
1

SUPER - Visual Interaction with an Object-based
ER Model

Annamaria Auddino, Yves Dennebouy, Yann Dupont, Edi Fontana,
 Stefano Spaccapietra and Zahir Tari

Ecole Polytechnique Fédérale - DI - Laboratoire Bases de Données
IN - Ecublens    1015 Lausanne    Switzerland

auddino@elma.epfl.ch

Abstract

SUPER is a project aiming at the specification and development of a
consistent set of visual user interfaces covering all phases of the database
lifecycle.
In this paper we discuss the basic principles which, in our opinion, should
underline a global approach to visual interaction with advanced data models.
Visual interaction in SUPER environment is based on direct manipulation of
objects and functions, providing users with maximum flexibility during
schema definition as well as query formulation. Graphical interactions are
easy to manage, and take advantage of the support of a simple but powerful
modelling paradigm. Visual data manipulation is assertional and object-
based. The environment offers multiple interaction styles, well-suited for
various categories of users. Interaction styles are consistent over the
various functions and editors.
To support the discussion, SUPER schema and query editors are analyzed,
focusing on functionalities, and the underlying design choices, rather than
precisely describing how they operate. An example of query formulation
shows the rules used to govern interactions with users.

1  Introduction

Visual interaction had a drastical evolution during the eighties. WYSIWYG
techniques (What You See Is What You Get) are nowadays standard for personal
computing, while the WIMP metaphor (Windows, Icons, Menus, Pointing devices)
governs user interaction with larger systems on workstations (and is moving into
personal computing as well). Consequently, researchers try to master the many
existing possibilities for human computer interaction. User Interface Management
Systems (UIMS) are becoming popular as an answer to this question.
Despite this evolution, users of database management systems are still bound to
classical textual languages, namely SQL. Although proposals for visual languages
have been well known at least since 1975, thanks to QBE [37], research on visual
interfaces still has to produce a global, recognized framework, consistent with the
actual state of the art in data modelling techniques.
Indeed, graphical data definition techniques is the only area where a large consensus
has been achieved on the marketplace. A number of tools exist, which offer graphical
facilities for the definition of a database schema, according to concepts of the entity-
relationship (ER) approach. They are eventually complemented with an automatic
translation into a relational schema. Some tools also provide functionalities for
describing application processes (usually through dataflow diagrams, sometimes with



2

Petri nets) and consistency checks. As far as we know, no commercial tool proposes a
graphical manipulation language.
Several prototypes providing graphical DBMS interfaces have also been developed.
Some of them only support graphical data definition: [8], [2]. DDEW [26] extends the
definition process to all phases of database design, providing an integrated
environment from user requirements to physical design. Some other tools provide
both schema definition and visual querying facilities: ISIS [13], SNAP [6], [28],
Pasta-3 [18, 19].
A few prototypes support visual data browsing, rather than query formulation: [21],
ZOO [27], OdeView [1]. Finally, some prototypes only provide an aid for query
formulation, to relieve users from constraints of textual syntax: [20], for instance,
uses syntax graphs to guide users through the formulation of a relational query.
Outside the scope of this presentation are toolkits for the design of graphical DBMS
interfaces, like FaceKit [17], which belong to research in UIMS.
Existing prototypes can be classified according to the underlying data model (the
following list of prototypes is not meant to be exhaustive):
• Entity-Relationship model: [8], [35], [36], [10], [21], [28], [26], [7], [14],[18],

[9], [19];
• Object-Oriented model: [11], [27], [24], [17], [1];
• Semantic Data model: [16], [13], [6], [2];
• Relational model: [37], [15], [20], [23], [29].

The SUPER project is based on ERC+, an object-based extension of the entity-
relationship model designed to support complex objects and object identity [33]. The
goal of this project is to produce an integrated CASE tool (whose underlying model is
ERC+) supporting interactions during all the life cycle of a database. To that extent,
we first built a graphical definition and manipulation interface, providing users with a
consistent approach to both functionalities. A data manipulation and a data browsing
tool will deal with updates and navigation at the occurrences level.
Moreover, a view definition tool will allow users to build views over an existing
schema. Conversely, a view integration tool will allow to build an integrated schema
from a set of user views. This last tool will be the kernel of a future database design
tool, covering, as in DDEW, the various phases in this activity. At this purpose,
some others tools are planned for schema normalization, restructuring and evolution.
This global approach will provide the user with the same interaction paradigms all
along his/her dialogs with the different components of the DBMS, during both design
and operation on the database. Moreover, ERC+ modelling provides the user of a
database with the same objects as the real world of interest to him/her.
It should be clear that the main concern of SUPER is to design clear, clean, easy,
precise and uniform user interaction methods. SUPER may be used as a front-end to a
relational or an object-oriented DBMS. It is not our aim to develop it as a self-
contained complete DBMS.

The next section discusses the basic principles governing the design of DBMS user
interfaces, and shows which choices have been made in SUPER. Section 3 briefly
recalls the characteristics of the ERC+ approach, which will be used in the sequel to
illustrate the functionalities of the graphical interface. Section 4 presents the main
characteristics of the data definition interface (the schema editor), while section 5
gives an overview of how users can define queries on the database. Finally, the
conclusion summarizes the main features of the project and presents future and
ongoing extensions.



3

2  Guidelines for SUPER Interfaces

In the last decade, the need for user-friendly interfaces to large systems (including
DBMSs), has generated numerous contributions to the topic. The field has grown
mature enough to stress the importance of sound principles for the design of good
interfaces (see [31], for instance). This section discusses some aspects we felt are of
major concern for visual DBMS interfaces.

2.1  Direct Manipulation

The first goal in visual interfaces is to avoid the use of complex command languages.
Some graphical conventions should be adopted, to make visible on the screen both
the objects being manipulated and the functions used to manipulate them. Users may
interact with the system through direct click and point specifications. This paradigm
is known as direct manipulation [30] and it is a de facto standard for graphical, bit-
mapped workstations provided with a multiwindowing system and a mouse.
The advantages of this approach are: first, users may permanently see the information
they work on (for instance, the schema diagram). Secondly, users immediately see the
impact of their actions through the visual representation. Finally, users can perform
physical actions (like selecting and dragging an object) to modify the graphical
representation, or activate dedicated functions (through menus, labelled buttons, dialog
boxes and so on) to manipulate available application objects. A direct manipulation
interface is easy to learn for novice users, easy to remember for occasional users (with
knowledge of the domain of use) and rapid enough for expert users.

2.2  Unconstrained User Behavior

A second important goal is to provide users with freedom from having to follow a
predefined pattern in their interaction with the system. Whenever actions are not
atomic, the users should be allowed to start some action and move to another one
without having completed the first one. Moreover, they should not be compelled to
perform a set of actions in a predefined sequence.
Some of the existing prototypes do not adhere to this principle. For instance, the
schema editor described in [8] forces users to complete a consistent specification of
objects at creation time (e.g. entities with at least one attribute). Many graphical
query languages (as the one described in [10] and QBD [7]) impose some fixed
sequencing of steps, at least for building the query subschema and for its
restructuring. Other interfaces do not explicitly state what are the built-in constraints.
Only some less demanding interfaces allow users to leave definition of objects
incomplete, as in Schemadesign [28] or in SNAP [6]. Pasta-3 supports a high degree
of flexibility in user interactions.
SUPER fully supports unconstrained user behavior, both for schema editing and for
query formulation. Each tool is responsible for checking user actions, ensuring the
desired level of consistency among the actions.

2.3  Well-Suited Graphical Representations

There is no general agreement about what should be a good graphical representation
for displaying schema diagrams, queries or data resulting from query evaluation.
Icons seem to be one of the most appealing visual representations. IBS [12] uses
icons for representing object types. In SDMS [15] and SICON [14] icons are
appropriately placed in a spatial framework, to browse data in an easy way.



4

Databases with a large number of object types require the users to memorize a large
number of iconsand their manipulation can confuse users [31]. Moreover, when
coping with many icons, their design is not an easy task. The result may be that an
icon is meaningful for its designer, but not for users. Consequently, iconic languages
may require as much, or even more, learning time than a textual representation.
Most of the existing prototypes based on semantic models (ER, SDM or IFO) use
graphs to represent the conceptual schema of a database. However, they use different
formalisms for schema diagrams. For instance, Pasta-3 [19] characterizes the type of
nodes by a different character style (plain for entities, bold for relationships), instead
of using different graphic symbols. Schemadesign uses the same graphical notation
for multivalued attributes as for relationships, which can be rather misleading for
users. In ZOO [27] knowledge is represented by a graph of icons, where edges are
associated to either classes or objects and arcs represent the relationships between
items. Again, users are confronted with the problem of distinguishing items through
a large number of different icons.
Some prototypes use colors or patterns to display objects. For instance, GUIDE [35]
represents with different colors partial queries embedded in a complex query. DDEW
[26] uses different colors and patterns to express links cardinality. ISIS [13] associates
to each class an unique fill pattern; this pattern can be used in an attribute definition
to express its value class (i.e. a reference), with eventually a white border if the
attribute is multivalued. However, the use of patterns is a little clumsy and not
immediate for the user. As for icons, the automatic generation of patterns may cause
problems when the number of classes becomes too large.
We took simplicity and minimality as guidelines. SUPER keeps the basic ER
symbols: rectangles for entity types, diamond boxes for relationship types. Attributes
are simply displayed as names attached to the parent object by a line (different line
drawings are used according to cardinalities). Generalizations are shown with usual
arrows. These symbols are well understood by users.

2.4  Multiple User Profiles

Human-computer interfaces should take into account the existence of several
categories of users [31]. Novice or occasional users need basic functionalities
accessible through easy to understand graphical displays. For data definition, for
instance, these users will build small schemas, picking graphical symbols and putting
them together as in a drawing tool. Expert users might favour the definition of a
schema via menus and dialog boxes. Moreover, it should be possible to create a
schema definition from a textual file imported from some other tool: in this case, the
graphical approach is of no use.
To support diverse interaction styles, SUPER provides two modes of operation for
schema definition, each mode having its associated window. The graphical mode is
based on direct manipulation, while in the alphanumeric mode schema objects are
defined through dialog boxes. There is no notion of "mode switch", as both modes are
active in parallel: users may freely go from one to the other, any time during the
interaction. When the graphical window is used, dialog boxes are prompted with
default information, which users may change, if needed. If objects are defined in the
alphanumeric mode, a corresponding diagram is automatically generated. Therefore,
the two modes are equivalent, the schema editor keeping them synchronized: all
visible representations of the same object are automatically updated when users
modify its definition. These two representations are different ways to show the overall
schema (i.e. they can both be used to display all available information). They are not



5

complementary representations of different aspects of the schema.
Some of the existing DBMS interfaces do have a notion of mode switch and do not
allow for a global view of the schema. For instance, in [2] users have to enter a
textual environment to specify properties of classes, whereas classes and their
relationships can be specified only in a graphical environment: the two
representations are neither simultaneously displayed nor equivalent. In Schemadesign
there are different modes for the definition of entities and relationships on the one
side, and their properties on the other side. The ER graph and the inheritance lattice
used by Pasta-3 are an example of complementary, but not equivalent representations
of a diagram. ISIS provides several different views of a schema, as the so-called
"inheritance forest view", in which all class definitions are displayed; users may
expand an object into the associated semantic network by clicking on it. Again, the
main shortcoming is the impossibility of having a simultaneous display of the two
representations and even of the semantic networks associated to two different classes.

2.5  Consistent Paradigms

User interfaces should avoid different modes of operation, or different dialog styles,
when switching from one function to the other. For instance, it is usual to base data
manipulation on the same schema representation as the one used at schema definition
time [35] [36] [10] [13] [6] [7] [9].
However, this kind of consistency is not always achieved. For instance, several
interfaces use the ER paradigm for data modelling, while offering manipulation
facilities which are close to those defined for relational databases, or presenting the
resulting data as relational tuples rather than ER objects [10] [21] [7] [9]. Pasta-3
supports query formulation directly on the schema diagram, but also uses QUEL-like
displays for predicates [18]. A consistency example may be found in SNAP, where
the same formalism ("comparitor arcs") is used both for the conceptual schema and for
predicate specification: however, only very simple predicates can be specified.

2.6  Assertional Data Manipulation

The experience from textual interfaces shows that assertional languages are to be
preferred, w.r.t. procedural ones, especially for non expert users. Visual DBMS
interfaces should therefore depart from requiring queries to be formulated as a strict
sequence of operations (programming steps), to be executed in the order they are
specified. In [9] queries are specified as a sequence of operators (graphical counterpart
of an underlying algebraic language), which transform at each step the subschema into
a new one. On the contrary, users should be allowed to independently specify the
different components of their query. This not only alleviates the user's task, but also
leaves the editor with the possibility of optimizing query processing. Moreover, users
should be able any time to modify any stated part of the query, either to correct errors
or to refine some incomplete specification. This seems to us the only way to put into
practice, for data manipulation, the unconstrained user behavior principle.

2.7  Object Management

The evolution of modelling requirements has highlighted the need of keeping
application objects when implemented onto a DBMS. According to the principle of
consistent paradigms, data manipulation interactions should support objects, without
making them vanish into a set of relations.
While in relational interfaces a query defines a single resulting relation, in object-



6

based interfaces the resulting object type is an attribute tree showing only value
attributes. As reference attributes bear object identities, they have to be replaced in the
resulting structure by either an object identifier or the whole value of the referenced
object (referenced object are embedded into the referencing one).
In visual database interfaces, the structure of the result is defined by building the so-
called query subschema, i.e. the desired restriction of the underlying database schema.
This subschema can be unambiguously interpreted if it has a hierarchical structure,
with no cycles in it. If a cycle is kept, to express recursion, query formulation must
explicitly state the path to follow to explore the cycle (linearization of the cycle).
Relational-like visual interfaces can support graphs as final query subschemas, as they
produce the result by generating a flat join among all relations in the final graph [9].
Object-based interfaces transform the subschema into a hierarchy by identifying one of
the object types in the subschema as the "root" of the query [10]. All other object
types in the subschema are accordingly turned into attributes of the root object type.
SUPER follows this strategy (with appropriate refinements, as discussed in § 5.2).

3.  The ERC+ Model

ERC+ is an object-based extension of the entity-relationship model, specifically
designed to support complex objects and object identity. Object types may bear any
number of attributes, which may in turn, iteratively, be composed of other attributes.
The structure of an object type may thus be regarded as an multiple attribute tree.
Attribute complexity and multivaluation express the usual product and set constructs
of the object-oriented approach, with the advantage that they may simultaneously
apply at the same node. Attributes, entities and relationships may be valued in a
multiset (i.e. not excluding duplicates). An object identity is associated to entities and
relationships, i.e. different instances may have exactly the same values for their
attributes. Two generalization relationships are supported on entities: the classical "is-
a" and an additional "may-be-a" relationships [32]. The former corresponds to the
well-known generalization concept; the latter has the same semantics, but does not
require an inclusion dependency between the subtype and the type. A complete
discussion of the features of the model may be found elsewhere [33] [32].

Insurance-Co

Car

Garage

Drives

Insures

Repairs

Man Woman

child of

IC-name
IC-address

contract#

car#

date

day monthyear

child

father mother

yearPersonlast_name
first_name

bdate

day month year

address

street  town  zip

Make type

G-name
Phone#

Fig. 1. A sample ERC+ schema

Figure 1 shows a sample ERC+ diagram; a single continuous line is used to represent
a 1:1 link, a single dotted line represents a 0:1 link, a double dotted line represents a



7

0:n link, a double line (once dotted, once continuous) represents a 1:n link. Arrows
represent generalizations.
Formal manipulation languages (an algebra and an equivalent calculus [25]) have been
defined. The functionalities provided by the algebraic operators include the classical
operations of projection and selection on one entity type and union of two entity
types.Specific to ERC+ is the reduction operator, which allows the elimination of the
values of an attribute not satisfying a given predicate. Most important is the
relationship-join (r-join, in short) operator. If E1, E2, ..., En is the set of entity types
linked by a relationship type R, the r-join of E1 with E2, ..., En via R builds a new
entity type (and the corresponding population) with the same attributes as E1 plus an
additional attribute, named R, whose components are the attributes of R, E2, ..., En.
A spe-join operator allows the joining of entity types participating into a given
generalization.
Every operation results in the creation of a new entity type, with its attributes,
relationships and population derived from the operands through specific rules.
Operations may thus be combined into expressions of arbitrary complexity.

4  Schema Editor

The schema editor is a visual data definition interface, providing two modes for
schema definition. Each mode has a separate display window, identified by the name
of the schema being edited and labelled by the corresponding operation mode. Users
may work simultaneously on several schemas with different modes. In the graphical
mode, the designer builds an ERC+ diagram by direct manipulation. The user picks
the graphical symbols from a palette and positions them into the workspace provided
in the associated window. The symbols in the palette correspond to ERC+ constructs
(entity, relationship, link, attribute, generalization). In the alphanumeric mode,
forms-like representations of ERC+ constructs (called object boxes) are provided by
the editor for entering data definitions. Different object boxes are shown in figure 2.
Standard editing operations are available through pull-down menus. "Schema", "Edit"
and "Dictionaries" menus are available in both windows, and provide the same
functionalities. The "Schema" menu contains the usual operations for opening,
saving, creating a schema. The "Edit" menu offers cut, copy and paste facilities, as
well as undo and redo. The "Dictionaries" menu gives access to a global dictionary or
any of the specialized dictionaries (entities, relationships, attributes). The "Options"
menu in the graphical window contains purely graphical manipulations (changing the
layout, rearrange object disposal, etc.) and is therefore specific to this window.
Conversely, functionalities for creating a new schema (or modifying an existing one)
are provided in the "Creation" menu when in the alphanumeric mode. They are
equivalent to the definition of schema elements through the graphical palette.

4.1  Information Display

Figure 2 shows the schema diagram for a hypothetical application for an Insurance
company. Each object in the diagram has been created by first selecting the
corresponding graphical symbol in the palette and then clicking in the workspace to
position the object. Creating an object displays the corresponding object box
(alternatively, it may be displayed using the alphanumeric Creation menu). Newly
created objects receive a standard name, which can be changed in the corresponding
alphanumeric object box. An object box contains text entry areas (e.g. object's name



8

and comment), radio buttons for predefined choices (cardinality specification, for
instance) and list-bars referring to objects directly attached to the current object. The
entity box (Person) in figure 2 shows list-bars for attributes, links and generalizations
defined on an entity type. A list-bar for components of a complex attribute is included
in the attribute box (address). List-bars have been chosen as a standard technique to
link objects. Clicking on a list-bar displays the corresponding scrollable list of
attached objects. Two such lists are shown in figure 2, one for links on the Person
entity type, one for components of the address attribute.

Fig. 2. Screen display showing schema editor windows
(after creation of a new attribute, whose default name is att1)

Lists have a standard behavior. They group objects of the same type, attached to the
same parent element (the latter is the schema for dictionary lists). Clicking on an
object in a list displays its object box. Clicking on the New button in the list box
displays an empty object box for adding a new object to the list. Using object boxes,



9

list-bars and the attached lists, users may navigate through the schema and add or
modify objects as needed. Top-down definition strategies are very easily performed.
ERC+ diagrams are stored with spatial information, so that the diagram may be later
displayed as it was at creation time. For schemas defined in the alphanumeric mode,
SUPER automatically builds and displays the corresponding diagram. As governing
this process is a complex task, our implementation leaves it up to the users to adjust
the diagram if they dislike it. For readability, the user may hide attributes.
Flexibility in the schema design process is enhanced by the possibility to leave object
definitions incomplete. Users may, for instance, define entity types, and come back
later to these objects to attach attributes or add generalizations. Incomplete schema
definitions may be saved and reused in another session. At any time, a validation
function may be activated to check whether the actual schema definition is consistent
with model rules. If inconsistencies or incompleteness are detected, they are reported
to the user. However, some model rules have to be permanently enforced (uniqueness
of entity names, for instance) in order to avoid ambiguities.
Finally, users may quit the editor any time. When they continue schema editing, their
work on the schema is reactivated in exactly the same state as it was at the time of
interruption.

4.2  Flexibility, Reusability and Backtracking

Besides the above usual editing functions, SUPER includes the additional facilities of
redundancy, reusability and backtracking to make users' task as easy as possible.
Redundancy is intended to provide flexibility. It allows the users to view their schema
through two equivalent representations. Accordingly, some functionalities have been
implemented redundantly, so that users may access them directly through the
representation they are using. For instance, an object may be created graphically, or in
several alternative ways in the alphanumeric mode. A new attribute, for instance, can
be created either by activating the Creation menu, or clicking on the New button in
the attribute list attached to its parent object. Whichever way is used, it will result in
displaying an attribute creation box, where users will enter the attribute definition.
This kind of flexibility is sometimes criticized as being confusing for users. We
believe it might indeed be confusing if the alternatives appear within a single context,
with users not having a criteria to choose from. On the contrary, if the alternatives are
provided along different paths, it avoids the burden of explicitly moving from the
context they are in to the context which provides the desired function.
Reusability allows the users to reuse definitions of objects in the current schema or in
another schema. Cut, copy and paste operations may be used to move an object,
delete it, or create a similar object elsewhere. The object here may be a single object
(an entity type, ...), or a collection of objects (a set of attributes may be copied from
various existing objects and in one shot attached to an entity type), or a subschema (a
set of interrelated objects obeying some given model constraints: for instance, no
isolated attributes, links and generalizations must be with their source and target
objects). A duplicate operation is provided. It creates an object identical to the original
one and bearing the same connections.
Finally, backtracking is supported through undo and redo operations. This allows the
users to recover from erroneous actions and restore the previous state. Typically, if a
user clicks on a Cancel button instead of the nearby OK button, all actions performed
on the object would be lost. By undoing the erroneous click, he/she will get a second
chance.



10

4 .3   B rows ing

The current version of SUPER supports schema browsing. Users may scroll the
schema diagram to display the desired part of it. The alphanumeric mode allows
schema browsing by navigation from one object to another through existing
connections in between. This navigation may use object boxes (as shown in figure 2)
to allow user to see all informations about the objects on the path. A similar
navigation may also be performed using a simultaneous display of the various
dictionary lists. For instance, the selection of an entity type in the entity types list
will automatically display its attributes, relationships and generalizations or
specializations, if any, in the corresponding list. However, the only information users
get in such a navigation are the names of the objects. To know more about a specific
object, users have to click on its entry in the appropriate list, to activate its object
box (the information contained in the object box is then only available for inspection,
to prevent conflict between different actions on the same object).

5  Query Editor

This section discusses the features concerning query formulation in the SUPER
environment. For more details about the query editor, see [4]. The steps which
compose this process are the following:
• Selecting the query subschema: the portion relevant to the query is extracted from

the database schema.
• Creating the query structure: the subschema is transformed into a hierarchical

structure (as discussed in § 2.7).
• Specifying predicates: predicates are stated on database occurrences, so that only

relevant data is selected.
• Formatting the output: the editor is provided with data items to be included into

the structure of the result;
• Displaying resulting data.

The whole process may be rather complex, and therefore difficult to master for novice
users. As these users are the main target of visual interfaces, we believe that visual
query languages should take advantage of the above multistep structure. Indeed, clear
separation between the steps alleviates users' mental load and improves the chances of
correct formulation. The sequence of steps is logically meaningful: for instance,
predicates cannot be defined before the query subschema is determined. Users can any
time modify any stated part of the query to correct or refine the current formulation.
SUPER implements step separation, by using the following specific windows for the
different steps:
• the database schema (DBS) window is a read-only window used to display the

diagram corresponding to a schema (figure 3);
• the working schema (WS) window displays the subschema, extracted by the user,

relevant for a query (figure 5);
• the selection window (SW) displays the structure of the resulting entity type, and it

is used for expressing predicates and the attributes to be kept in the result (figure 6);
• the result window (RW) displays the set of resulting occurrences (figure 8).

5 . 1 Selecting the Query Subschema

This step configures the schema to contain only those objects which are involved in



11

the query (equivalent to an "open subschema ..." command in textual languages). The
DBS window is used to extract the query subschema through a sequence of "point and
click" specifications. To speed up this process, the semantics of the clicks can be
tailored either as "keep" or as "delete" the designated object. Implicit designation is
sometimes used: gql/ER [36], for instance, automatically adds to the query subschema
the path in between two selected objects (in case of multiple paths, the "most likely"
one is chosen). QBD [7] uses a similar technique, which can be refined with additional
constraints (on the length of the path, for instance). It also allows predicates on
attribute names to select all entity types with such attributes.

In SUPER, the "point and click" specifications copy objects in the WS window. The
user can choose between a traditional Copy-Paste mode (objects are copied without
relating them to objects already in the WS) and an Expand mode, where objects are
copied and connected to a start entity type previously selected in the WS window.
Some automatic selection is embedded in SUPER. If the user clicks on a role, the
complete relationship type is transferred in the WS. If the relationship is binary, the
start entity type changes to the new one. Clicking on a distant object is possible if
there is a smallest path to the object. For instance, the user cannot click on a
relationship which has two roles leading to the start entity type.

5 . 2 Restructuring the Query Subschema

Once a query subschema is defined, proper query formulation may start. However,
some interfaces introduce an additional step, to transform the subschema into a
specific pattern. In [10] the query subschema is transformed into a hierarchical
structure. The root of the hierarchy is selected by user. [21] follows the same
approach, but the transformation is complemented with a generation of nested forms,
visualizing the hierarchical structure. QBD provides a query-like transformation
language for schema modification.

In SUPER, graphical data manipulations are based on the underlying ERC+ algebra.
The result of a query is a syntactical tree whose root is an entity with constraints
expressed as predicates. In [4] we discuss the use of tree representation of queries.
In our editor, the user identifies the root of a query hierarchy. A graph in a tree is
transformed by first removing cycles. The removal of cycles could not be an
automatic process as there are many interpretations of the cycle itself.
In the SUPER query editor, the user can break cycles by removing some vertices or
some nodes of the graph or by disconnecting some links. Disconnection means that
the designated link is detached from the linked entity type and attached to a (newly
automatically created) copy of that entity type.
Another facility, pruning, is used to remove objects (attributes, entity types, ...)
which are not used in the query, i.e.appearing neither in the format of the result nor in
a predicate. There are some additional facilities like the product to create an artificial
link between two entities.

5 . 3 Specifying the Predicates

Once the user has created a correct query structure, the corresponding hierarchy is
displayed in the SW as a single entity type with all other informations as attributes.
Appropriate modifications, if needed, can be made in the SW; otherwise, the user will
proceed with the specification of predicates.
Predicates against complex objects may be rather clumsy. For the simplest ones
(comparison of a monovalued attribute with a constant) a graphical counterpart may



12

easily be defined. A simple specification technique is to click on the attribute, select a
comparison operator from a menu, and finally type the value or choose one from a
list. For complex predicates (involving several quantifiers, for instance), there might
be no simple way to express it graphically. Menus are sometimes used for syntactic
editing of predicates ([10] or ISIS [13]). In gql/ER, QBE-like forms are used to
specify conditions on the selected nodes. Only a few interfaces use a graphical
formalism for expressing predicates (see, for instance, Pasta-3 [18] or SNAP [6]).
In this paper we focus on functionalities, instead of discussing the best graphical
solution for predicate specification. A predicate is any logical expression involving
attributes of the entity type resulting from the previous step. The predicate
implements the selection operator if it is attached to the root or the reduction operator
if it is attached to an attribute. The domain of a predicate is the set of quantified
variables.
Predicates are expressed by using a predicate box associated to the root of the
hierarchy. Subpredicates are automatically generated when the user designates the
attributes involved in the predicate. By default (as in Pasta-3), the equality operator is
used for clauses and the existential quantifier is assumed for multivalued attributes.
Every attribute which appears several times in one or several predicates is duplicated
as many times in the SW. This is the graphical counterpart of the use of variables in
textual languages.
Evaluation of the predicates can be done in any order. Each intermediate step usually
builds a potential query that can be interpreted (a syntactic validation) and executed (a
semantic validation on an existing database) in the fourth window.

5 . 4 Formatting the Output

By default, the SW defines the structure of the resulting entity type. However, the
users may wish to discard some of the attributes, kept up to now only because of
some predicate to be defined on them. The SW has to provide for a "hide" (or,
conversely, "show") operation, to define which attributes are to be discarded (or kept
in). The hiding (or the showing) of a complex attribute also hides (or shows) all its
component attributes.

5 . 5 Displaying Resulting Data

The last phase is the display of instances representing the result of the query. SUPER
displays resulting entities according to their hierarchical structure, into a nested
tabular form (NT mode) or into an entities browser form (EB mode). Users can choose
between the two kinds of presentation through a switch mode radio button.
Relational interfaces display occurrences in a tabular form. SNAP provides the user
with the choice between the tabular format and a NF2 format, where occurrences are
arranged into "buckets". [21] uses the nested forms representation to display the
results of data browsing. GUIDE [35] and VGQF [23] allow the user to choose
among different formats. In OdeView [1] complex objects can be displayed through a
text or picture representation; the user can click on buttons to display all related
objects.

5 . 7 Additional Facilities

Additional functionalities supported by SUPER allow to store queries for later reuse
or modification, as well as evaluation of partial queries. The latter is useful for query
debugging. Suppose the user is confronted with a result different from what was



13

expected, without recognizing what is the problem within the formulation. The query
can be broken into two or more separate queries by disconnecting some links.
Independent evaluation of the subqueries can be performed to identify what changes
have to be made. After this refinement, the original, corrected query can easily be
rebuilt by unification of the duplicated entity types created by the previous
disconnection.

5 . 8 A Sample Query

This section illustrates the process of query formulation in SUPER. Let us assume
the user wants to formulate the following query:

Select name and address of people who insure a 1984 Ford

on the schema of figure 1. The corresponding diagram will be displayed in the DBS
window. The corresponding diagram will be displayed in the database window. The
user begins by picking the relationship type Insures, that will be copied into the WS
window, together with the linked entity types (Person, Insurance-Co and Car) and all
their attributes (figure 3).

Insurance-Co

Car

Garage

Drives

Insures

Repairs

Man Woman

child of

IC-name
IC-address

contract#

car#

date

day month year

child

father mother

yearPersonlast_name
first_name

bdate
day

month
year

address

street  town  zip

Make type

G-name

Phone#

Database schema Working schema

Personlast_name

first_name bdate
day

month
year

address

Insures

Insurance-Co IC-name
IC-address

Car
car#
year

Make type

contract#

street town zip

Fig. 3. Query editor windows showing query subschema definition

Next, assume the user designates Person as the root of the hierarchy. Figure 4 shows
the contents of the selection window.

Selection Window

last_name

first_name bdate
day

month
year

address

street  town  zip

Insures
Insurance-Co IC-name

IC-addressCar

car# yearMaketype

contract#

Insures

Fig. 4. Resulting hierarchical structure, showing the root as an empty box

The resulting structure contains many attributes the user is not interested in.
Consequently, he/she will return to the WS window and prune unnecessary objects.



14

The attributes name and address of Person are needed for result display, while Make
and year of entity Car will be used for predicate specification. Pruning will change the
contents of windows, as shown in figure 5.

Selection WindowWorking schema

Car

Insures

yearPerson last_name

address

street  town  zip

Make
Car

Insures

yearMake

last_name

address

street  town  zip

Fig. 5. The updated query subschema and corresponding hierarchical structure

The definition of a predicate is made through a predicate box, displayed in the SW.
The user designates the attributes (Make and year) involved in the predicate. As the
Insures attribute (to which Make belongs) is multivalued, a modifiable "exist Insures"
clause is automatically generated (figure 6).

Selection Window

last_name
address

street  town  zip

Car

Insures

yearMake

π

OK Cancel

Predicate Window

Insuresexists
Insures.Car.make =

OK Cancel

Predicate Window

Insuresexists

Insures.Car.make = Ford

Selection Window

last_name

address

street  town  zip

Car

Insures

yearMake

π

Insures.Car.year = 1984

A
N
D

Fig. 6. SW after designation of Make Fig. 7. Final state of the SW

While designating the second attribute (year) the user also has to specify the logical
connector between the two predicates. The specification is completed by entering the
appropriate values: Ford for Make and 1984 for year (figure 7).The query is ready for
evaluation (figure 8).

last_name address

zip

Result Window

Regent St

Deneuve

London GB-1001
street town

Result Window

last_name street
address

Austin

GB-1001
CO-80535

Hey 74  Burnet Rd TX 78750

Deneuve Regent St

town zip

London
Taft Ave. Loveland

Austin TX 78712Taylor Hall

Yamayoto6 Kagusha Fukuoka JP-816

Fig. 8. Result of the evaluated query in the entities browser and the nested tabular form



15

6  Conclus ion

Development of good and powerful visual interfaces is a major current challenge for
database system designers. Despite an important investment of research efforts in the
general domain of user interfaces, database users are still confronted with textual
languages for their interaction with a DBMS. Most of the tools available on the
marketplace are limited to data definition facilities. For graphical data manipulation, a
few prototypes have been developed to support modern, object-based modelling
approaches. However, they do not seem to consistently support all of the desired
functionalities. For these reasons we believe more research and experiments are needed
to fulfill the goals attached to visual interfaces.
The development of the SUPER environment is intended as a contribution in this
direction. Our aim is to use well specified paradigms, consistently over all the phases
related to database operation. This includes, of course, data definition and data
manipulation, but also considers database design activities, with a particular emphasis
on view definition and view integration.
Visual interaction in SUPER environment is based on direct manipulation of objects
and functions, providing users with maximum flexibility during schema definition as
well as query formulation. Graphical interactions are easy to manage, and take
advantage of the support of a simple but powerful modelling paradigm. Visual data
manipulation is assertional and object-based. The environment offers multiple
interaction styles, well-suited for various categories of users.
The schema editor has been implemented in C++, in a UNIX environment (Sun
workstations), complemented with the user interface InterViews [22]. The SUPER
environment implementation is based on a toolbox approach. This approach is
discussed in [3]. The query editor is currently being implemented.  For more details
about the architecture of the SUPER environment, see [5].
The next step concerns the specification of a view definition graphical facility. Its
first goal will be to allow users to define views over an existing schema. Secondly,
we intend to develop a similar tool for definition of views in the initial phase of
database design, as a formal way to express user requirements. These views will be
used as input to an integration tool, which will automatically perform their
integration according to explicitly defined interview correspondences [34]. Finally,
more tools will be specified to cover the other phases of the database design process.

Acknowledgments

The authors are indebted to Prof. Bharat Bhargava and Prof. Kokou Yétongnon for
many useful suggestions to previous versions of this paper. They also want to
express their gratitude to Claude Vanneste and Bull France for their cooperation in the
ergonomics of SUPER editors.

References

[1] R. Agrawal, N. H. Gehani, J. Srinivasan: "OdeView: The Graphical Interface to
Ode", in Proc. of ACM SIGMOD '90, Int'l Conf. on Management of Data, pp.
34-43, Atlantic City, 1990

[2] A. Albano, L. Alfò, S. Coluccini, R. Orsini: "An Overview of Sidereus, a
Graphical Database Schema Editor for Galileo", in Advances in Database



16

Technology - EDBT '88, J. W. Schmidt, S. Ceri, M. Missikof eds., Springer-
Verlag, pp. 567-571, 1988

[3] A. Auddino, E. Amiel, B. Bhargava: "Experiences with SUPER, a Database
Visual Environment", in Proc. of the 2nd Int'l Conf. on Database and Expert
Systems Applications - DEXA '91, pp. 172-178, Berlin, 1991

[4] A. Auddino, Y. Dennebouy, Y. Dupont, E. Fontana, S. Spaccapietra, Z. Tari:
"SUPER: A Comprehensive Approach to Database Visual Interfaces", in Proc.
of IFIP WG 2.6 2nd Working Conf. on Visual Database Interfaces, pp. 359-
374, Budapest, 1991

[5] A. Auddino, E. Amiel, Y. Dennebouy, Y. Dupont, E. Fontana, S. Spaccapietra,
Z. Tari: "Database Visual Environments based on Advanced Data Models", in
Proc. of the Int'l Workshop on Visual Interfaces - AVI '92, pp.., Rome, 1992

[6] D. Bryce, R. Hull: "SNAP, a Graphics-Based Schema Manager", in Proc. of the
2nd IEEE Int'l Conf. on Data Engineering, pp. 151-164, Los Angeles, 1986

[7] T. Catarci, G. Santucci: "Query by Diagram: A Graphic Query System", in
Proceedings of the 7th Int'l Conf. on Entity-Relationship Approach, pp. 157-
174, Rome, 1988

[8] E. Chan, F. Lochovsky: "A Graphical Database Design Aid Using the Entity-
Relationship Model", in Entity-Relationship Approach to Systems Analysis and
Design, North-Holland, pp. 259-310, 1980

[9] B. Czejdo, R. Elmasri, D. W. Embley, M. Rusinkiewicz: "A Graphical Data
Manipulation Language for an Extended Entity-Relationship Model", IEEE
Computer, Vol. 23, No. 3, pp. 26-36, March 1990

[10] R. A. Elmasri, J. A. Larson: "A Graphical Query Facility for ER Databases", in
Entity-Relationship Approach - The Use of ER Concept in Knowledge
Representation, P. P. Chen ed., North-Holland, 1985, pp. 236-245

[11] D. H. Fishman et al.: "Iris: An Object-Oriented Database System", ACM
Transactions on Office Information Systems, Vol. 5, No. 1, pp. 48-69, January
1987

[12] C. Frasson, M. Er-radi: "Principles of an Icons-Based Command Language", in
Proc. of ACM SIGMOD '86, Int'l Conf. on Management of Data, pp. 147-151,
Washington, 1986

[13] K. J. Goldman, S. A. Goldman, P. C. Kanellakis, S. B. Zdonik: "ISIS,
Interface for a Semantic Information System", in Proc. of ACM SIGMOD '85,
Int'l Conf. on Management of Data, pp. 328-342, Austin, 1985

[14] I. P. Groette, E. G. Nilsson: "SICON, an Iconic Presentation Module for an E-
R Database", in Proc. of the 7th Int'l Conf. on Entity-Relationship Approach,
pp. 137-155, Rome, 1988

[15] C. F. Herot: "Spatial Management of Data", ACM Transactions on Database
Systems, Vol. 5, No. 4, pp. 493-514, December 1980

[16] R. King, S. Melville: "SKI: A Semantics-Knowledgeable Interface", in Proc. of
the 10th Int'l Conf. on Very Large Databases, pp. 30-33, Singapore, 1984

[17] R. King, M. Novak: "FaceKit: A Database Interface Design Toolkit", in Proc.
of the 15th Int'l Conf. on Very Large Data Bases, pp. 115-123, Amsterdam,
1989

[18] M. Kuntz, R. Melchert: "Pasta-3's Graphical Query Language: Direct
Manipulation, Cooperative Queries, Full Expressive Power", in Proc. of the
15th Int'l Conf. on Very Large Data Bases, pp. 97-105, Amsterdam, 1989

[19] M. Kuntz, R. Melchert: "Ergonomic Schema Design and Browsing with More
Semantics in the Pasta-3 Interface for E-R DBMSs", in Entity-Relationship



17

Approach to Database Design and Querying, F. Lochovsky ed., North-Holland,
1990

[20] J. Larson, J. B. Wallick: "An Interface for Novice and Infrequent Database
Management System Users", in AFIPS Conference Proceedings, National
Computer Conference, vol. 53, pp. 523-529, 1984

[21] J. Larson: "A Visual Approach to Browsing in a Database Environment", IEEE
Computer, vol. 19, no. 6, pp. 62-71, June 1986

[22] M. A. Linton, J. M. Vlissides, P. R. Calder: "Composing User Interfaces with
InterViews", IEEE Computer, vol. 22, no. 2, pp. 8-22, February 1989

[23] N. H. McDonald: "A MultiMedia Approach to the User Interface", in Human
Factors and Interactive Computer Systems, Y. Vissiliou ed., Ablex Publishing
Corp., 1984, pp. 105-116

[24] A. Motro, A. D'Atri, L. Tarantino: "The Design of KIVIEW: An Object-
Oriented Browser", in Proc. of the 2nd Int'l Conf. on Expert Database Systems,
pp. 17-31, Tysons Corner, 1988

[25] C. Parent, H. Rolin, K. Yétongnon, S. Spaccapietra: "An ER Calculus for the
Entity-Relationship Complex Model", in Entity-Relationship Approach to
Database Design and Querying, F. Lochovsky ed., North-Holland, 1990

[26] D. Reiner et al.: "A Database Designer's Workbench", in Entity-Relationship
Approach, S. Spaccapietra ed., North-Holland, 1987, pp. 347-360

[27] W.-F. Riekert: "The ZOO Metasystem: A Direct Manipulation Interface to
Object-Oriented Knowledge Bases", in Proc. of European Conf. on Object-
Oriented Programming - ECOOP '87, pp. 145-153, Paris, 1987

[28] T. R. Rogers, R. G. G. Cattell: "Entity-Relationship Database User Interfaces",
in Proc. of the 6th Int'l Conf. on Entity-Relationship Approach, pp. 323-335,
New York, 1987

[29] L. A. Rowe, P. Danzig, W. Choi: "A Visual Shell Interface to a Database",
Software - Practice and Experience, vol. 19, no. 6, pp. 515-528, June 1989

[30] B. Shneiderman: "Direct Manipulation: A Step Beyond Programming
Languages", IEEE Computer, vol. 16, no. 8, pp. 57-69, August 1983

[31] B. Shneiderman, Designing the User Interface - Strategies for Effective Human-
Computer Interaction, Addison-Wesley, 1987

[32] S. Spaccapietra, C. Parent, K. Yétongnon, M. S. Abaidi: "Generalizations: A
Formal and Flexible Approach", in Management of Data, N. Prakash ed., Tata
McGraw-Hill, 1989, pp. 100-117

[33] S. Spaccapietra, C. Parent: "ERC+: an Object-based Entity-relationship
Approach", in Conceptual Modelling, Databases and CASE: an Integrated View
of Information Systems Development, P. Loucopoulos, R. Zicari eds., John
Wiley, 1992

[34] S. Spaccapietra, C. Parent: "View Integration: A Step Forward in Solving
Structural Conflicts", IEEE Transactions on Data and Knowledge Engineering,
1992

[35] H. K. T. Wong, I. Kuo: "GUIDE: Graphic User Interface for Database
Exploration", in Proc. of the 8th Int'l Conf. on Very Large Databases, pp. 22-
32, Mexico City, 1982

[36] Z. Q. Zhang, A. O. Mendelzon: "A Graphical Query Language fort Entity-
Relationship Databases", in Entity-Relationship Approach to Software
Engineering, Davis et al. eds., North-Holland, 1983, pp. 441-448

[37] M. M. Zloof: "Query By Example", in AFIPS Conference Proceedings,
National Computer Conference, vol. 44, pp. 431-438, 1975


