Extending Constructive Negation for Partial
Functions in Lazy Functional-logic Languages

Juan José Moreno-Navarro

U. Politécnica, Facultad de Informatica, Campus de Montegancedo,
Boadilla del Monte, 28660 Madrid, Spain,
e-mail: jjmoreno@fi.upm.es, URL: http://gedeon.ls.fi.upm.es/~jjmoreno

Abstract. In this paper the mechanism of Default Rules for narrowing-
based languages proposed in [24] is adapted to lazy narrowing. Every
partial definition of a function can be completed with a default rule. In
a concrete function call, the default rule is applicable when the normal
ones determine that they cannot compute the value of the call. Further-
more, when the goal has variables the evaluation mechanism provides
constraints to the variables to make the default rule applicable. Lazy
narrowing semantics are extended with the technique of constructive
negation [4,5,27]. The main advantage is that the coroutining imple-
mentation technique described in [5], which is the basis for an efficient
implementation, can be fully formalized in our framework.

1 Introduction

The integration of different declarative concepts is an active area of research.
The expressive power of new declarative languages can be improved by account-
ing for a mature and up-to-date understanding of previously studied features.
In particular, we are interested in the addition of new declarative features to
functional logic languages, proposed for the integration of functional and logic
programming (see [12]). These languages use functional syntax (conditional term
rewriting systems) and narrowing as operational mechanism. Lazy narrowing is
a strategy which only evaluates the arguments of a function application, if their
evaluation is really demanded. The use of lazy narrowing enhances the expressiv-
ity of the language because it allows to write highly modular programs, to define
partial and non strict functions and to use the technique of infinite objects.

The use of partial functions, even in a lazy context, has some problems
because the computation of such these functions can fail. In pure functional
programming the situation can be dynamically detected and solved giving, for
instance, a default value. The solution is no longer directly applicable in a func-
tional logic languages because values can be searched for applying the function.
The default value can be returned only if the other rules cannot apply what im-
poses some constraints on the calling parameters. As a predicate p can be seen
as a partially defined boolean function, Prolog negation as failure is a particular
case of our problem.

In a recent paper [24] we have generalized this notion of completion into
an eager functional logic language. Every (partial) definition of a function with

a number of rules can be completed by an extra default rule. In a concrete
function call, the default rule is applicable when the normal ones determine
that they cannot compute the value of the call. In order to manage default
rules, symbolic constraints are needed to express that the arguments have not
the shape required by the normal rules. The default rules also impose universal
quantifications over the free variables of the normal rules. In this paper we
develop the same feature in the framework of lazy narrowing. The operational
mechanism is a lazy extension of constructive negation proposed for Prolog [4,
5,27] which incorporates constraints as the answers into negative subgoals. For
the declarative semantics we use an infinite domain that distinguishes between
finite failure and the L value for divergence, in the style of Kunen’s 3-valued
semantics [18].

The main idea of constructive negation is the following: in order to compute
when a function call f (eq,...,e,) is not defined, we start a narrowing compu-
tation with f (ey,...,e,) as goal. The computation could be infinite but any
finite part of the evaluation tree (frontier) defines where the function call can
be made, hence the complement of this frontier specifies where it is undefined.
An essential point for an efficient implementation is the choice of the evaluation
tree that defines the frontier: If it is very small, further evaluation will be needed
later; if it very large we have some overhead. We investigate here the adequate
way to fix the frontier by using lazy evaluation.

In fact, the problem by itself is an example of lazy evaluation: the compu-
tation of f(ey,...,e,) is a potentially infinite process but we only use the part
of it needed. This solution is sketched in Chan’s papers [4,5] by providing a
coroutining implementation technique. It is clear that it is a good basis for the
efficient implementation of a very heavy process. However, the presentation of
the coroutining technique is not related as all with the operational semantics
and it appears as an implementation trick. The combination of lazy narrowing
and constructive negation allows to formalize this implementation technique.
The operational understanding of the technique can be the basis for an efficient
implementation of constructive negation. The formalized semantics allows us to
express soundness and completeness results, which prove the adequacy of the
coroutining implementation technique.

2 A Lazy Functional Logic Language with Default Rules

First of all, let us start with an example. Even if we postpone the detailed
description of the language, the reader can understand the following program to
motivate the new construction.

type nat = 0 | s(nat). type list A = []|[A]list A].
fun member: A x list A — bool. fun first: nat x list A — list A.
member (X, []) = false. first (s (N), [X | L]) =
member (X, [Y | L]) = member (X, first (N, L)) —
X ==Y — true first (N, L) O [X | first (N, L)].
O member (X, L). default first (N, L) =[].

fun nats: nat — list nat.
nats (N) = [N | nats (s (N))].

The language has a Hindley-Milner like polymorphic type system and relies
on a constructor discipline. Capital letters are used for variables and small letters
for constructors and user-defined functions. Functions are defined by equations
(or rules). The function member is a predicate, implemented as a boolean func-
tion. The expression X ==Y — true O member (X, L) must be interpreted as an
if_then_else construction, where the condition checks for the equality between
the values stored in X and Y.

The function first shows the use of default rules. It computes the first n
elements of a list and then deletes the repetitions. The function is designed to
do both things at the same time. If there are not n elements in the list, less
elements are considered. The partially defined version is used to compute the
list using the “positive” information about the behaviour of the function. The
equation describes the result when it is applied to a number greater than 0 and
a nonempty list. It is completed with a default rule in order to return the empty
list, what covers the “negative” information, namely two cases: the call with 0
and the call with the empty list. We can query this program as follows:

eval first (s (s(0)), [X | L]).

> result [X, Y] answer X # Y, L =[Y | L]
> result [X] answer X =Y, L=[Y | L]
> result [X] answer LZ[Y | (=L =[]

> no (more) solutions.
In the first result, the constraint X # Y cannot be replaced by any equivalent
finite set of equalities.

The function nats defines the infinite list of natural numbers greater than V.
It can only be managed with lazy evaluation. Another query should be:
eval first (s (s (s(0))), nats (X)).
> result [X, s(X), s(s(X))]
> no (more) solutions.
when the reader can see the interaction of lazy evaluation, logical variables and
default rules.

The concrete syntax is a simplification of the functional-logic language BA-
BEL [23,16]. Terms ¢t and expressions e are defined as follows:

b= X % X variable cr=t [term
(b1, tn) % tuples | (e1,., en) % tuples
d (2) ’ % d constructor | d (e) % d constructor
| f (e) % [user-defined function

and all of them must be well typed.
The syntax allows to build expressions involving some primitive function
symbols: —b (negation — moves true to false and vice versa), (by , b2) (conjunc-

tion), (b1 ; b2) (disjunction), (b — €) (guarded expression, meaning: if b then e

else undefined), (b — e;Oey) (conditional, meaning: if b then e; else e3), and
(e; == eq) (weak equality, both expressions denote the same object), where b is
a boolean expression.

Programs consist of declarations of types and defining or default rules for
every function symbol f, with the following shape, where guards (that may

contain free variables — i.e. not appearing in the left hand side) are optional:

DEFINING RULES DEFAULT RULES

f ... th) ={b>} _e default f (Xi,...,X,)=b—e¢

left hand side guard body
~———
right hand side

These functions are functions in the mathematical sense. In order to ensure
confluence, some restrictions must be imposed imposed (see [23]).

Now, we can intuitively define the meaning of a function definition. The left
column shows a set of function rules and the right column their meaning;:

[=aE@ V) s e ey £IX(Z=0 AT b))

fE.(X™)) =b.(X"Y") > en 1(2) = en FIX(Z =1t AIY"b,)
default f(X) =b(X,Y) = e e if3IYbAS (f(2))
where ¢ is the definitionless operator that means that the defining rules for f do
not define f (7).

Let us conclude the section with another example that involves infinite ob-
jects and variable quantification. We want to calculate the integer square root, of
a natural number. We compute it as the nth element of the infinite list of integer
square roots of the natural numbers. We accumulate the previous square root
and it is increased when a perfect square is found. A natural number is a perfect
square if it is the product of another natural number by itself. Otherwise the
number is not perfect. This last statement corresponds to a default rule which
involves an implicit universal quantification. Arabic numbers (1, 2, 46, ...) are
sometimes used instead of their successor representation.

type square_att = perfect | no_perfect.
% Some rules for arithmetic operations plus, times, <,
fun sq.att . nat — square_att.
sq-att (N) = (Y < X, times (Y, Y) == X) — perfect.
default sq_att (X) = no_perfect.
fun int_roots: nat x nat — list nat.
int_roots (X, Y) = sq-att (X) = perfect — [s(Y) | int_roots (s(X), s(Y))]
O [Y | int_roots (s(X), Y)]

fun nth: list A — nat = A. fun int_root: nat — nat.
nth ([X | L], 0) = X. int_root (N) =
nth (([X | L], s (N)) = nth (L, N). nth (int_roots (2, 1), N).
eval int_root (2197).
> result 46

3 Declarative Semantics of Default Rules

This section sketches the declarative semantics of our language by extending the
semantics of [23]. It is worth to mention that the semantics have some “external”
similarities with the strict case (reported in [24]). However, the similarities are
mainly apparent because both semantics are essentially different. The use of an
infinitary domain complicates the construction and the results. The presentation
is intentionally similar to allow a deep comparison of both semantics.

3.1 The Domain

The infinitary Herbrand Universe H is the set of the (finite or infinite) correctly
typed terms built up with the constructors of the program and two failure values:
fail (for finite failure) and L (for divergence). We distinguish two kinds of
elements in H: finite elements and total elements (those elements without any
occurrence of fail, 1). The ordering of H is defined as the transitive closure of:

e | C s for every s e fail C s for every concrete element s
o (t1,...,tn) E(S1,...,8,) od(t) Ed (s)if dis a constructor and ¢t C s
lftl ESl, ,tn ESn

We denote tLis the least upper bound of two consistent elements ¢, s. | | S denotes
the L.u.b. of a consistent set S.
A function f : H — H is continuous if it monotonous and for every consistent

(infinite) set S f(|]S) = || f(S).
Our model combines infinite domains and Kunen’s 3-valued semantics [18].

Two different values for failure are needed because false is a correct result for
functions and predicates.

3.2 Interpretations, Environments and Valuations
A Herbrand interpretation I is a collection of well typed continuous functions
fr: "™ — H, one for every function f such that f;(L) = L and f;(fail) = fail.
Interpretations can be equipped with the partial ordering:

IC Jiffforall f/ne FS f1(3) C f;(3) for all s € H"
The domain of Herbrand interpretations is noted H_LZNT.
An environment is any mapping p : V.S — H such that p(X) has the same type
of the variable X. We say that p is total if no p(X) contains L or fail

Now, we proceed with the definition of the valuation [e];(p) for a given well
typed expression e into a concrete interpretation I under an environment p by
induction on the syntactical structure of the expression.

[X]r(p) = p(X) for X € VS

[(e1,..,en)]s(p) = ([[61]] (p): s [en]1(p))
[d (e)]1(p) =d ([e]:(p)) for d/n € CS,n>0
[f (&)]:(p) = f1 ([elz(p)) for f/n € FS;n>0
[er = e2]1(p) = eq([e1]z(p). [e2]1(p))
[=6]1(p) = not([b]1(p))
[b1,b2]1(p) = and([b1]1(p), [b2]1(p))
[b1562]1(p) = or([b1]1(p), [b2]1(p))
[6 — el (p) = if([6]1(p), [e]1(p))

[b = eiQes]i(p) = if-else([[bﬂz(p)y[[61]]1(9),[[62]]1(9))
where and, not, and or are the 3-valued logical connectives, and:
true if s1 = s is finite and total
false if s1, s2 are inconsistent

eq(s1, 52) = fail if s1 = s2 = fail
1 otherwise
S if b = true s1 ifb=true
. _) fail if b= false . _) sa ifb= false
if(b;s) = or b= fail 1o1sebs152) = i b = Fail

1 otherwise 1 otherwise

3.3 Models
We start with some auxiliary definitions: Given a function f, a program I7, and
a Herbrand interpretation I we define Ythe functions T7(f), Ti(f) : H — P(H)
as follows:
Ti(£)(s) ={[R1(p)/f (t) = R € IT, p(t) = s}

f](f)(s) ={[R]:(p)/defaultf (Xi,...,X,)=Re Il p(X1,...,X,) =s}
where p is total environment.
We also define the definitionless function 6;(f) : H — bool such that
{true it Ti(f)(s) =0 or Tr(f)(s) = {fail}

5i(f)(s)=< L if LeTi(f)(s)

false otherwise.
The § function establishes where the function f has not a definition using
the defining rules. Notice that the definitions of 77 and § involve some implicit
universal quantification if a defining rule contains free variables in the guard.

An interpretation I is a model of a program IT (in symbols I = IT) if

a).- I is a model of every defining rule in IT, and .

b).- for every default rule f (Xi,...,X,) = ein I fi(p(X)) = [e]i(p) if
0r(f)(p(X)) = true for any environment p.

I is a Herbrand model of a defining rule L = R iff [L];(p) 3 [R]:(p) for all

environments p.

3.4 Interpretation transformer and the semantics of a program

The interpretation transformer associated to a program I is the mapping 7Ty :
HIINT — HLINT defined as follows: for any interpretation I, Tr7(I) is the
Herbrand interpretation J such that for any f € F'S and a well typed element

se€H m if m 3 fail where
fr(s) = {n if 61(f)(s) = true m = maz Ti(f)(s)
L otherwise n = maz T (f)(s)

Proposition 1. Ty is well defined and monotonous.

Proof. Tr is well defined due to the non-ambiguity property. The set T7(f)(s)
can only have a single concrete value, then the maximum exists. The definition
of the transformer allows us to prove monotonicity. Notice that the distinction
between fail and 1 means that the unknown 1-values cannot be used by a
default rule. fail is only used when a finite failure is calculated and then the
default rules can be applied.

Unfortunately, 777 is not always continuous. Monotonicity ensures the exis-
tence of a least fixpoint, but it may occur at any recursive ordinal. Following
Fitting and Ben-Jacobs [9], the natural cut off point for computability is after w
steps. Fortunately, this is what we can compute with our operational semantics.

Therefore, we adopt

In=Tp tw
as the semantics of the program IT.

I;7 is an interpretation and the definitions for interpretations apply to it. We
call § the function dr,. The complement of this function, called A is also inter-
esting: A(f (s)) = not §(f)(s). Intuitively A(f (e)) means that the expression
f (e) is positively defined, i.e. can be calculated without the default rule.

4 Operational Semantics

In order to provide a stepwise definition for all the concepts we will first present
how lazy narrowing works with constraints. In the next subsection the definition
of lazy narrowing will be extended in order to cope with default rules. This
section describe how to compute with default rules. The key idea is to manage
the § function in a syntactic way.

4.1 Lazy Narrowing with Constraints over the Herbrand Universe

A computation involves a constraint ¢ and an expression e. The constraint ¢
contains equalities and disequalities between terms. The simplest normal form
of a constraint (see [17]) is the conjunction of (possibly universally quantified)
equalities and disequalities between a variable and an expression. In symbols, a
constraint in normal form is:

/\(Xi=6i) A /\V7j (Y; # €})
—_—— —
positive information negative information
where each X; appears only in X; = e;, none e} is equal to Y; and the universal
quantification could be empty (leaving a simple disequality).

A more complex notion of constraint normal form is used in [24] for in-
nermost narrowing, however it is not longer valid because the possibility of
constraints between infinite terms. Disjunctions of disequalities are included
in the constraint. Disjunctions appear because of disequalities between tuples,
e.g. (t1...tn) # (s1...5n) is equivalent to t; # s1 V...V i, # s,. Laziness
implies that a disequality may hold even between infinite objects. This should
imply an infinitary disjunction. Similarly, we cannot force the evaluation of ex-
pressions e;’s to a (finite) term without loosing completeness. For this reason we
use our simple notion of normal form, and backtracking is used for managing the
situations where disjunctions are introduced, namely disequations between con-
structor applications. The interested reader can consult [6, 20] for papers devoted
to this and related subjects.

The equalities collected into the constraint can be seen as the substitutions
in usual narrowing, similarly as it is done within the CLP scheme [15]. A more
abstract and general description of the operational semantics of the constraint
functional logic programming paradigm can be found in [19].

The notation ¢ F ¢’ indicates that the constraint ¢’ is the lazy simplification
of c. ¢+ false means that the constraint ¢ is unsatisfiable. In order to maintain
the normal form representation of constraints a strong interaction between
and the lazy narrowing relation is needed. As disjunctions are not introduced in
the constraint representation, F is a non deterministic relation. In general, we
consider two alternatives for Y # d (e): either Y = d' (X)) for some d’' # d and a
new variable X, or Y = d (X), but X # e. Notice that the first alternative is
really lazy, that is, it does not require further evaluation of e. Furthermore, the
second alternative only requires the evaluation of the argument to HNF.

Due to the lack of space, we are not able to describe the complete rules for
. The rules described in [17] and formalized in [1] can be adapted to include

universally quantified disequalities in the vein of [24]. F- is also responsible of the
decision about if a constraint ¢ is satisfiable or not. In general, it is enough to
have each e;, e/ in head normal form (HNF)., i.e. a variable or an expression with
a constructor at the top.

The one step lazy narrowing relation is denoted ¢ | e = ¢ || €/, where ¢’
is not false. It is specified by the following rules':

1. Narrowing the argument in a construction

cle = ¢]¢

ifdeCSandcAc ¢’
cld(e) = o [d(e) = tevrandenche

2. Narrowing the arguments in o tuple

/
i

cﬂez:cﬂﬂ 1<i<nandcAc F¢"

e
cl(ery .. €iy.en) = " | (e1,...,¢ ... en

3. Outermost rule application c| f (e) = ' | e"
if — e is evaluated as demanded by the rules for f and there is a variant
f (t) = {b —}e' of one rule in the program (sharing no variables
with the goal) such that f (¢t) and f (e) are unifiable with m.g.u.
0 = 0inU0ou: (where o, collects the bindings for variables in the ¢;
and 0,y records the bindings for variables in e), and e” is ({b = }e’)s,,
— e ANXi =¢}) F, where 00w = {..., Xi/e;, ...}

4. Inner narrowing step /

cle = ¢ e

c[fle)=c"]f(e)

if e is not evaluated yet as demanded for the rules for f and cAc' - ¢c”.

5. Rules for the equality
cle1=e) = ¢ [true ifcA(e1=es)bFc
c] (e1=e) = ¢ | false ifcA(er #e2)Fc
6. Interaction with constraints
where ce is t = e1 (e1 = t,t #e1,e1 # 1)

e1 is not in HNF and ¢ A ¢ Ace' F ",
ce' ist=c¢) (e} =t,t# e, e} #t respectively)

* / /
cler = ' |e
cheelle = ' e

The rest of the primitive functions can be computed by some predefined rules
(see [23]), which must be added to every program.

The notation c [e=¢cp [eg = ...ci]€i... = cplen=c | ¢,
simply ¢ [e == ¢ | ¢ denotes the lazy narrowing relation (composition of
several narrowing steps).

There is some degree of freedom in the previous scheme. On one hand, there
could be several points, mainly the selected expression to be reduced into a

or

! The rules assume that the condition holds, i.e. the resulting constraint is not false.
Furthermore, the rules are not applicable if the input constraint ¢ is not in normal
form, except rule 5

tuple (rule 2), where one of the previous rules are applicable. We call this point
a lazy reder and the order of reduction should be fixed by a computation rule
R. The usual implemented rule is the selection of the left-most redex that it is
not yet in the demanded form. As we have mentioned, the F simplification is
also nondeterministic. For simplicity, we assume that R covers also this case.
In particular R decides when the satisfiability check is performed. As the check
usually imposes several evaluations it is desirable to delay it at most as possible
and only the evaluations demanded by other rules can be performed.

On the other hand, the notion of as demanded by the rules for f is not clearly
defined. In general, not all the rules demand the same evaluation for all the ar-
guments. Several papers have discussed the importance of fixing statically the
degree of evaluation (avoiding the nontermination and the reevaluation prob-
lem see [21,22]). One proposal [21] uses a program transformation in order to
get a program with the following property: All the rules demand HNF or noth-
ing. However, the more the rules demand the more efficient is the process. The
alternative solution is the use of abstract interpretation to fix the degree of eval-
uation demanded by a rule [22]. Demandedness analysis is used to infer the so
called dependent demand patterns, that specify the finite or infinite (regular) de-
gree of evaluation for every function, without penalization of the lazy behaviour.
Consider, for instance, the function nth of the second example. The lhs’s of the
program demand HNF for both arguments. However, in order to compute a re-
sult, we can infer that the second argument needs normal form instead. The
computation of an expression nth(a-list, f(e)) can force f(e) to return a term.

For the purpose of this paper, we assume that some degree of evaluation py
for every program function f is detected, enough to apply the rules. By abuse
of notation, we will still call each py the demand pattern for f. We also assume
a method (usually ensured by the implementation) to detect if an expression e
has the shape of a demand pattern py, in symbols e < py.

In summary, lazy narrowing is guided by a computation rule R and a set of
demand patterns P = {p;/f € FS}.

4.2 Children, Narrowing Tree and Frontier

Given a constraint expression ¢ | e and a program II we call any possible appli-
cation of the one step narrowing relation guided by R, P a child of ¢ | e. All the
possible narrowing reductions of a constraint expression ¢ | e given a program
IT form the narrowing tree for ¢ | e. Every node is labelled with a constraint
expression?.

The possible paths into the narrowing tree of a goal expression ¢ | e can be
classified as:

— success when ¢ | e = ¢’ | t with ¢ a term and ¢’ satisfiable;

— failure when ¢ [e == ¢ | €', e’ is not a term and €’ is not further narrowable
or ¢’ unsatisfiable; and

— nontermination: when we may still have ¢ | e == ¢’ | €' where €’ is not a
term and e'’s constructors give a partial result.

2 The references to 1T, R, and P will be omited when no ambiguity is possible.

When a successful narrowing relation reaches a term ¢’ | ¢ we speak of a com-
putation for the goal ¢ | e with result t and answer c'.

A very important notion for our purpose is the concept of the frontier of a

narrowing tree. We differ from the classical notion. Our definition depends on
the demand patterns selected. Once one has chosen them, the frontier is unique.
We want to stress the fact that, from the operational point of view, this is one
of the main contributions of the paper.
Let py be a demand pattern in P. The ps-frontier of an expression c | ', where
e' = f(e), is the set of nodes {c; [€1,...,¢m | €m} of the narrowing tree of ¢ | e
such that every narrowing reduction of ¢ | e is either a failure or passes through
exactly one node in the set, and each e; is the first expression in the branch such
that €; j pf-

If the ps-frontier is well defined then it is finite and unique, what is not true in
the classical notion of frontier. The argument is evaluated as least as possible to
preserve the lazy behaviour. If the narrowing tree has an infinite branch without
getting an expression e; =< py the frontier does not exist.

Suppose we use the program of our first example adding the function f,
defined by the rules:

f (X, true) = f (X, false). f (X, false) = X.
and pyirse requires HNF for both arguments. Now, if we consider the expression
true | first(f(s(s(0)),Z),L) and the following narrowing tree for the subex-

pression true | f(s(s(0)), Z) true | f(s(s(0)), %)

Z =true AN X = s(s(0)) | f(s(s(0)), false) Z = false A X = s(s(0)) | s(s(0))
we get the frontier {Z = true A X = s(s(0)) | f(s(s(0)), false), Z = falseANX =
s(s(0)) [s(s(0))}-

The rest of the section adapts the ideas of [24] and constructive negation to
this refined concept of frontier.

4.3 Narrowing for default rules

In order to compute with default rules, the § function is managed syntactically.
The semantical definition of the § function includes an implicit universal quan-
tification, that is moved into a explicit V-quantification. §-expressions take the
form V X 6(c | f(e)) that must be read “under the constraint ¢, f(e) is unde-
fined using the defining rules”. Therefore, the question to answer is “when is
the expression f(e) is defined ?”. The expression is defined if e is as defined as
demanded by the rules for f and then at least one rule is applicable giving a
defined result. From the operational semantics point of view, this means two
situations:

1. The argument expression e is as defined as py.
2. One rule is applicable, i.e. one unification is possible and the corresponding
rhs is defined.

To manage the first point we can adapt the result of [24]: if the p;-frontier of
c] fle)is F={e1] er,...,cn | en} then

Alc]e) = IX1 (a1 ANA(e))V...VIX, (cn A Alen))

where X; are the free variables in ¢; | e; which are not in ¢ | e. As the §

function is the negation of the A function, this result can be used to calculate
a ¢ expression by the negation of the right hand side formula. The notion of
normal complement of a frontier is used for this purpose.

The negation of the second point is straightforward. Let ¢ | e; an element of
the py-frontier. Either e; is not unifiable with any lhs or e; is unifiable with the
lhs of a rule but the rhs is undefined. We formalize these situations by the notion
of rule complement of a frontier. Let us describe in details these two concepts:

Let FF = {c1 | €1,...,¢n | en} be the py-frontier of ¢ | f(e) and V a set
of variables (denoting the free variables in the goal expression). The normal
complements of F' under V are all the possible conjunctions of complements of
each ¢; | e; under V: ¢ A...AC, | b1,..., by is a complement of F iff each
ci || b; is a complement of ¢; | e; under V. The rule complements of F under V
are the rule complements of every constrained expression ¢; | e; of F' under V.

In order to define the complements of a constraint expression ¢ | e, let us
briefly discuss the quantification of variables. First, we only need to focus on
those useful variables, i.e. those that are free in the goal expression. We collect
them in the set V. A variable X not in V appearing in the positive part of the
constraint as X =t can be eliminated. If ¢ is a variable X' € V we substitute X
for X' in ¢ | e. Otherwise, the equation is irrelevant.

Next, we identify the variables that will have a universal quantification when
the complement is calculated. They are the free variables in e that are neither in
V nor in the positive part (that have an implicit quantification). We collect them
in the set U. The inequalities with variables in U cannot be separated from e. The
rest of the disequalities can be negated separately from e. When a disequality
is negated it is moved into a equality. This equality have not quantification
even if the original disequation is not quantified because the free variables are
(implicitly) quantified outside. In summary, we can organize the simplification
of ¢ as:

c=c A" where c’=/\(Xi=ei)/\/\V7j (Y; #¢€'s;)
i=1 j=1

and ¢” collects all the inequalities with a variable in U.
The complements of ¢ | e under V are:

-V 7i (X; # e;) | true, for all i < m, where Zi are the variables of e; that are not

quantified outside, i.e. var(e;) NV.

- AN (Xi=e)A(Ve=¢e}) A /\f;jv Zj (Y; #¢€) | true, for all k < n.

~ X=VZ6" [e)Ac | true, if e is not a term®, where X is a new variable and
Z are the variables in U.

Let {f(t1) = e},... f(ti) = e;} be the set of rules for f in II. The rule
complements of ¢ | e under V' are:

3 5(t) = true if t is a term

—cA /\fk:1 vVZ'e # ty | true, where 7z = var(ty) U (var(e) NV). .
—dANe=t, AX =V Z ("] e) | true (where X is a new variable and 7 are the
variables in U) for each 1 < k < [such that e}, is not a term.

The §-expression can affect a predefined function. In this case, the predefined
rules can be applied. In practice, predefined functions are implemented directly
and it is convenient to deduce some simplification rules for -expressions.

Let us come back to our example. The computed frontier has a single goal
variable Z. Equalities for X are eliminated.

The complements of the frontier are: Z # true | true and Z = true A Z' =
d(true | f(s(s(0)), false)) | true, and Z # false || true, respectively

Finally, the normal complements are obtained by combining the previous
complements: Z # trueAZ # false || true (unsatisfiable in the boolean domain)
7Z =truenNZ = falseNZ' = §(true | f(s(s(0)), false))Atrue (also unsatisfiable)
and Z = true A Z' = §(true | f(s(s(0)), false)) | true.

The rule complements are:

Z =true AY N s(N) # s(s(0)) | true (unsatisfiable).

. Z = false NN N s(N) # s(s(0)) | true (unsatisfiable),

. Z=true A\Y X', L' L # [X'|L'] | true,

. Z = false \Y X', L' L # [X'|L"] | true,

. Z =trueAN = s(0)AL = [X'|L'|AZ" = 6(true | member (X', first(L', s(0))
— first(L',s(0))0[X'| first(L', s(0))]) | true, and

. Z = false \N =s(0) AL = [X'|L')ANZ" = §(true | member(X',...) | true.
The narrowing rules are completed to use the default rule (if present) and to

compute a §(c | e) expression:

Y

Y

(=)

6. Default rule s f
clf
where default f (X1,...,X,)=e€Il,0={.,X;/ei,..} and cAc Fc".

7. Definitionless expressions rule
Let us suppose that there exists a py-frontier F' of the expression ¢ |]£', where
e’ = f(e), and let V be the set of free variables of ¢ | ¢’ that are not in X.

(e1,...,en) = c | true
(e1,...,en) = ' | ec

VX dc]e) = c]b
if (¢ | b) is either a normal complement or a rule complement of F' under V/

For each complement of F' we have a different child in the narrowing tree. If F’
does not exist the rule is not applicable and the § expression cannot be reduced
(remains undefined as indicated by the declarative semantics).

4.4 Soundness and Completeness

Finally, we can establish the soundness and completeness of our narrowing se-
mantics. Due to the lack of space we will omit the proofs.

Theorem 1. Soundness
Let IT be a program. Any narrowing sequence c | e = [' computes a sound
outcome in the sense that

lelr, (p) 2 [€'] 1 (p) for all environments p satisfying c A c'.

The expected soundness result for successful computations comes when €’ is a
term (and its valuation corresponds to itself).
Furthermore we can claim the following completeness theorem.

Theorem 2. Completeness
Let IT be a program, e an expression, ¢ a constraint, s an element in H and 6 a
substitution that binds any variable of c,e into a ground term (ground substitu-

tion). If [(c — e)8] 3 s then there exists a narrowing sequence ¢ | e = ¢' | t,
(with t a term), and a ground substitution o such that to = s, and ¢, ANcg A '
is satisfiable (where c,,cq denote the constraints with only positive part o,6).

Proof. (Idea): The proof proceeds by using the 77 operator, combining the com-
pleteness of lazy narrowing and the completeness proof of [27].

5 Related work

The work uses some of the techniques developed for constructive negation [4,
5,27,7]. However, they are adapted to a more general framework. The reader
can find a discussion about the differences in [24]. In [4,5] an implementation
technique based on coroutining is proposed: every negated predicate is anno-
tated with some delay clauses to suspend the execution until the variables are
enough instantiated. Then the negation with respect to the clauses is computed
(similarly to our rule complements) which could introduce new negated predi-
cates. This technique is generalized here and it is described in the more abstract
context of lazy evaluation. The key point is the inclusion of new J-expressions
into the constraint, where they are handled lazily.

We compare our work with some related papers in to areas. First, we deal
with works about the combination of laziness and constraints. As far as we know,
only [19,17,1] attack the problem. The first one introduces a general framework
to integrate functional programming, logic programming and constraints. [17]
presents a method to compute equality and disequality constraints over the (in-
finitary) Herbrand universe in a lazy way. The description is very related to an
abstract machine implementation. The work reported in [1] formalizes this ap-
proach in the framework of [19]. Our work needs to use their way of combining
laziness and constraints but goes beyond this problem.

On the other hand, there are very few papers devoted to the integration of
narrowing and constructive negation. Maybe [26] is the closest approach but
they treat a different problem: they compute the solutions to a disequation
f(t) # s in a Conditional Term Rewriting system without extra variables by
computing the answers for f(t) = s and then negating the obtained formula.
The undefined values for f(¢) are not taken into account (or f must be total).
The evaluation mode is eager and no strategy is discussed about the depth of
the frontier. The work in [8] describes an innermost narrowing mechanism to
calculate disunification (i.e. disequations over the Herbrand universe modulo an
equational theory).

A special use of innermost narrowing and negative information appears in
the languages SLOG [10] and ALF [11]. Narrowing interleaves with simplification

using some rules for pure rewriting. Under the CWA, sometimes it is possible
to define a rewriting rule indicating when a function fails. Besides the fact that
then computation can be optimized, an infinite computation (L) can be moved
into a finite failure (fail). Recently, the technique has been extended to lazy
narrowing [13]. Although the technique is independent of our work and can be
used to optimize it also, sometimes the effects are similar.

6 Conclusion

In this paper we have studied the completion of partial functions with a de-
fault rule in lazy functional logic languages. The lazy narrowing rule has been
modified to cope with these new rules. The basis of the technique of constructive
negation (“subderivations are used to detect when a function call will finitely fail
by using the defining rules”) is kept but it is complemented with lazy narrowing
to compute the exact part of the subderivation needed. The coroutining imple-
mentation technique is fully formalized as the natural lazy operational semantics
of the language in such a way that lazy evaluation is an effective solution to a
heavy process. We want to further explore the use of this technique in a concrete
implementation.

PROLOG programs with negation can be expressed in our framework. The
programmer can write a default rule with body false to express the negated
part of a predicate. But he/she can also write a defining rule with body false,
emulating negation as failure. This fact carries good and bad news. The good
news is that the programmer can freely mix explicit negation and negation as
failure. Kowalski pointed out the advantages of this distinction for knowledge
representation.

The bad news is that default rules are, at least, as difficult to implement as
negation in logic programming. We can adapt the transformational approach [2,
3] to treat negation in Prolog. The negative information is expressed by means of
new predicates, that are added to the program. In our case, this approach can be
easily adapted when the program has no guards or guards without free variables.
The default rule can be expressed as several normal rules. For instance, in the
first example, the new rules are:

first (0, X | L) =] first s (N, [D=1]
Nevertheless, the program could produce infinitely many solutions when a con-
straint of the X # Y appears.

In the presence of logical variables in the guards, the transformation is still
possible but the guard(s) of the new rule(s) contain arbitrary formulas and, in
particular, universal quantifications, hard to be efficiently implemented. Prolog
versions with these facilities, like Godel [14] or NU-Prolog [25], usually perform
residuation which is incomplete in general.

Although we restrict ourselves to the Herbrand Universe, following [27] it is
more general (and natural) to study the problem in a CLP framework. However,
to our knowledge only [19] addresses seriously the definition of the Constraint
Functional Logic Programming paradigm.

As a future work we plan to implement a prototype by modifying the current
lazy BABEL implementations [21,22].

Acknowledgements
This research was supported in part by the spanish project TIC/93-0737-C02-02.

References

1. P. Arenas, A. Gil, F. Lépez-Fraguas. Combining Lazy Narrowing with Disequality
Constraints. PLILP’9/, Springer LNCS 844, 385-399, 1994.

2. R. Barbuti, D. Mancarella, D. Pedreschi, F. Turini. Intensional Negation of Logic
Programs. Proc. TAPSOFT’87, Springer LNCS 250, 96-110, 1987.

3. R. Barbuti, D. Mancarella, D. Pedreschi, F. Turini. A Transformational Approach
to Negation in Logic Programming. J. of Logic Programming, 8(3):201-228, 1990.

4. D. Chan. Constructive Negation Based on the Complete Database Proc. Int. Con-
ference on Logic Programming’89, The MIT Press, 111-125, 1988.

5. D. Chan. An Extension of Constructive Negation and its Application in Coroutining.
Proc. NACLP’89, The MIT Press, 477-493. 1989.

6. H. Comon, P. Lescanne. Equational Problems and Disunification. J. of Symbolic
Computation, 7:371-425, 1989.

7. W. Drabent. What is Failure? An Approach to Constructive Negation. Acta Infor-
matica 32, 27-59, Springer Verlag, 1995.

8. M. Fernindez. Narrowing Based Procedures for Equational Disunification. Appli-
cable Algebras in Eng. Communications and Computing, 3:1-26, 1992.

9. M. Fitting, M. Ben-Jacob. Stratified and Three-valued Logic Programming Se-
mantics Proc. Int. Conf. and Symp. on Logic Programming, 1988, pp. 1054-1069.

10. L. Fribourg. SLOG: A Logic Programming Language Interpreter based on Clausal
Superposition and Rewriting. Proc. Symp. on Logic Programming, IEEE Comp.
Soc. Press, 1985.

11. M. Hanus. Compiling Logic Programs with Equality. Proc. PLILP’90, Springer
LNCS, 1990.

12. M. Hanus. The Integration of Functions into Logic Programs: A Survey. J. of
Logic Programming, 1994.

13. M. Hanus. Combining Lazy Narrowing and Simplification. PLILP’94, Springer
LNCS 844, 370-384, 1994.

14. P. Hill, J. lloyd. The Go6del Programming Language. The MIT Press, 1994.

15. J. Jaffar, J.L.. Lassez. Constraint Logic Programming. Proc. 14th ACM Symp. on
Princ. of Prog. Lang., 114-119, 1987.

16. H. Kuchen, R. Loogen, J. J. Moreno-Navarro, M. Rodriguez-Artalejo. Graph-based
Implementation of a Functional Logic Language Proc. ESOP, Springer LNCS 432,
271-290, 1990.

17. H. Kuchen, F. Lépez-Fraguas, J.J. Moreno-Navarro, M. Rodriguez-Artalejo. Im-
plementing a Lazy Functional Logic Language with Disequality Constraints. Joint
International Conference and Symposium on Logic Programming, The MIT Press,
189-223, 1992.

18. K. Kunen. Negation in Logic Programming. J. of Logic Programming 4:289-308,
1987.

19. F.J. Lépez-Fraguas. A General Scheme for Constraint Functional Logic Program-
ming. Proc. ALP’92, Springer LNCS, 1992.

20. M. Maher. Complete Axiomatization of the Algebras of Finite, Rational and Infi-
nite Trees. Proc. 3rd Symp. on Logic in Computer Science, 348-357, 1988.

21. J.J. Moreno-Navarro, H.Kuchen, R.Loogen, M. Rodriguez-Artalejo. Lazy Narrow-

ing in a Graph Machine. Proc. ALP’90, Springer LNCS 463, 298-317, 1990.
22. J.J.Moreno-Navarro, H. Kuchen, J. Marino-Carballo, S. Winkler, W. Hans. Ef-

ficient Lazy Narrowing using Demandedness Analysis. Proc. PLILP’93, Springer
LNCS 714, 167-183, 1993.

23. J.J. Moreno Navarro, M. Rodriguez Artalejo. Logic Programming with Functions
and Predicates: The Language BABEL. J. of Logic Programming 12:189-223, 1992.

24. J.J. Moreno Navarro. Default Rules: An Extension of Constructive Negation for
Narrowing-based Languages. Proc. ICLP’94, The MIT Press, 1994.

25. L. Naish. Negation and Quantifiers in NU-Prolog. ICLP’86, Springer LNCS 225,
624-634, 1986.

26. M.J. Ramirez, M. Falaschi. Conditional Narrowing with Constructive Negation.
Proc. ELP’92, Springer LNCS 660, 59-79, 1993.

27. P. Stuckey. Constructive Negation for Constraint Logic Programming Proc. IEEE
Symp. on Logic in Computer Science, IEEE Comp. Soc. Press, 1991.

