Notifier<N> {N[] clients;int howmany = 0;void start() {for(int i=0; i < howmany; i++)clients[i].notify();}}

Interestingly, our approach not only allows both approaches of specifyingconstraints on type parameters separately, but also the combination of both.As an aside, note that our proposal implements F{bounded parametric poly-morphism; for example, it is possible to specify type constraints involving binarymethods by using parameterized interfaces, as already described in [7], and type{checking for such cases is supported:interface C {}public interface Comparable<C> {public boolean lessThan(C other);}interface O extends Comparable<O> {}3.4 Type safetyWith regard to type safety, one can distinguish between two requirements. The�rst | essential | requirement is that our byte{code translation scheme doesnot introduce type errors by itself. The second | desirable | requirement isthat type errors caused by the user should be detected at compile{time ratherthan at run{time. As we will see, our proposal satis�es both requirements.No Type Errors are Introduced In the case of unconstrained genericity, it iseasy to see that by replacing all references to an empty placeholder interface byanother class or interface type, no type errors will be introduced, because objectsof the placeholder type can only be accessed by methods de�ned in class Object.For constrained genericity, obviously not all replacements are valid, which is whywe introduced constrained genericity in the �rst place. Thus, before actuallyreplacing a formal parameter type by an actual parameter type, it needs to bechecked that the replacement is valid. To perform this check, we �rst need toload both the byte{code for the actual parameter type, and the byte{code forthe formal parameter type (the placeholder type). If the body of the placeholdertype is empty, the constraint is of the form that actual types are required to besubtypes of a given type, and we only need to check that the actual parametertype is a subtype of all the types that the placeholder type is declared to be asubtype of. If the body of the placeholder type is not empty, we additionally haveto check if for all methods and constructors of the placeholder type, methodsand constructors of equal names and signatures exist in the actual parametertype or in any of its supertypes.Static Type Checking is Retained Our proposal leads to the compiler per-forming type{checking both on a parameterized class itself and on all users ofinstantiations of parameterized classes. Thus, type errors will be detected as earlyas possible. Note that, unlike some implementations for templates in C++, we

do not perform macro expansion but transformation of already compiled andtype{checked code. This allows us to report type errors within de�nitions ofparameterized types independently of the uses of such types, whereas the C++template mechanism does not allow constrained genericity and may cause link{time errors.4 ImprovementsNothing comes for free, and if something is much cheaper than expected, there isalways a catch. As might be expected, our proposal as it was described so far isno exception to this rule. It has a number of drawbacks, which is why we call it"Poor Man's Genericity". But as it turns out, these drawbacks can be overcomeby further changes to the compiler, all of which are simple and local changescompared to the implementation requirements of other proposals.4.1 Separate Compilation RequiredOur solution requires that, before instantiations of parameterized types can beused, a byte{code �le be available for loading in order to perform the necessarybyte{code transformations. This is not a fundamental problem, though, sincewe know what byte{code we are looking for. All that is needed to overcome thisproblem is to be able to cause the compiler to compile another Java source �lebefore we return the byte code it was asking for in the �rst place. We plan toimplement the required functionality in the future.4.2 Better syntaxA more severe problem of our approach is that its syntax is not very simpleand easy to understand because we need to mangle information about the pa-rameters inside standard Java identi�ers. However, providing a better syntax(with angular or square brackets enclosing type parameters) would require onlylocal changes to an existing compiler's scanner and parser, because our manglingscheme could still be used internally. In fact, we implemented a simple prepro-cessor that generates mangled names for parameterized classes. Similar to thehook that was needed for intercepting the loading of byte{code �les, we addedanother hook in Sun's Java compiler for intercepting the loading of source �les.Another improvement would be to allow type constraints to be speci�ed atthe formal type parameter itself instead of in a separate placeholder type. Theseplaceholder types could then be generated automatically, and they could behidden from the programmer.4.3 Fully quali�ed namesThe most annoying problem we had with our simple solution is that all namesof formal parameters and actual parameters had to be fully quali�ed. Even more

unpleasant was the fact that we need another mangling convention for quali�ednames as type parameters. This mangling translates the dots of quali�ed namesto underscore characters, while 'real' underscore characters need to be escaped.Fortunately, this problem was not very di�cult to solve. As will be seen shortly,we have extended the preprocessor to expand unquali�ed type names insidemangled names.All our examples so far were based on interfaces and classes belonging to theglobal, unnamed package. A more realistic example of a parameterized Stackclass would reside in a named package, say collections. Then, the completemangled name for the parameterized stack class is Stack$$collections A$$,and a stack of strings is called collections.Stack$$java lang String$$: 3package collections;interface A {}public class Stack$$collections_A$$ {private A[] store = new A[100];private int size = 0;public push(A a) {store[size++] = a;}public A pop() {return store[--size];}} This parameterized stack class can be used as follows:package tests;import collections.*;public class Main {public static void main(String[] args) {Stack$$java_lang_String$$ s;s = new Stack$$java_lang_String$$();s.push("Hello");s.push("world");System.out.println(s.pop().length());System.out.println(s.pop());}}3 This is what the compiler sees. Using the preprocessor, the user may just writeStack<A> and Stack<String>, respectively. All names will be fully quali�ed andmangled automatically.

Again, this problem can be solved easily by subjecting formal and actualtype parameter names to the same name resolution procedure as ordinary typenames. This could be achieved by a local change in the compiler if, during nameanalysis, all formal and actual type parameter names were replaced by theirfully quali�ed and mangled version. In our implementation, we chose to leavethe compiler unchanged and instead extended the preprocessor such that it isaware of package and import statements and fully quali�es all type parametersbefore mangling.4.4 Implementation OverviewIn this section we will give a brief overview of our implementation.The following �gure illustrates the compilation process for code that uses aparameterized class. Symbols below the dotted line belong to the PMG system,while the other symbols depict plain �les and the unmodi�ed Java compiler, i.e.the user's view.
PMGpp

javac

Stack$$pmg_util_A$$ Stack$$java_lang_String$$

generate
from Stack$$pmg_util_A$$

Stack$$java_lang_String$$

Stack$$java_lang_String$$ s

public class foo {

 ...
}

 Stack<String> s;

Stack$$java_lang_String$$lookup class

Generator Stack.classStack.class

foo.class

foo.java

Fig. 1. Overview of the compilation processThe source �le foo.java written in the Pizza syntax declares a variable sof type Stack<String>. In the �rst step, the �le is parsed by a preprocessorcalled PMGpp.It scans the �le for parameterized identi�ers, fully quali�es all names of actualtype parameters and translates them into the name mangling scheme (mangling .to _ characters). Thus, the Java compiler will see Stack$$java lang String$$instead of Stack<String>. It then tries to load this class. At this point, weintercept the compiler in order to use our own loading algorithm implemented

in a class named Generator. Since the requested class does not exist, a class witha substitutable placeholder type is searched that can be used as a template.Given that a �le "Stack.class" containing the class Stack$$pmg util A$$exists somewhere on the CLASSPATH, we load this class �le into memory. Con-sequently, we need to ensure that the substitution is valid, i.e. that Stringcan be safely substituted for A. This procedure was described in more detailin section 3.4. If all type checks succeed, we replace all references to the for-mal type A with references to the actual type String. This yields the requiredclass Stack$$java lang String$$. This �le is not created physically and thusis drawn with dotted lines. The newly created class is returned to the compilerwhich can now proceed and generate "foo.class".We chose not to store generated �les in permanent storage in order to hidethese from the user, to reduce storage and transmission size of the code, and toavoid problems with inconsistent instantiations of generic types. Therefore, atload{time, the same mechanism for generating appropriate byte{code needs tobe employed. In our implementation, we use a custom class loader that calls theappropriate method of class Generator for all classes.For cases in which a custom class loader cannot be used, generation of actual�les in permanent storage can be turned on with a compiler option that speci�esa directory in which generated �les are written.5 Other proposalsIn this section we briey describe other proposals and summarize their propertiesin �gure 2.5.1 PizzaPizza [7] proposes both a homogeneous and a heterogeneous translation, but cur-rently only the homogeneous translation is implemented by a compiler. There-fore, generic code is not duplicated for each instantiation; instead, runtime casts(that will always succeed) are inserted into the code that uses parameterizedtypes because they are required by the byte{code veri�er. However, there aresome problems with arrays, casts, and the instanceof operator, and, as is de-scribed in [1], there are undesirable implications on Java's security model. Notethat these drawbacks only apply to the homogeneous translation scheme. Pizzaautomatically generates wrapping code in order to allow basic types as actual(unconstrained) type parameters in the case of homogeneous translation. Con-straints on formal type parameters are expressed by sub{typing. Pizza not onlyimplements parameterized types, but adds other advanced language featuressuch as �rst{class functions and algebraic classes with pattern matching to Java.Moreover, a formal type system is de�ned that ensures type safety of Pizza. Thefreely available Pizza compiler is a complete implementation that already hasbeen proven useful in practice.

5.2 GenericJava (GJ)A successor to Pizza, GJ [2] implements parameterized types and parameterizedmethods. It allows only non{primitive types as actual type parameters. Again, ahomogeneous translation scheme is used, leading to the same problems with theuse of parameterized types and type parameters in array allocations, and withthe instanceof and cast operators. Some additional changes have been madeto Pizza in order to allow compatibility between new code that uses parame-terized classes and existing code. Not only can parameterized classes be used ina conventional way, where formal type parameters are replaced by their statictype bounds, but also conventional code can be parameterized after it has beencompiled, by providing parameterized signatures for the methods of a class. Inthis manner, the Java collection classes have been parameterized without theneed to access their source code. A full compiler for GJ, and a tool that enablesparameterization of existing code has been implemented.5.3 MIT proposalThe MIT Proposal [6] uses a homogeneous translation scheme, avoiding codeduplication. It suggests changes to the Java Virtual Machine in order to overcomethe problem of unneeded runtime overhead by casts that are normally requiredfor a homogeneous translation. Moreover, each instantiation of a parameterizedtype has a runtime representation, thus avoiding the semantic problems thatPizza has. Unfortunately, this makes generic code incompatible with normalJava Virtual Machines. Basic types are allowed as type parameters and canbe accessed like other objects by de�ning a �xed set of methods for basic types,derived from operators for that types. Constraints on formal parameter types arespeci�ed using where{clauses, a new language construct that lists methods thatneed to be supported by actual parameter types. A compiler is not implemented,but a modi�ed Java Virtual Machine was built to assess the performance gainedby not requiring run{time casts. Note that although our proposal allows typeconstraints very similar to where{clauses, we do not need to change the JavaVirtual Machine because we employ a heterogeneous translation scheme.5.4 Stanford proposalThe proposal by Sun and Stanford University [1] employs a heterogeneous trans-lation scheme. In order to avoid duplicated code being stored in �les or trans-mitted over the network, generic code is compiled to a special byte{code formatthat is expanded at load time, using a technique very similar to ours. We applythis technique not only to the loading of classes into the Java Virtual Machine,but also to the process of compiling generic code. Basic types are not allowedas type parameters. Constraints can be speci�ed by sub{typing. There is animplementation of the class loader that expands instantiations of parameterizedtypes, but no implementation of a compiler.

5.5 GenjaFor Genja [4], a heterogeneous translation is chosen (a homogeneous translationscheme is discussed as well); memory requirements or performance issues are notdiscussed in the proposal. Genja has a unique way of supporting basic types asactual type parameters, as these are accessed in a parameterized class by meansof method overloading. Instead of supporting constraints for actual type param-eters, Genja includes generic method parameters, a new construct that allowsoperations required for formal parameter types to be supplied when instantiatinga parameterized class. A compiler that performs source code transformations toJava has been developed.5.6 Virtual typesVirtual Types [8] support parameterized classes in a way that is di�erent fromall other proposals, since no distinction is made between a parameterized typeand an instantiation of a parameterized type. Instead, a type A may contain"virtual types" that may be restricted in subtypes of A, leading to a covarianttyping scheme. Because covariant typing may lead to type errors, runtime checksinvolving a virtual method call are inserted into code with virtual types. Unlikeother proposals, not all of these checks can be guaranteed to succeed at run-time. Basic types are not allowed as types of those type variables. Currently, nocompiler for Virtual Types for Java is implemented.6 ConclusionsWe have presented a new proposal for adding parameterized types to Java, focus-ing on the implementation of such a proposal. We have shown that, by changingonly one method in an existing Java compiler, parameterized classes can be sup-ported. Interestingly, our proposal compares quite well to other proposals. Theresulting genericity has some minor drawbacks, all of which can be amelioratedby simple additional changes. Each of these changes can be localized to a speci�cpart of a Java compiler, making it unnecessary to develop new compilers or tochange existing compilers extensively in order to support parameterized typesfor Java.As has been pointed out recently [2], the heterogeneous translation schemeleads to problems when a parameterized type is instantiated using an actualtype parameter which is not public and belongs to a di�erent package. In thiscase, the Java visibility rules do not allow the instantiation to refer to the actualtype parameter. We are currently investigating this issue. One solution would beto automatically change the visibility of actual type parameters in these cases.However, we are not satis�ed with this solution since it would lead to securityproblems similar to those exhibited by the homogeneous translation scheme.To validate our implementation, we have successfully parameterized and com-piled the new collection classes of Sun's Java Development Kit 1.2. As claimed

homogeneous homogeneous hybrid heterogenous heterogeneous inheritance heterogeneous

yes, automatic
wrapping,

unconstrained

no accessed as
if they were

objects

no yes, accessed
by method

overloading

no no

no no little at run-time yes no at compile-time
and at run-time

yes yes yes no no using
method call

no

subtyping subtyping where-
clauses

subtyping generic
method

parameters

subtyping subtyping and
where-clauses

yes yes yes yes yes yes local changes to
existing compiler

first-class functions,
algebraic classes,
pattern matching

parameterize
d methods

where
clauses

no generic
method

parameters

virtual types no

yes yes yes Class
Loader

no (?) no yes

problems with arrays,
casts, and instanceof;

security ?

problems
with arrays,
casts, and
instanceof;
security ?

extension
of the

byte-code
format

not statically
type-safe

due to
covariant

typing

packages;
explicit

placeholder types
separate compil.

error handling

constructs
implemented

new language
additional

new compiler

disadvantages

type
constraints

runtime casts
code
duplicated
parameters
type
basic types as

translation

Pizza GJ PolyJ (MIT) Stanford Genja Virtual
Types

Poor Man’s
Genericity

/ type system

Fig.2.Overviewofproposals

by the designers of these classes, this mostly amounted to adding type parame-ters to all classes and removing unnecessary runtime casts. Interestingly, for two(inner) implementation classes this did not work, because the implementationincluded code that encoded the type of stored objects in a variable, making it im-possible to statically prove its type{correctness. However, it was easy to changethis code, not only allowing full compile{time type checking, but also resultingin a cleaner design. We successfully use several of these classes (ArrayList<A>,HashMap<K, V>, HashSet<A>), and corresponding interfaces, super{classes,and iterator classes in a Java program consisting of over 100 classes.References1. O. Agesen, S. N. Freund, and J. C. Mitchell. Adding Type Parameterization to theJava Language. In Proceedings OOPSLA'97, Atlanta, GA, 1997.2. G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe forthe past : Adding Genericity to the Java Programming language. , 1998.3. M. Dahm. The JavaClass API. http://www.inf.fu-berlin.de/~dahm/JavaClass/, 1998.4. M. Evered, J. L. Keedy, G. Menger, and A. Schmolitzky. Genja { A New Proposal forParameterised Types in Java. In Proceedings TOOLS Paci�c, Melbourne, Australia,1997.5. J. Gosling and G. Steele B. Joy. The Java Language Speci�cation. Addison-Wesley,1996.6. A.C. Myers, J. A. Bank, and B. Liskov. Parameterized Types for Java. In Proceed-ings 24th ACM Symposium on Principles of Programming Languages, Paris, France,1997.7. M. Odersky and P. Wadler. Pizza into Java: Translating Theory into Practice. InProceedings 24th ACM Symposium on Principles of Programming Languages, Paris,France, 1997.8. K. K. Thorup. Genericity in Java with Virtual Types. In Proceedings ECOOP'97.LNCS 1241, Springer Verlag, 1997.

