
Extending Constructive Negation for PartialFunctions in Lazy Functional-logic LanguagesJuan Jos�e Moreno-NavarroU. Polit�ecnica, Facultad de Inform�atica, Campus de Montegancedo,Boadilla del Monte, 28660 Madrid, Spain,e-mail: jjmoreno@fi.upm.es, URL: http://gedeon.ls.fi.upm.es/�jjmorenoAbstract. In this paper the mechanism of Default Rules for narrowing-based languages proposed in [24] is adapted to lazy narrowing. Everypartial de�nition of a function can be completed with a default rule. Ina concrete function call, the default rule is applicable when the normalones determine that they cannot compute the value of the call. Further-more, when the goal has variables the evaluation mechanism providesconstraints to the variables to make the default rule applicable. Lazynarrowing semantics are extended with the technique of constructivenegation [4, 5, 27]. The main advantage is that the coroutining imple-mentation technique described in [5], which is the basis for an e�cientimplementation, can be fully formalized in our framework.1 IntroductionThe integration of di�erent declarative concepts is an active area of research.The expressive power of new declarative languages can be improved by account-ing for a mature and up-to-date understanding of previously studied features.In particular, we are interested in the addition of new declarative features tofunctional logic languages, proposed for the integration of functional and logicprogramming (see [12]). These languages use functional syntax (conditional termrewriting systems) and narrowing as operational mechanism. Lazy narrowing isa strategy which only evaluates the arguments of a function application, if theirevaluation is really demanded. The use of lazy narrowing enhances the expressiv-ity of the language because it allows to write highly modular programs, to de�nepartial and non strict functions and to use the technique of in�nite objects.The use of partial functions, even in a lazy context, has some problemsbecause the computation of such these functions can fail. In pure functionalprogramming the situation can be dynamically detected and solved giving, forinstance, a default value. The solution is no longer directly applicable in a func-tional logic languages because values can be searched for applying the function.The default value can be returned only if the other rules cannot apply what im-poses some constraints on the calling parameters. As a predicate p can be seenas a partially de�ned boolean function, Prolog negation as failure is a particularcase of our problem.In a recent paper [24] we have generalized this notion of completion intoan eager functional logic language. Every (partial) de�nition of a function with

a number of rules can be completed by an extra default rule. In a concretefunction call, the default rule is applicable when the normal ones determinethat they cannot compute the value of the call. In order to manage defaultrules, symbolic constraints are needed to express that the arguments have notthe shape required by the normal rules. The default rules also impose universalquanti�cations over the free variables of the normal rules. In this paper wedevelop the same feature in the framework of lazy narrowing. The operationalmechanism is a lazy extension of constructive negation proposed for Prolog [4,5, 27] which incorporates constraints as the answers into negative subgoals. Forthe declarative semantics we use an in�nite domain that distinguishes between�nite failure and the ? value for divergence, in the style of Kunen's 3-valuedsemantics [18].The main idea of constructive negation is the following: in order to computewhen a function call f (e1; : : : ; en) is not de�ned, we start a narrowing compu-tation with f (e1; : : : ; en) as goal. The computation could be in�nite but any�nite part of the evaluation tree (frontier) de�nes where the function call canbe made, hence the complement of this frontier speci�es where it is unde�ned.An essential point for an e�cient implementation is the choice of the evaluationtree that de�nes the frontier: If it is very small, further evaluation will be neededlater; if it very large we have some overhead. We investigate here the adequateway to �x the frontier by using lazy evaluation.In fact, the problem by itself is an example of lazy evaluation: the compu-tation of f(e1; : : : ; en) is a potentially in�nite process but we only use the partof it needed. This solution is sketched in Chan's papers [4, 5] by providing acoroutining implementation technique. It is clear that it is a good basis for thee�cient implementation of a very heavy process. However, the presentation ofthe coroutining technique is not related as all with the operational semanticsand it appears as an implementation trick. The combination of lazy narrowingand constructive negation allows to formalize this implementation technique.The operational understanding of the technique can be the basis for an e�cientimplementation of constructive negation. The formalized semantics allows us toexpress soundness and completeness results, which prove the adequacy of thecoroutining implementation technique.2 A Lazy Functional Logic Language with Default RulesFirst of all, let us start with an example. Even if we postpone the detaileddescription of the language, the reader can understand the following program tomotivate the new construction.type nat = 0 j s(nat). type list A = []j[Ajlist A].fun member: A � list A ! bool. fun �rst: nat � list A ! list A.member (X, []) = false. �rst (s (N), [X j L]) =member (X, [Y j L]) = member (X, �rst (N, L)) !X == Y ! true �rst (N, L) 2 [X j �rst (N, L)].2 member (X, L). default �rst (N, L) = [].fun nats: nat ! list nat.nats (N) = [N j nats (s (N))].

The language has a Hindley-Milner like polymorphic type system and relieson a constructor discipline. Capital letters are used for variables and small lettersfor constructors and user-de�ned functions. Functions are de�ned by equations(or rules). The function member is a predicate, implemented as a boolean func-tion. The expression X == Y ! true 2 member (X, L) must be interpreted as anif then else construction, where the condition checks for the equality betweenthe values stored in X and Y.The function �rst shows the use of default rules. It computes the �rst nelements of a list and then deletes the repetitions. The function is designed todo both things at the same time. If there are not n elements in the list, lesselements are considered. The partially de�ned version is used to compute thelist using the \positive" information about the behaviour of the function. Theequation describes the result when it is applied to a number greater than 0 anda nonempty list. It is completed with a default rule in order to return the emptylist, what covers the \negative" information, namely two cases: the call with 0and the call with the empty list. We can query this program as follows:eval �rst (s (s(0)), [X j L]).> result [X, Y] answer X 6= Y, L = [Y j L']> result [X] answer X = Y, L = [Y j L']> result [X] answer L 6= [Y j L'] (� L = [])> no (more) solutions.In the �rst result, the constraint X 6= Y cannot be replaced by any equivalent�nite set of equalities.The function nats de�nes the in�nite list of natural numbers greater than N .It can only be managed with lazy evaluation. Another query should be:eval �rst (s (s (s(0))), nats (X)).> result [X, s(X), s(s(X))]> no (more) solutions.when the reader can see the interaction of lazy evaluation, logical variables anddefault rules.The concrete syntax is a simpli�cation of the functional-logic language BA-BEL [23, 16]. Terms t and expressions e are de�ned as follows:t ::= X % X variablej (t1; : : : ; tn) % tuplesj d (t) % d constructor e ::= t % termj (e1; : : : ; en) % tuplesj d (e) % d constructorj f (e) % f user-de�ned functionand all of them must be well typed.The syntax allows to build expressions involving some primitive functionsymbols: :b (negation { moves true to false and vice versa), (b1 ; b2) (conjunc-tion), (b1 ; b2) (disjunction), (b! e) (guarded expression, meaning: if b then eelse unde�ned), (b ! e12e2) (conditional, meaning: if b then e1 else e2), and(e1 == e2) (weak equality, both expressions denote the same object), where b isa boolean expression.Programs consist of declarations of types and de�ning or default rules forevery function symbol f , with the following shape, where guards (that maycontain free variables { i.e. not appearing in the left hand side) are optional:

Defining rules Default rulesf (t1; : : : ; tn)| {z }left hand side = fb!g| {z }guard e|{z}body| {z }right hand side default f (X1; : : : ; Xn) = b! e
These functions are functions in the mathematical sense. In order to ensurecon
uence, some restrictions must be imposed imposed (see [23]).Now, we can intuitively de�ne the meaning of a function de�nition. The leftcolumn shows a set of function rules and the right column their meaning:f(t1(X1)) = b1(X1; Y 1)! e1: : :f(tn(Xn)) = bn(Xn; Y n)! endefault f(X) = b(X;Y)! e f(Z) =8>><>>: e1 if 9X1(Z = t1 ^ 9 Y 1b1). . .en if 9Xn(Z = tn ^ 9 Y nbn)e if 9Y b ^ � (f(Z))where � is the de�nitionless operator that means that the de�ning rules for f donot de�ne f (Z).Let us conclude the section with another example that involves in�nite ob-jects and variable quanti�cation. We want to calculate the integer square root ofa natural number. We compute it as the nth element of the in�nite list of integersquare roots of the natural numbers. We accumulate the previous square rootand it is increased when a perfect square is found. A natural number is a perfectsquare if it is the product of another natural number by itself. Otherwise thenumber is not perfect. This last statement corresponds to a default rule whichinvolves an implicit universal quanti�cation. Arabic numbers (1, 2, 46, . . .) aresometimes used instead of their successor representation.type square att = perfect j no perfect.% Some rules for arithmetic operations plus, times, <,fun sq att : nat ! square att.sq att (N) = (Y < X, times (Y, Y) == X) ! perfect.default sq att (X) = no perfect.fun int roots: nat � nat ! list nat.int roots (X, Y) = sq att (X) = perfect ! [s(Y) j int roots (s(X), s(Y))]2 [Y j int roots (s(X), Y)]fun nth: list A ! nat ! A. fun int root: nat ! nat.nth ([X j L], 0) = X. int root (N) =nth (([X j L], s (N)) = nth (L, N). nth (int roots (2, 1), N).eval int root (2197).> result 463 Declarative Semantics of Default RulesThis section sketches the declarative semantics of our language by extending thesemantics of [23]. It is worth to mention that the semantics have some \external"similarities with the strict case (reported in [24]). However, the similarities aremainly apparent because both semantics are essentially di�erent. The use of anin�nitary domain complicates the construction and the results. The presentationis intentionally similar to allow a deep comparison of both semantics.

3.1 The DomainThe in�nitary Herbrand Universe H is the set of the (�nite or in�nite) correctlytyped terms built up with the constructors of the program and two failure values:fail (for �nite failure) and ? (for divergence). We distinguish two kinds ofelements in H: �nite elements and total elements (those elements without anyoccurrence of fail, ?). The ordering of H is de�ned as the transitive closure of:� ? v s for every s � fail v s for every concrete element s� (t1; : : : ; tn) v (s1; : : : ; sn) � d (t) v d (s) if d is a constructor and t v sif t1 v s1, . . . , tn v snWe denote tts the least upper bound of two consistent elements t; s.FS denotesthe l.u.b. of a consistent set S.A function f : H ! H is continuous if it monotonous and for every consistent(in�nite) set S f(FS) = F f(S).Our model combines in�nite domains and Kunen's 3-valued semantics [18].Two di�erent values for failure are needed because false is a correct result forfunctions and predicates.3.2 Interpretations, Environments and ValuationsA Herbrand interpretation I is a collection of well typed continuous functionsfI : Hn ! H, one for every function f such that fI(?) = ? and fI(fail) = fail.Interpretations can be equipped with the partial ordering:I v J i� for all f=n 2 FS fI(s) v fJ(s) for all s 2 HnThe domain of Herbrand interpretations is noted H�INT .An environment is any mapping � : V S ! H such that �(X) has the same typeof the variable X . We say that � is total if no �(X) contains ? or failNow, we proceed with the de�nition of the valuation [[e]]I (�) for a given welltyped expression e into a concrete interpretation I under an environment � byinduction on the syntactical structure of the expression.[[X]]I (�) = �(X) for X 2 V S[[(e1; ::; en)]]I(�) = ([[e1]]I(�); ::; [[en]]I(�))[[d (e)]]I(�) = d ([[e]]I (�)) for d=n 2 CS; n � 0[[f (e)]]I(�) = fI ([[e]]I(�)) for f=n 2 FS; n � 0[[e1 = e2]]I(�) = eq([[e1]]I (�); [[e2]]I(�))[[:b]]I (�) = not([[b]]I (�))[[b1; b2]]I(�) = and([[b1]]I(�); [[b2]]I(�))[[b1; b2]]I(�) = or([[b1]]I(�); [[b2]]I (�))[[b! e]]I(�) = if([[b]]I (�); [[e]]I (�))[[b! e12e2]]I(�) = if else([[b]]I(�); [[e1]]I (�); [[e2]]I(�))where and, not, and or are the 3-valued logical connectives, and:eq(s1; s2) =8><>: true if s1 = s2 is �nite and totalfalse if s1; s2 are inconsistentfail if s1 = s2 = fail? otherwiseif(b; s) =8><>: s if b = truefail if b = falseor b = fail? otherwise if else(b; s1; s2) =8><>: s1 if b = trues2 if b = falsefail if b = fail? otherwise

3.3 ModelsWe start with some auxiliary de�nitions: Given a function f , a program � , anda Herbrand interpretation I we de�ne Ythe functions TI(f); bTI(f) : H ! P(H)as follows: TI(f)(s) = f[[R]]I (�)=f (t) = R 2 �;�(t) = sgbTI(f)(s) = f[[R]]I (�)=defaultf (X1; : : : ; Xn) = R 2 �; �(X1; : : : ; Xn) = sgwhere � is total environment.We also de�ne the de�nitionless function �I(f) : H ! bool such that�I (f)(s) = (true if TI(f)(s) = ; or TI(f)(s) = ffailg? if ? 2 TI(f)(s)false otherwise.The � function establishes where the function f has not a de�nition usingthe de�ning rules. Notice that the de�nitions of TI and � involve some implicituniversal quanti�cation if a de�ning rule contains free variables in the guard.An interpretation I is a model of a program � (in symbols I j= �) ifa).- I is a model of every de�ning rule in � , andb).- for every default rule f (X1; : : : ; Xn) = e in � fI(�(X)) = [[e]]I(�) if�I(f)(�(X)) = true for any environment �.I is a Herbrand model of a de�ning rule L = R i� [[L]]I(�) w [[R]]I(�) for allenvironments �.3.4 Interpretation transformer and the semantics of a programThe interpretation transformer associated to a program � is the mapping T� :H�INT ! H�INT de�ned as follows: for any interpretation I , T�(I) is theHerbrand interpretation J such that for any f 2 FS and a well typed elements 2 H fJ (s) = (m if m = failn if �I(f)(s) = true? otherwise wherem = max TI(f)(s)n = max bTI(f)(s)Proposition 1. T� is well de�ned and monotonous.Proof. T� is well de�ned due to the non-ambiguity property. The set TI(f)(s)can only have a single concrete value, then the maximum exists. The de�nitionof the transformer allows us to prove monotonicity. Notice that the distinctionbetween fail and ? means that the unknown ?-values cannot be used by adefault rule. fail is only used when a �nite failure is calculated and then thedefault rules can be applied.Unfortunately, T� is not always continuous. Monotonicity ensures the exis-tence of a least �xpoint, but it may occur at any recursive ordinal. FollowingFitting and Ben-Jacobs [9], the natural cut o� point for computability is after !steps. Fortunately, this is what we can compute with our operational semantics.Therefore, we adopt I� = T� " !as the semantics of the program � .I� is an interpretation and the de�nitions for interpretations apply to it. Wecall � the function �I� . The complement of this function, called � is also inter-esting: �(f (s)) = not �(f)(s). Intuitively �(f (e)) means that the expressionf (e) is positively de�ned, i.e. can be calculated without the default rule.

4 Operational SemanticsIn order to provide a stepwise de�nition for all the concepts we will �rst presenthow lazy narrowing works with constraints. In the next subsection the de�nitionof lazy narrowing will be extended in order to cope with default rules. Thissection describe how to compute with default rules. The key idea is to managethe � function in a syntactic way.4.1 Lazy Narrowing with Constraints over the Herbrand UniverseA computation involves a constraint c and an expression e. The constraint ccontains equalities and disequalities between terms. The simplest normal formof a constraint (see [17]) is the conjunction of (possibly universally quanti�ed)equalities and disequalities between a variable and an expression. In symbols, aconstraint in normal form is:^(Xi = ei)| {z }positive information^ ^ 8 Zj (Yj 6= e0j)| {z }negative informationwhere each Xi appears only in Xi = ei, none e0j is equal to Yj and the universalquanti�cation could be empty (leaving a simple disequality).A more complex notion of constraint normal form is used in [24] for in-nermost narrowing, however it is not longer valid because the possibility ofconstraints between in�nite terms. Disjunctions of disequalities are includedin the constraint. Disjunctions appear because of disequalities between tuples,e.g. (t1 : : : tn) 6= (s1 : : : sn) is equivalent to t1 6= s1 _ : : : _ tn 6= sn. Lazinessimplies that a disequality may hold even between in�nite objects. This shouldimply an in�nitary disjunction. Similarly, we cannot force the evaluation of ex-pressions ej 's to a (�nite) term without loosing completeness. For this reason weuse our simple notion of normal form, and backtracking is used for managing thesituations where disjunctions are introduced, namely disequations between con-structor applications. The interested reader can consult [6, 20] for papers devotedto this and related subjects.The equalities collected into the constraint can be seen as the substitutionsin usual narrowing, similarly as it is done within the CLP scheme [15]. A moreabstract and general description of the operational semantics of the constraintfunctional logic programming paradigm can be found in [19].The notation c ` c0 indicates that the constraint c0 is the lazy simpli�cationof c. c ` false means that the constraint c is unsatis�able. In order to maintainthe normal form representation of constraints a strong interaction between `and the lazy narrowing relation is needed. As disjunctions are not introduced inthe constraint representation, ` is a non deterministic relation. In general, weconsider two alternatives for Y 6= d (e): either Y = d0 (X) for some d0 6= d and anew variable X , or Y = d (X), but X 6= e. Notice that the �rst alternative isreally lazy, that is, it does not require further evaluation of e. Furthermore, thesecond alternative only requires the evaluation of the argument to hnf.Due to the lack of space, we are not able to describe the complete rules for`. The rules described in [17] and formalized in [1] can be adapted to include

universally quanti�ed disequalities in the vein of [24]. ` is also responsible of thedecision about if a constraint c is satis�able or not. In general, it is enough tohave each ei; e0j in head normal form (hnf)., i.e. a variable or an expression witha constructor at the top.The one step lazy narrowing relation is denoted c [] e =) c0 [] e0, where c'is not false. It is speci�ed by the following rules1:1. Narrowing the argument in a constructionc [] e �=) c0 [] e0c [] d (e) =) c00 [] d (e0) if d 2 CS and c ^ c0 ` c002. Narrowing the arguments in a tuplec [] ei �=) c0 [] e0ic [] (e1; : : : ; ei; : : : ; en) =) c00 [] (e1; : : : ; e0i; : : : ; en) 1 � i � n and c ^ c0 ` c003. Outermost rule application c [] f (e) =) c0 [] e00if { e is evaluated as demanded by the rules for f and there is a variantf (t) = fb !ge0 of one rule in the program (sharing no variableswith the goal) such that f (t) and f (e) are uni�able with m.g.u.� = �in _[�out (where �in collects the bindings for variables in the tiand �out records the bindings for variables in e), and e00 is (fb!ge0)�in{ c ^V(Xi = e0i) ` c0, where �out = f: : : ; Xi=e0i; : : :g4. Inner narrowing step c [] e �=) c0 [] e0c [] f(e) =) c00 [] f(e0)if e is not evaluated yet as demanded for the rules for f and c ^ c0 ` c00.5. Rules for the equalityc [] (e1 = e2) =) c0 [] true if c ^ (e1 = e2) ` c0c [] (e1 = e2) =) c0 [] false if c ^ (e1 6= e2) ` c06. Interaction with constraintsc [] e1 �=) c0 [] e01c ^ ce [] e =) c00 [] e where ce is t = e1 (e1 = t; t 6= e1; e1 6= t)e1 is not in hnf and c ^ c0 ^ ce0 ` c00,ce0 is t = e01 (e01 = t; t 6= e01; e01 6= t respectively)The rest of the primitive functions can be computed by some prede�ned rules(see [23]), which must be added to every program.The notation c [] e � c0 [] e0 =) : : : ci [] ei : : : =) cn [] en � c0 [] e0, orsimply c [] e �=) c0 [] e0 denotes the lazy narrowing relation (composition ofseveral narrowing steps).There is some degree of freedom in the previous scheme. On one hand, therecould be several points, mainly the selected expression to be reduced into a1 The rules assume that the condition holds, i.e. the resulting constraint is not false.Furthermore, the rules are not applicable if the input constraint c is not in normalform, except rule 5

tuple (rule 2), where one of the previous rules are applicable. We call this pointa lazy redex and the order of reduction should be �xed by a computation ruleR. The usual implemented rule is the selection of the left-most redex that it isnot yet in the demanded form. As we have mentioned, the ` simpli�cation isalso nondeterministic. For simplicity, we assume that R covers also this case.In particular R decides when the satis�ability check is performed. As the checkusually imposes several evaluations it is desirable to delay it at most as possibleand only the evaluations demanded by other rules can be performed.On the other hand, the notion of as demanded by the rules for f is not clearlyde�ned. In general, not all the rules demand the same evaluation for all the ar-guments. Several papers have discussed the importance of �xing statically thedegree of evaluation (avoiding the nontermination and the reevaluation prob-lem see [21, 22]). One proposal [21] uses a program transformation in order toget a program with the following property: All the rules demand hnf or noth-ing. However, the more the rules demand the more e�cient is the process. Thealternative solution is the use of abstract interpretation to �x the degree of eval-uation demanded by a rule [22]. Demandedness analysis is used to infer the socalled dependent demand patterns, that specify the �nite or in�nite (regular) de-gree of evaluation for every function, without penalization of the lazy behaviour.Consider, for instance, the function nth of the second example. The lhs's of theprogram demand hnf for both arguments. However, in order to compute a re-sult, we can infer that the second argument needs normal form instead. Thecomputation of an expression nth(a list; f(e)) can force f(e) to return a term.For the purpose of this paper, we assume that some degree of evaluation pffor every program function f is detected, enough to apply the rules. By abuseof notation, we will still call each pf the demand pattern for f . We also assumea method (usually ensured by the implementation) to detect if an expression ehas the shape of a demand pattern pf , in symbols e � pf .In summary, lazy narrowing is guided by a computation rule R and a set ofdemand patterns P = fpf=f 2 FSg.4.2 Children, Narrowing Tree and FrontierGiven a constraint expression c [] e and a program � we call any possible appli-cation of the one step narrowing relation guided by R;P a child of c [] e. All thepossible narrowing reductions of a constraint expression c [] e given a program� form the narrowing tree for c [] e. Every node is labelled with a constraintexpression2.The possible paths into the narrowing tree of a goal expression c [] e can beclassi�ed as:{ success when c [] e �=) c0 [] t with t a term and c0 satis�able;{ failure when c [] e �=) c0 [] e0, e0 is not a term and e0 is not further narrowableor c0 unsatis�able; and{ nontermination: when we may still have c [] e �=) c0 [] e0 where e0 is not aterm and e0's constructors give a partial result.2 The references to �, R, and P will be omited when no ambiguity is possible.

When a successful narrowing relation reaches a term c0 [] t we speak of a com-putation for the goal c [] e with result t and answer c0.A very important notion for our purpose is the concept of the frontier of anarrowing tree. We di�er from the classical notion. Our de�nition depends onthe demand patterns selected. Once one has chosen them, the frontier is unique.We want to stress the fact that, from the operational point of view, this is oneof the main contributions of the paper.Let pf be a demand pattern in P . The pf -frontier of an expression c [] e0, wheree0 = f(e), is the set of nodes fc1 [] e1; : : : ; cm [] emg of the narrowing tree of c [] esuch that every narrowing reduction of c [] e is either a failure or passes throughexactly one node in the set, and each ei is the �rst expression in the branch suchthat ei � pf .If the pf -frontier is well de�ned then it is �nite and unique, what is not true inthe classical notion of frontier. The argument is evaluated as least as possible topreserve the lazy behaviour. If the narrowing tree has an in�nite branch withoutgetting an expression ei � pf the frontier does not exist.Suppose we use the program of our �rst example adding the function f ,de�ned by the rules:f (X, true) = f (X, false). f (X, false) = X.and pfirst requires hnf for both arguments. Now, if we consider the expressiontrue [] first(f(s(s(0)); Z); L) and the following narrowing tree for the subex-pression true [] f(s(s(0)); Z) true [] f(s(s(0)); Z)Z = true ^X = s(s(0)) [] f(s(s(0)); false) Z = false ^X = s(s(0)) [] s(s(0))������9 XXXXXXzwe get the frontier fZ = true^X = s(s(0)) [] f(s(s(0)); false); Z = false^X =s(s(0)) [] s(s(0))g.The rest of the section adapts the ideas of [24] and constructive negation tothis re�ned concept of frontier.4.3 Narrowing for default rulesIn order to compute with default rules, the � function is managed syntactically.The semantical de�nition of the � function includes an implicit universal quan-ti�cation, that is moved into a explicit 8-quanti�cation. �-expressions take theform 8 X �(c [] f(e)) that must be read \under the constraint c, f(e) is unde-�ned using the de�ning rules". Therefore, the question to answer is \when isthe expression f(e) is de�ned ?". The expression is de�ned if e is as de�ned asdemanded by the rules for f and then at least one rule is applicable giving ade�ned result. From the operational semantics point of view, this means twosituations:1. The argument expression e is as de�ned as pf .2. One rule is applicable, i.e. one uni�cation is possible and the correspondingrhs is de�ned.To manage the �rst point we can adapt the result of [24]: if the pf -frontier ofc [] f(e) is F = fc1 [] e1; : : : ; cn [] eng then

�(c [] e)$ 9 X1 (c1 ^�(e1)) _ : : : _ 9 Xn (cn ^�(en))where X i are the free variables in ci [] ei which are not in c [] e. As the �function is the negation of the � function, this result can be used to calculatea � expression by the negation of the right hand side formula. The notion ofnormal complement of a frontier is used for this purpose.The negation of the second point is straightforward. Let c [] ei an element ofthe pf -frontier. Either ei is not uni�able with any lhs or ei is uni�able with thelhs of a rule but the rhs is unde�ned. We formalize these situations by the notionof rule complement of a frontier. Let us describe in details these two concepts:Let F = fc1 [] e1; : : : ; cn [] eng be the pf -frontier of c [] f(e) and V a setof variables (denoting the free variables in the goal expression). The normalcomplements of F under V are all the possible conjunctions of complements ofeach ci [] ei under V : c01 ^ : : : ^ c0m [] b1; : : : ; bm is a complement of F i� eachc0i [] bi is a complement of ci [] ei under V . The rule complements of F under Vare the rule complements of every constrained expression ci [] ei of F under V .In order to de�ne the complements of a constraint expression c [] e, let usbrie
y discuss the quanti�cation of variables. First, we only need to focus onthose useful variables, i.e. those that are free in the goal expression. We collectthem in the set V . A variable X not in V appearing in the positive part of theconstraint as X = t can be eliminated. If t is a variable X 0 2 V we substitute Xfor X 0 in c [] e. Otherwise, the equation is irrelevant.Next, we identify the variables that will have a universal quanti�cation whenthe complement is calculated. They are the free variables in e that are neither inV nor in the positive part (that have an implicit quanti�cation). We collect themin the set U . The inequalities with variables in U cannot be separated from e. Therest of the disequalities can be negated separately from e. When a disequalityis negated it is moved into a equality. This equality have not quanti�cationeven if the original disequation is not quanti�ed because the free variables are(implicitly) quanti�ed outside. In summary, we can organize the simpli�cationof c as: c = c0 ^ c00 where c0 = m̂i=1(Xi = ei) ^ n̂j=1 8 Zj (Yj 6= e0sj)and c00 collects all the inequalities with a variable in U .The complements of c [] e under V are:{ 8 Zi (Xi 6= ei) [] true, for all i � m, where Zi are the variables of ei that are notquanti�ed outside, i.e. var(ei) \ V .{ Vmi=1(Xi = ei) ^ (Yk = e0k) ^ Vk�1j=1 8 Zj (Yj 6= e0j) [] true, for all k < n.{ X = 8 Z �(c00 [] e) ^ c0 [] true, if e is not a term3, where X is a new variable andZ are the variables in U .Let ff(t1) = e01; : : : f(tl) = e0lg be the set of rules for f in � . The rulecomplements of c [] e under V are:3 �(t) = true if t is a term

{ c ^Vlk=1 8 Zke 6= tk [] true, where Zk = var(tk) [(var(e)\ V).{ c0 ^ e = tk ^X = 8 Z �(c00 [] e0k) [] true (where X is a new variable and Z are thevariables in U) for each 1 � k � l such that e0k is not a term.The �-expression can a�ect a prede�ned function. In this case, the prede�nedrules can be applied. In practice, prede�ned functions are implemented directlyand it is convenient to deduce some simpli�cation rules for �-expressions.Let us come back to our example. The computed frontier has a single goalvariable Z. Equalities for X are eliminated.The complements of the frontier are: Z 6= true [] true and Z = true ^ Z 0 =�(true [] f(s(s(0)); false)) [] true, and Z 6= false [] true, respectivelyFinally, the normal complements are obtained by combining the previouscomplements: Z 6= true^Z 6= false [] true (unsatis�able in the boolean domain),Z = true^Z = false^Z 0 = �(true [] f(s(s(0)); false))^true (also unsatis�able),and Z = true ^ Z 0 = �(true [] f(s(s(0)); false)) [] true.The rule complements are:1. Z = true ^ 8 N s(N) 6= s(s(0)) [] true (unsatis�able).2. Z = false ^ 8 N s(N) 6= s(s(0)) [] true (unsatis�able),3. Z = true ^ 8 X 0; L0 L 6= [X 0jL0] [] true,4. Z = false ^ 8 X 0; L0 L 6= [X 0jL0] [] true,5. Z = true^N = s(0)^L = [X 0jL0]^Z 0 = �(true []member(X 0; first(L0; s(0))! first(L0; s(0))2[X 0jfirst(L0; s(0))]) [] true, and6. Z = false^N = s(0)^L = [X 0jL0]^Z 0 = �(true [] member(X 0; : : :) [] true.The narrowing rules are completed to use the default rule (if present) and tocompute a �(c [] e) expression:6. Default rule �(c [] f (e1; : : : ; en) �=) c0 [] truec [] f (e1; : : : ; en) =) c00 [] e�where default f (X1; : : : ; Xn) = e 2 �, � = f::; Xi=ei; ::g and c ^ c0 ` c00.7. De�nitionless expressions ruleLet us suppose that there exists a pf -frontier F of the expression c [] e0, wheree0 = f(e), and let V be the set of free variables of c [] e0 that are not in X .8 X �(c [] e0) =) c [] bif (c [] b) is either a normal complement or a rule complement of F under VFor each complement of F we have a di�erent child in the narrowing tree. If Fdoes not exist the rule is not applicable and the � expression cannot be reduced(remains unde�ned as indicated by the declarative semantics).4.4 Soundness and CompletenessFinally, we can establish the soundness and completeness of our narrowing se-mantics. Due to the lack of space we will omit the proofs.Theorem 1. SoundnessLet � be a program. Any narrowing sequence c [] e �=) c0 [] e0 computes a soundoutcome in the sense that[[e]]I� (�) w [[e0]]I� (�) for all environments � satisfying c ^ c0:

The expected soundness result for successful computations comes when e0 is aterm (and its valuation corresponds to itself).Furthermore we can claim the following completeness theorem.Theorem 2. CompletenessLet � be a program, e an expression, c a constraint, s an element in H and � asubstitution that binds any variable of c; e into a ground term (ground substitu-tion). If [[(c! e)�]] w s then there exists a narrowing sequence c [] e �=) c0 [] t,(with t a term), and a ground substitution � such that t� = s, and c� ^ c� ^ c0is satis�able (where c� ; c� denote the constraints with only positive part �; �).Proof. (Idea): The proof proceeds by using the T� operator, combining the com-pleteness of lazy narrowing and the completeness proof of [27].5 Related workThe work uses some of the techniques developed for constructive negation [4,5, 27, 7]. However, they are adapted to a more general framework. The readercan �nd a discussion about the di�erences in [24]. In [4, 5] an implementationtechnique based on coroutining is proposed: every negated predicate is anno-tated with some delay clauses to suspend the execution until the variables areenough instantiated. Then the negation with respect to the clauses is computed(similarly to our rule complements) which could introduce new negated predi-cates. This technique is generalized here and it is described in the more abstractcontext of lazy evaluation. The key point is the inclusion of new �-expressionsinto the constraint, where they are handled lazily.We compare our work with some related papers in to areas. First, we dealwith works about the combination of laziness and constraints. As far as we know,only [19, 17, 1] attack the problem. The �rst one introduces a general frameworkto integrate functional programming, logic programming and constraints. [17]presents a method to compute equality and disequality constraints over the (in-�nitary) Herbrand universe in a lazy way. The description is very related to anabstract machine implementation. The work reported in [1] formalizes this ap-proach in the framework of [19]. Our work needs to use their way of combininglaziness and constraints but goes beyond this problem.On the other hand, there are very few papers devoted to the integration ofnarrowing and constructive negation. Maybe [26] is the closest approach butthey treat a di�erent problem: they compute the solutions to a disequationf(t) 6= s in a Conditional Term Rewriting system without extra variables bycomputing the answers for f(t) = s and then negating the obtained formula.The unde�ned values for f(t) are not taken into account (or f must be total).The evaluation mode is eager and no strategy is discussed about the depth ofthe frontier. The work in [8] describes an innermost narrowing mechanism tocalculate disuni�cation (i.e. disequations over the Herbrand universe modulo anequational theory).A special use of innermost narrowing and negative information appears inthe languages SLOG [10] and ALF [11]. Narrowing interleaves with simpli�cation

using some rules for pure rewriting. Under the CWA, sometimes it is possibleto de�ne a rewriting rule indicating when a function fails. Besides the fact thatthen computation can be optimized, an in�nite computation (?) can be movedinto a �nite failure (fail). Recently, the technique has been extended to lazynarrowing [13]. Although the technique is independent of our work and can beused to optimize it also, sometimes the e�ects are similar.6 ConclusionIn this paper we have studied the completion of partial functions with a de-fault rule in lazy functional logic languages. The lazy narrowing rule has beenmodi�ed to cope with these new rules. The basis of the technique of constructivenegation (\subderivations are used to detect when a function call will �nitely failby using the de�ning rules") is kept but it is complemented with lazy narrowingto compute the exact part of the subderivation needed. The coroutining imple-mentation technique is fully formalized as the natural lazy operational semanticsof the language in such a way that lazy evaluation is an e�ective solution to aheavy process. We want to further explore the use of this technique in a concreteimplementation.PROLOG programs with negation can be expressed in our framework. Theprogrammer can write a default rule with body false to express the negatedpart of a predicate. But he/she can also write a de�ning rule with body false,emulating negation as failure. This fact carries good and bad news. The goodnews is that the programmer can freely mix explicit negation and negation asfailure. Kowalski pointed out the advantages of this distinction for knowledgerepresentation.The bad news is that default rules are, at least, as di�cult to implement asnegation in logic programming. We can adapt the transformational approach [2,3] to treat negation in Prolog. The negative information is expressed by means ofnew predicates, that are added to the program. In our case, this approach can beeasily adapted when the program has no guards or guards without free variables.The default rule can be expressed as several normal rules. For instance, in the�rst example, the new rules are:�rst (0, [X j L]) = []. �rst (s (N), []) = [].Nevertheless, the program could produce in�nitely many solutions when a con-straint of the X 6= Y appears.In the presence of logical variables in the guards, the transformation is stillpossible but the guard(s) of the new rule(s) contain arbitrary formulas and, inparticular, universal quanti�cations, hard to be e�ciently implemented. Prologversions with these facilities, like G�odel [14] or NU-Prolog [25], usually performresiduation which is incomplete in general.Although we restrict ourselves to the Herbrand Universe, following [27] it ismore general (and natural) to study the problem in a CLP framework. However,to our knowledge only [19] addresses seriously the de�nition of the ConstraintFunctional Logic Programming paradigm.As a future work we plan to implement a prototype by modifying the currentlazy BABEL implementations [21, 22].

AcknowledgementsThis research was supported in part by the spanish project TIC/93-0737-C02-02.References1. P. Arenas, A. Gil, F. L�opez-Fraguas. Combining Lazy Narrowing with DisequalityConstraints. PLILP'94, Springer LNCS 844, 385-399, 1994.2. R. Barbuti, D. Mancarella, D. Pedreschi, F. Turini. Intensional Negation of LogicPrograms. Proc. TAPSOFT'87, Springer LNCS 250, 96-110, 1987.3. R. Barbuti, D. Mancarella, D. Pedreschi, F. Turini. A Transformational Approachto Negation in Logic Programming. J. of Logic Programming, 8(3):201-228, 1990.4. D. Chan. Constructive Negation Based on the Complete Database Proc. Int. Con-ference on Logic Programming'89, The MIT Press, 111-125, 1988.5. D. Chan. An Extension of Constructive Negation and its Application in Coroutining.Proc. NACLP'89, The MIT Press, 477-493. 1989.6. H. Comon, P. Lescanne. Equational Problems and Disuni�cation. J. of SymbolicComputation, 7:371-425, 1989.7. W. Drabent. What is Failure? An Approach to Constructive Negation. Acta Infor-matica 32, 27-59, Springer Verlag, 1995.8. M. Fern�andez. Narrowing Based Procedures for Equational Disuni�cation. Appli-cable Algebras in Eng. Communications and Computing, 3:1-26, 1992.9. M. Fitting, M. Ben-Jacob. Strati�ed and Three-valued Logic Programming Se-mantics Proc. Int. Conf. and Symp. on Logic Programming, 1988, pp. 1054-1069.10. L. Fribourg. SLOG: A Logic Programming Language Interpreter based on ClausalSuperposition and Rewriting. Proc. Symp. on Logic Programming, IEEE Comp.Soc. Press, 1985.11. M. Hanus. Compiling Logic Programs with Equality. Proc. PLILP'90, SpringerLNCS, 1990.12. M. Hanus. The Integration of Functions into Logic Programs: A Survey. J. ofLogic Programming, 1994.13. M. Hanus. Combining Lazy Narrowing and Simpli�cation. PLILP'94, SpringerLNCS 844, 370-384, 1994.14. P. Hill, J. lloyd. The G�odel Programming Language. The MIT Press, 1994.15. J. Ja�ar, J.L. Lassez. Constraint Logic Programming. Proc. 14th ACM Symp. onPrinc. of Prog. Lang., 114-119, 1987.16. H. Kuchen, R. Loogen, J. J. Moreno-Navarro, M. Rodr��guez-Artalejo. Graph-basedImplementation of a Functional Logic Language Proc. ESOP, Springer LNCS 432,271-290, 1990.17. H. Kuchen, F. L�opez-Fraguas, J.J. Moreno-Navarro, M. Rodr��guez-Artalejo. Im-plementing a Lazy Functional Logic Language with Disequality Constraints. JointInternational Conference and Symposium on Logic Programming, The MIT Press,189-223, 1992.18. K. Kunen. Negation in Logic Programming. J. of Logic Programming 4:289-308,1987.19. F.J. L�opez-Fraguas. A General Scheme for Constraint Functional Logic Program-ming. Proc. ALP'92, Springer LNCS, 1992.20. M. Maher. Complete Axiomatization of the Algebras of Finite, Rational and In�-nite Trees. Proc. 3rd Symp. on Logic in Computer Science, 348-357, 1988.21. J.J. Moreno-Navarro, H.Kuchen, R.Loogen, M. Rodr��guez-Artalejo. Lazy Narrow-ing in a Graph Machine. Proc. ALP'90, Springer LNCS 463, 298-317, 1990.22. J.J.Moreno-Navarro, H. Kuchen, J. Mari~no-Carballo, S. Winkler, W. Hans. Ef-�cient Lazy Narrowing using Demandedness Analysis. Proc. PLILP'93, SpringerLNCS 714, 167-183, 1993.

23. J.J. Moreno Navarro, M. Rodr��guez Artalejo. Logic Programming with Functionsand Predicates: The Language BABEL. J. of Logic Programming 12:189-223, 1992.24. J.J. Moreno Navarro. Default Rules: An Extension of Constructive Negation forNarrowing-based Languages. Proc. ICLP'94, The MIT Press, 1994.25. L. Naish. Negation and Quanti�ers in NU-Prolog. ICLP'86, Springer LNCS 225,624-634, 1986.26. M.J. Ram��rez, M. Falaschi. Conditional Narrowing with Constructive Negation.Proc. ELP'92, Springer LNCS 660, 59-79, 1993.27. P. Stuckey. Constructive Negation for Constraint Logic Programming Proc. IEEESymp. on Logic in Computer Science, IEEE Comp. Soc. Press, 1991.

