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Abstract. We consider the problem of dynamically apportioning resources among
a set of options in a worst-case on-line framework. The model we study can be
interpreted as a broad, abstract extension of the well-studied on-line prediction
model to a general decision-theoretic setting. We show that the multiplicative
weight-update rule of Littlestone and Warmuth [10] can be adapted to this model
yielding bounds that are slightly weaker in some cases, but applicable to a con-
siderably more general class of learning problems. We show how the resulting
learning algorithm can be applied to a variety of problems, including gambling,
multiple-outcome prediction, repeated games and prediction of points inRn. We
also show how the weight-update rule can be used to derive a new boosting algo-
rithm which does not require prior knowledge about the performance of the weak
learning algorithm.

1 Introduction

A gambler, frustrated by persistent horse-racing losses and envious of his friends’
winnings, decides to allow a group of his fellow gamblers to make bets on his behalf.
He decides he will wager a fixed sum of money in every race, but that he will apportion
his money among his friends based on how well they are doing. Certainly, if he knew
psychically ahead of time which of his friends would win the most, he would naturally
have that friend handle all his wagers. Lacking such clairvoyance, however, he attempts
to allocate each race’s wager in such a way that his total winnings for the season will be
reasonably close to what he would have won had he bet everything with the luckiest of
his friends.

In this paper, we describe a simple algorithm for solving such dynamic allocation
problems, and we show that our solution can be applied to a great assortment of learning
problems. Perhaps the most surprising of these applications is the derivation of a new
algorithm for “boosting,” i.e., for converting a “weak” PAC learning algorithm that
performs just slightly better than random guessing into one with arbitrarily high accuracy.

We formalize our on-line allocation model as follows. The allocation agent A hasN options or strategies to choose from; we number these using the integers 1; : : : ;N .
At each time step t = 1; 2; : : : ; T , the allocator A decides on a distribution pt over the
strategies; that is pti � 0 is the amount allocated to strategy i, and

PNi=1 pti = 1. Each
strategy i then suffers some loss `ti which is determined by the (possibly adversarial)
“environment.” The loss suffered by A is then

PNi=1 pti`ti = pt � `t, i.e., the average loss



of the strategies with respect to A’s chosen allocation rule. We call this loss function the
mixture loss.

In this paper, we always assume that the loss suffered by any strategy is bounded
so that, without loss of generality, `ti 2 [0; 1]. Besides this condition, we make no
assumptions about the form of the loss vectors `t, or about the manner in which they
are generated; indeed, the adversary’s choice for `t may even depend on the allocator’s
chosen mixture pt.

The goal of the algorithm A is to minimize its cumulative loss relative to the loss
suffered by the best strategy. That is, A attempts to minimize its net lossLA � mini Li
where LA = TXt=1

pt � `t
is the total cumulative loss suffered by algorithm A on the first T trials, andLi = TXt=1

`ti
is strategy i’s cumulative loss.

In Section 2, we show that Littlestone and Warmuth’s [10] “weighted majority”
algorithm can be generalized to handle this problem, and we prove a number of bounds
on the net loss. For instance, one of our results shows that the net loss of our algorithm

can be bounded byO�pT lnN� or, put another way, that the average per trial net loss is

decreasing at the rate O�p(lnN)=T�. Thus, as T increases, this difference decreases
to zero.

Our results for the on-line allocation model can be applied to a wide variety of
learning problems, as we describe in Section 3. In particular, we generalize the results of
Littlestone and Warmuth [10] and Cesa-Bianchi et al. [1] for the problem of predicting
a binary sequence using the advice of a team of “experts.” Whereas these authors proved
worst-case bounds for making on-line randomized decisions over a binary decision and
outcome space with a f0; 1g-valued discrete loss, we prove (slightly weaker) bounds that
are applicable to any bounded loss function over any decision and outcome spaces. Our
bounds express explicitly the rate at which the loss of the learning algorithm approaches
that of the best expert.

Related generalizations of the expert prediction model were studied by Vovk [12],
Kivinen and Warmuth [9], and Haussler, Kivinen and Warmuth [8]. Like us, these
authors focused primarily on multiplicative weight-update algorithms. Chung [2] also
presented a generalization, giving the problem a game-theoretic treatment.

Finally, in Section 4, we show how a similar algorithm can be used for boosting, i.e.,
for converting any weak PAC learning algorithm into a strong PAC learning algorithm.
Unlike the previous boosting algorithms of Freund [5, 6] and Schapire [11], the new
algorithm needs no prior knowledge of the accuracy of the hypotheses of the weak
learning algorithm. Rather, it adapts to the accuracies of the generated hypotheses and
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generates a weighted majority hypothesis in which the weight of each weak hypothesis
is a function of its accuracy. The accuracy of this final hypothesis improves when any of
the weak hypotheses is improved. This is in contrast with previous boosting algorithms
whose performance bound depended only on the accuracy of the least accurate weak
hypothesis. At the same time, if the weak hypotheses all have the same accuracy, the
performance of the new algorithm is very close to that achieved by the best of the known
boosting algorithms.

2 The algorithm and its analysis

In this section, we present our algorithm, called Hedge(�), for the on-line allocation
problem. The algorithm and its analysis are direct generalizations of Littlestone and
Warmuth’s weighted majority algorithm [10].

The algorithm maintains a weight vector whose value at time t is denoted wt =hwt
1; : : : ; wtN i. At all times, all weights will be nonnegative. All of the weights of the

initial weight vector w1 must be nonnegative and sum to one, so that
PNi=1 w1i = 1.

Besides these conditions, the initial weight vector may be arbitrary, and may be viewed
as a “prior” over the set of strategies. Since our bounds are strongest for those strategies
receiving the greatest initial weight, we will want to choose the initial weights so as to
give the most weight to those strategies which we expect are most likely to perform the
best. Naturally, if we have no reason to favor any of the strategies, we can set all of the
initial weights equally so thatw1i = 1=N . Note that the weights on future trials need not
sum to one.

Our algorithm allocates among the strategies using the current weight vector, after
normalizing. That is, at time t, Hedge(�) chooses the distribution vectorpt = wtPNi=1 wti : (1)

After the loss vector `t has been received, the weight vectorwt is updated using the
multiplicative rule wt+1i = wti � U�(`ti): (2)
Here, U� : [0; 1]! [0; 1] is any function, parameterized by � 2 [0; 1], which satisfies�r � U�(r) � 1 � (1 � �)r: (3)
(It can be shown that such a value U�(r) always exists for any � and r in the stated
ranges [10].)

2.1 Analysis

The analysis of Hedge(�) mimics directly that given by Littlestone and Warmuth. The
main idea is to derive upper and lower bounds on

PNi=1 wT+1i which, together, imply
an upper bound on the loss of the algorithm. We begin with an upper bound.
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Lemma 1. For any sequence of loss vectors `1; : : : ; `T , we have

ln

 NXi=1

wT+1i ! � �(1 � �)LHedge(�):
Proof. For t = 1; : : : ; T , we have from Equations (1), (2) and (3) thatNXi=1

wt+1i = NXi=1

wtiU�(`ti) � NXi=1

wti(1� (1� �)`ti) =  NXi=1

wti!(1� (1� �)pt � `t):(4)
Therefore,

ln

 NXi=1

wt+1i ! � ln

 NXi=1

wti!+ln(1�(1��)pt �`t) � ln

 NXi=1

wti!�(1��)pt�`t:(5)
It follows that

ln

 NXi=1

wT+1i ! � ln

 NXi=1

w1i! � (1 � �) TXt=1

pt � `t = �(1 � �)LHedge(�): ut
Thus, LHedge(�) � � ln

�PNi=1 wT+1i �
1 � � : (6)

Note that, from Equations (2) and (3),wT+1i = w1i TYt=1

U�(`ti) � w1i�PTt=1
`ti = w1i�Li : (7)

This is all that is needed to complete our analysis.

Theorem 2. For any sequence of loss vectors `1; : : : ; `T , and for any i 2 f1; : : : ;Ng,
we have LHedge(�) � � ln(w1i ) � Li ln�

1 � � : (8)
More generally, for any nonempty set S � f1; : : : ;Ng, we haveLHedge(�) � � ln(Pi2S w1i ) � (ln�)maxi2S Li

1 � � : (9)
Proof. We prove the more general statement (9) since Equation (8) follows in the special
case that S = fig.

From Equation (7),NXi=1

wT+1i �Xi2S wT+1i �Xi2S w1i�Li � �maxi2S LiXi2S w1i :
The theorem now follows immediately from Equation (6). ut
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The simpler bound (8) states that Hedge(�) does not perform “too much worse”
than the best strategy i for the sequence. The difference in loss depends on our choice
of � and on the initial weight w1i of each strategy. If each weight is set equally so thatw1i = 1=N , then this bound becomesLHedge(�) � mini Li ln(1=�) + lnN

1 � � : (10)
Since it depends only logarithmically on N , this bound is reasonable even for a very
large number of strategies.

The more complicated bound (9) is a generalization of the simpler bound that is
especially applicable when the number of strategies is infinite. Naturally, for uncountable
collections of strategies, the sum appearing in Equation (9) can be replaced by an
integral, and the maximum by a supremum.

2.2 How to choose �
So far, we have analyzed Hedge(�) for a given choice of �, and we have proved
reasonable bounds for any choice of �. In practice, we will often want to choose � so
as to maximally exploit any prior knowledge we may have about the specific problem
at hand.

The following lemma will be helpful for choosing � using the bounds derived above.

Lemma 3. Suppose 0 � L � L̃ and 0 < R � R̃. Let � = g(L̃=R̃) where g(z) =
1=(1 +p2=z). Then �L ln� +R

1 � � � L+p2L̃R̃ +R:
Proof. (Sketch) It can be shown that � ln� � (1 � �2)=(2�) for � 2 (0; 1]. Applying
this approximation and the given choice of � yields the result. ut

Lemma 3 can be applied to any of the bounds above since all of these bounds have
the form given in the lemma. For example, suppose we have N strategies, and we also
know a prior bound L̃ on the loss of the best strategy. Then, combining Equation (10)
and Lemma 3, we haveLHedge(�) � mini Li +p2L̃ lnN + lnN (11)
for � = g(L̃= lnN). In general, if we know ahead of time the number of trials T , then
we can use L̃ = T as an upper bound on the cumulative loss of each strategy i.

Dividing both sides of Equation (11) by T , we obtain an explicit bound on the rate
at which the average per-trial loss of Hedge(�) approaches the average loss for the best
strategy: LHedge(�)T � mini LiT + p

2L̃ lnNT + lnNT : (12)
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Since L̃ � T , this gives a worst case rate of convergence of O�p(lnN)=T�. How-

ever, if L̃ is close to zero, then the rate of convergence will be much faster, roughly,O((lnN)=T ).
Lemma 3 can also be applied to the other bounds given in Theorem 2 to obtain

analogous results.

3 Applications

The framework described up to this point is quite general and can be applied in a wide
variety of learning problems.

Consider the following set-up used by Chung [2]. We are given a decision space D,
a space of outcomes Y , and a bounded loss function � : D � Y ! [0; 1]. (Actually,
our results require only that � be bounded, but, by rescaling, we can assume that its
range is [0; 1].) At every time step t, the learning algorithm selects a decision dt 2 D,
receives an outcome yt 2 Y , and suffers loss �(dt; yt). More generally, we may allow
the learner to select a distribution Dt over the space of decisions, in which case it suffers
the expected loss of a decision randomly selected according to Dt; that is, its expected
loss is �(Dt; yt) where �(D; y) = Ed�D[�(d; y)]:

To decide on distribution Dt, we assume that the learner has access to a set of N
experts. At every time step t, expert i produces its own distribution Eti on D, and suffers
loss �(Eti ; yt).

The goal of the learner is to combine the distributions produced by the experts so as
to suffer expected loss “not much worse” than that of the best expert.

The results of Section 2 provide a method for solving this problem. Specifically,
we run algorithm Hedge(�), treating each expert as a strategy. At every time step,
Hedge(�) produces a distribution pt on the set of experts which is used to construct the
mixture distribution Dt = NXi=1

ptiEti :
For any outcome yt, the loss suffered by Hedge(�) will then be�(Dt; yt) = NXi=1

pti�(Eti ; yt):
Thus, if we define `ti = �(Eti ; yt) then the loss suffered by the learner is pt � `t, i.e.,
exactly the mixture loss that was analyzed in Section 2.

Hence, the bounds of Section 2 can be applied to our current framework. For in-
stance, applying Equation (11), we obtain the following:

Theorem 4. For any loss function �, for any set of experts, and for any sequence of
outcomes, the expected loss of Hedge(�) if used as described above is at mostTXt=1

�(Dt; yt) � mini TXt=1

�(Eti ; yt) +p2L̃ lnN + lnN
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where L̃ � T is an assumed bound on the expected loss of the best expert, and� = g(L̃= lnN).
Example 1. In the k-ary prediction problem, D = Y = f1; 2; : : : ; kg, and �(d; y) is 1
if d 6= y and 0 otherwise. In other words, the problem is to predict a sequence of
letters over an alphabet of size k. The loss function � is 1 if a mistake was made, and 0
otherwise. Thus, �(D; y) is the probability (with respect to D) of a prediction that
disagrees with y. The cumulative loss of the learner, or of any expert, is therefore the
expected number of mistakes on the entire sequence. So, in this case, Theorem 2 states
that the expected number of mistakes of the learning algorithm will exceed the expected

number of mistakes of the best expert by at most O�pT lnN�, or possibly much less

if the loss of the best expert can be bounded ahead of time.
Bounds of this type were previously proved in the binary case (k = 2) by Littlestone

and Warmuth [10] using the same algorithm. Their algorithm was later improved by
Vovk [12] and Cesa-Bianchi et al. [1]. The main result of this section is a proof that
such bounds can be shown to hold for any bounded loss function.

Example 2. The loss function � may represent an arbitrary matrix game, such as “rock,
paper, scissors.” Here, D = Y = fR;P;Sg, and the loss function is defined by the
matrix:

y
R P S

R 1
2 1 0

d P 0 1
2 1

S 1 0 1
2

The decision d represents the learner’s play, and the outcome y is the adversary’s play;
then �(d; y), the learner’s loss, is 1 if the learner loses the round, 0 if it wins the round,
and 1=2 if the round is tied. (For instance, �(S;P) = 0 since “scissors cut paper.”) So
the cumulative loss of the learner (or an expert) is the expected number of losses in a
series of rounds of game play (counting ties as half a loss). Our results show then that,
in repeated play, the expected number of rounds lost by our algorithm will converge
quickly to the expected number that would have been lost by the best of the experts (for
the particular sequence of moves that were actually played by the adversary).

Example 3. Suppose that D and Y are finite, and that � represents a game matrix as in
the last example. Suppose further that we create one expert for each decision d 2 D (i.e.,
that always recommends playing d). In this case, Theorem 2 implies that the learner’s
average per-round loss on a sequence of repeated plays of the game will converge, at
worst, to the value of the game, i.e., to the loss that would have been suffered had the
learner used the minimax “optimal” strategy for the game. Moreover, this holds true
even if the learner knows nothing at all about the game that is being played (so that � is
unknown to the learner), and even if the adversarial opponent has complete knowledge
both of the game that is being played and the algorithm that is being used by the learner.
(See the related work of Hannan [7].)
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Example 4. Suppose that D = Y is the unit ball in Rn, and that �(d; y) = jjd � yjj.
Thus, the problem here is to predict the location of a point y, and the loss suffered is the
Euclidean distance between the predicted point d and the actual outcome y. Theorem 2
can be applied if probabilistic predictions are allowed. However, in this setting it is more
natural to require that the learner and each expert predict a single point (rather than a
measure on the space of possible points). Essentially, this is the problem of “tracking”
a sequence of points y1; : : : ; yT where the loss function measures the distance to the
predicted point.

To see how to handle the problem of finding deterministic predictions, notice that
the loss function �(d; y) is convex with respect to d:jj(ad1 + (1 � a)d2)� yjj � ajjd1 � yjj+ (1 � a)jjd2 � yjj (13)
for any a 2 [0; 1] and any y 2 Y . Thus we can do as follows. At time t, the learner
predicts with the weighted average of the experts’ predictions: dt = PNi=1 ptieti whereeti 2 Rn is the prediction of the ith expert at time t. Regardless of the outcome yt,
Equation (13) implies that jjdt � ytjj � NXi=1

ptijjeti � ytjj :
Since Theorem 2 provides an upper bound on the right hand side of this inequality, we
also obtain upper bounds for the left hand side. Thus, our results in this case give explicit
bounds on the total error (i.e., distance between predicted and observed points) for the
learner relative to the best of a team of experts.

In the one-dimensional case (n= 1), this case was previously analyzed by Littlestone
and Warmuth [10], and later improved upon by Kivinen and Warmuth [9].

This result depends only on the convexity and the bounded range of the loss function�(d; y) with respect to d. Thus, it can also be applied, for example, to the squared-
distance loss function �(d; y) = jjd � yjj2, as well as the log loss function �(d; y) =� ln(d �y) used by Cover [3] for the design of “universal” investment portfolios. (In this
last case, D is the set of probability vectors on n points, and Y = [1=B;B]n for some
constant B > 0.)

In many of the cases listed above, superior algorithms or analyses are known.
Although weaker in specific cases, it should be emphasized that our results are far more
general, and can be applied in settings that exhibit considerably less structure, such as
the horse-racing example described in the introduction.

4 Boosting

In this section we show how the algorithm presented in Section 2 for the on-line alloca-
tion problem can be modified to boost the performance of weak learning algorithms.

We very briefly review the PAC learning model. Let X be a set called the domain.
A concept is a Boolean function c : X ! f0; 1g. A concept class C is a collection of
concepts. The learner has access to an oracle which provides labeled examples of the
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form (x; c(x)) where x is chosen randomly according to some fixed but unknown and
arbitrary distribution D on the domain X , and c 2 C is the target concept. After some
amount of time, the learner must output a hypothesis h : X ! [0; 1].1 The error of the
hypothesis h is the expected value Ex�D(jh(x) � c(x)j) where x is chosen according
to D.

A strong PAC-learning algorithm is an algorithm that, given �; � > 0 and access
to random examples, outputs with probability 1 � � a hypothesis with error at most �.
Further, the running time must be polynomial in 1=�, 1=� and other relevant parameters
(namely, the “size” of the examples received, and the “size” or “complexity” of the
target concept). A weak PAC-learning algorithm satisfies the same conditions but only
for � � 1=2 � 
 where 
 > 0 is either a constant, or decreases as 1=p where p is a
polynomial in the relevant parameters.

Schapire [11] showed that any weak learning algorithm can be efficiently trans-
formed or “boosted” into a strong learning algorithm. Later, Freund [5, 6] presented the
“boost-by-majority” algorithm that is considerably more efficient than Schapire’s algo-
rithm. Both algorithms work by calling a given weak learning algorithm WeakLearn
multiple times, each time presenting it with a different distribution over the domainX , and finally combining all of the generated hypotheses into a single hypothesis. The
intuitive idea is to alter the distribution over the domain X in a way that increases the
probability of the “harder” parts of the space.

A deficiency of the boost-by-majority algorithm is the requirement that the bias
 of the weak learning algorithm WeakLearn be known ahead of time. Not only is
this worst-case bias usually unknown in practice, but the bias that can be achieved
by WeakLearn will typically vary considerably from one distribution to the next.
Unfortunately, the boost-by-majority algorithm cannot take advantage of hypotheses
computed by WeakLearn with error significantly smaller than the presumed worst-case
bias of 1=2 � 
.

In this section, we present a new boosting algorithm which was derived from the
on-line allocation algorithm of Section 2. This new algorithm is very nearly as efficient
as boost-by-majority. However, unlike boost-by-majority, the accuracy of the final hy-
pothesis produced by the new algorithm depends on the accuracy of all the hypotheses
returned by WeakLearn, and so is able to more fully exploit the power of the weak
learning algorithm.

Also, this new algorithm gives a clean method for handling real-valued hypotheses
which often are produced by neural networks and other learning algorithms.

For the sake of simplicity, we assume that the domain X is the set f1; : : : ;Ng.
We present the new boosting algorithm using a simplified framework in which the
distributions over the domain X are assumed to be directly accessible. In other words,
the boosting algorithm is given the distribution D and can present the weak learning
algorithm with any distribution vector it chooses. The running time of the boosting
algorithm is linear in N .

This framework may seem unrealistic since the domain X is typically very large or

1 The value h(x) can be interpreted as a stochastic prediction of the label c(x). Although we
assume here that we have direct access to the bias of this prediction, our results can be extended
to the case that h is instead a random mapping into f0; 1g.
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Algorithm AdaBoost
Input: set of N labeled examples f(1; c(1)); : : : ; (N; c(N))g

distribution D over the examples
weak learning algorithm WeakLearn
integer T specifying number of iterations

Initialize the weight vector: w1i = D(i) for i = 1; : : : ;N
Do for t = 1; 2; : : : ; T
1. Set

pt = wtPNi=1 wti
2. Call WeakLearn, providing it with the distribution pt; get back a hypothesis ht.
3. Calculate the error of ht: �t =PNi=1 ptijht(i) � c(i)j.
4. Set �t = �t=(1 � �t).
5. Set the new weights vector to bewt+1i = wti�1�jht(i)�c(i)jt

Output the hypothesishf (i) = ( 1; PTt=1

�
log 1�t�ht(i) � 1

2

PTt=1 log 1�t
0; otherwise

:
Fig. 1. The adaptive boosting algorithm.

even infinite. However, we can reduce the general problem to that of boosting over a
small domain by drawing a small sample from the entire domain and using the uniform
distribution over this sample as an approximation of the complete distribution. This
method, called “boosting by sampling,” is described in detail by Freund [6, Section 3.2].

The new boosting algorithm is described in Figure 1; we call the algorithm AdaBoost
because it adjusts adaptively to the errors of the weak hypotheses returned by WeakLearn.
The algorithm has a main loop which is iterated T times. Each time it defines a distribu-
tion pt over X according to the current weight vector wt. It then feeds this distribution
to WeakLearn and gets back a hypothesis ht whose error is �t. If WeakLearn is a weak
learning algorithm in the sense defined above, then �t � 1=2�
 for all t; however, such
a bound on the error need not be known ahead of time, and indeed, our results hold for
any �t 2 (0; 1=2].

The parameter �t is chosen as a function of �t and is used for updating the weight
vector. The update rule reduces the probability assigned to those examples on which
the hypothesis makes a good prediction and increases the probability of the examples
on which the prediction is poor.2 The final hypothesis generated by the algorithm is a

2 Furthermore, if ht is Boolean (with range f0; 1g), then it can be shown that this update rule
exactly removes the advantage of the last hypothesis. That is, the error of ht on distribution
pt+1 is exactly 1=2.
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weighted average of the T hypotheses generated by WeakLearn.
This algorithm is very similar to the algorithm Hedge(�) defined in Section 2. The

“strategies” described in Section 2 are now replaced by points of the domain X , and the
loss `ti for the ith strategy at time t is defined here to be 1 � jht(i) � c(i)j. The main
difference between the two algorithms is that � is no longer fixed ahead of time but
rather changes at each iteration according to �t.

If we are given ahead of time an upper bound 1=2 � 
 on the errors �1; : : : ; �T ,
then we can directly apply algorithm Hedge(�) and its analysis. Briefly, we fix � to be
1 � 
, and set `ti = 1 � jht(i) � c(i)j, and hf as in AdaBoost, but with equal weight
assigned to all T hypotheses. Then pt � `t is exactly the accuracy of ht on distributionpt, which, by assumption, is at least 1=2+ 
. Also, letting S = fi : hf (i) 6= c(i)g, it is
straightforward to show that if i 2 S thenLiT = 1T TXt=1

`ti = 1 � 1T TXt=1

jc(i) � ht(i)j = 1 � �����c(i) � 1T TXt=1

ht(i)����� � 1=2

by hf ’s definition, and since c(i) 2 f0; 1g. Thus, by Theorem 2,T � (1=2 + 
) � TXt=1

pt � `t � � ln(Pi2S D(i)) + (
 + 
2)(T=2)

since � ln(�) = � ln(1 � 
) � 
 + 
2 for 
 2 [0; 1=2]. This implies that the error� =Pi2S D(i) of hf is at most e�T
2=2.

The boosting algorithm AdaBoost has two advantages over this direct application
of Hedge(�). First, by giving a more refined analysis and choice of �, we obtain a
significantly superior bound on the error �. Second, the algorithm does not require prior
knowledge of the accuracy of the hypotheses that WeakLearn will generate. Instead, it
measures the accuracy of ht at each iteration and sets its parameters accordingly. The
update factor �t decreases with �t which causes the difference between the distributionspt and pt+1 to increase. Decreasing �t also increases the weight ln(1=�t) which is
associated with ht in the final hypothesis. This makes intuitive sense: more accurate
hypotheses cause larger changes in the generated distributions and have more influence
on the outcome of the final hypothesis.

We now give our analysis of the performance of AdaBoost.

Theorem 5. Suppose the weak learning algorithm WeakLearn, when called by Ada-
Boost, generates hypotheses with errors �1; : : : ; �T . Then the error � of the final hypoth-
esis hf output by AdaBoost is bounded above by� � 2T TYt=1

p�t(1 � �t): (14)
Proof. We adapt the main arguments from Lemma 1 and Theorem 2. We use pt andwt
as they are defined in Figure 1. We define the cost vector `t as `ti = 1 � jht(i) � c(i)j
for all 1 � i � N . Using this notation we can write 1 � �t = pt � `t.
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Substituting this equality into the first inequality in Equation (4) we get that NXi=1

wt+1i ! �  NXi=1

wti! (1 � (1 � �t)(1 � �t)) : (15)
Combining this inequality over t = 1; : : : ; T , we get thatNXi=1

wT+1i � TYt=1

(1 � (1 � �t)(1 � �t)) : (16)
The final hypothesis hf , as defined in Figure 1, makes a mistake on instance i only ifTYt=1

��jht(i)�c(i)jt �  TYt=1

�t!�1=2 (17)
(since c(i) 2 f0; 1g). The final weight of any instance i iswT+1i = D(i) TYt=1

�1�jht(i)�c(i)jt : (18)
Combining Equations (17) and (18) we can lower bound the sum of the final weights
by the sum of the final weights of the examples on which hf is incorrect:NXi=1

wT+1i � Xi:hf (i)6=c(i)wT+1i � 0@ Xi:hf (i)6=c(i)D(i)1A TYt=1

�t!1=2 = � � TYt=1

�t!1=2(19)
where � is the error of hf . Combining Equations (16) and (19), we get that� � TYt=1

1 � (1 � �t)(1 � �t)p�t : (20)
As all the factors in the product are positive, we can minimize the right hand side by
minimizing each factor separately. Setting the derivative of the tth factor to zero, we find
that the choice of �t which minimizes the right hand side is �t = �t=(1� �t). Plugging
this choice of �t into Equation (20) we get Equation (14), completing the proof. ut

The bound on the error given in Theorem 5, can also be written in the form� � exp

 � TXt=1

Dkl
�
1=2jj�t�! � exp

 �2
TXt=1


2t! (21)
where Dkl

�ajjb� = a ln(a=b) + (1 � a) ln((1 � a)=(1 � b)) is the Kullback-Leibler
divergence, and where �t = 1=2� 
t. In the case where the errors of all the hypotheses
are equal to 1=2 � 
, Equation (21) simplifies to� � exp

��T �Dkl
�
1=2jj1=2� 
�� : (22)
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This is a form of the Chernoff bound for the probability that less than T=2 coin flips
turn out “heads” in T tosses of a random coin whose probability for “heads” is 1=2� 
.
This is exactly the same closed-form bound that is given for the boost-by-majority
algorithm [6]. From Equation (22) we get that the number of iterations of the boosting
algorithm that is sufficient to achieve error � of hf isT = 1Dkl

�
1=2jj1=2� 
� ln

1� � 1
2
2

ln
1� : (23)

Note, however, that when the errors of the hypotheses generated by WeakLearn are
not uniform, Theorem 5 implies that the final error depends on the error of all of the
weak hypotheses. Previous bounds on the errors of boosting algorithms depended only
on the maximal error of the weakest hypothesis and ignored the advantage that can be
gained from the hypotheses whose errors are smaller. This advantage seems to be very
relevant to practical applications of boosting, because there one expects the error of the
learning algorithm to increase as the distributions fed to WeakLearn shift more and
more away from the target distribution.

As an aside, it is interesting to consider the relation between the final hypothesis
that is generated by AdaBoost and the one which is suggested by a Bayesian analysis.
Suppose we are given a set of f0; 1g-valued hypotheses h1; : : : ; hT and that our goal is
to combine the prediction of these hypotheses in the optimal way. This is especially easy
if we assume that the errors of the different hypotheses are independent of each other
and of the target concept, that is, if we assume that P (ht 6= c) = �t independently of
the values of the other hypotheses and of the actual label. In this case, the optimal Bayes
decision rule can be written in a particularly simple form: For a given example x, we
denote the sets of indices of hypotheses that predict 0 and 1 by H0 and H1 respectively.
Then the Bayes decision rule is equivalent to predicting that c(x) = 1 ifP (c = 0) Yt2H0

(1 � �t) Yt2H1

�t < P (c = 1) Yt2H0

�t Yt2H1

(1 � �t);
and 0 otherwise. We add to the set of hypotheses the trivial hypothesis h0 which always
predicts the value 1. After doing this, we can replace P (c = 0) by �0. Taking the
logarithm of both sides in this inequality and rearranging the terms, we find that the
Bayes decision rule is identical to the combination rule that is generated by AdaBoost.

If the errors of the different hypotheses are dependent, then the Bayes optimal
decision rule becomes much more complicated. However, in practice, it is common to
use the simple rule described above even when there is no justification for assuming
independence. An interesting alternative to this practice would be to use the algorithm
AdaBoost to find a combination rule which, by Theorem 5, has a guaranteed non-trivial
accuracy.

Finally, note that AdaBoost, unlike boost-by-majority, combines the weak hypothe-
ses by summing their probabilistic predictions. Drucker, Schapire and Simard [4], in
experiments they performed using boosting to improve the performance of a real-valued
neural network, observed that summing the outcomes of the networks and then selecting
the best prediction performs better than selecting the best prediction of each network and
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then combining them with a majority rule. It is interesting that the new boosting algo-
rithm’s final hypothesis uses the same combination rule that was observed to be better in
practice, but which previously lacked theoretical justification. Experiments are needed
to measure whether the new algorithm has an advantage in real world applications.

4.1 Improving the error bound

We show in this section how the bound given in Theorem 5 can be improved by a
factor of two. The main idea of this improvement is to replace the “hard” f0; 1g-valued
decision used by hf by a “soft” threshold.

To be more precise, let r(i) = PTt=1

�
log 1�t�ht(i)PTt=1 log 1�t

be a weighted average of the weak hypotheses ht. We will here consider final hypotheses
of the form hf (i) = F (r(i)) where F : [0; 1] ! [0; 1]. For the version of AdaBoost
given in Figure 1, F (r) is the hard threshold that equals 1 if r � 1=2 and 0 otherwise.
In this section, we will instead use soft threshold functions that take values in [0; 1]. As
mentioned above, when hf (i) 2 [0; 1], we can interpret hf as a randomized hypothesis
and hf (i) as the probability of predicting 1. Then the error Ei�D[jhf (i) � c(i)j] is
simply the probability of an incorrect prediction.

Theorem 6. Let �1; : : : ; �T be as in Theorem 5, and let r(i) be as defined above. Let the
modified final hypothesis be defined by hf = F (r(i)) where F satisfies the following
for r 2 [0; 1]: F (1 � r) = 1 � F (r); and F (r) � 1

2

 TYt=1

�t!1=2�r :
Then the error � of hf is bounded above by� � 2T�1

TYt=1

p�t(1 � �t):
For instance, it can be shown that the sigmoid function F (r) = �

1 +QTt=1 �2r�1t ��1

satisfies the conditions of the theorem.

Proof. By our assumptions on F , the error of hf is� = NXi=1

D(i) � jF (r(i)) � c(i)j = NXi=1

D(i)F (jr(i) � c(i)j)� 1
2

NXi=1

 D(i) TYt=1

�1=2�jr(i)�c(i)jt !:
14



Since c(i) 2 f0; 1g and by definition of r(i), this implies that� � 1
2

NXi=1

 D(i) TYt=1

�1=2�jht(i)�c(i)jt != 1
2

 NXi=1

wT+1i ! TYt=1

��1=2t � 1
2

TYt=1

�(1 � (1 � �t)(1 � �t))��1=2t �:
The last two steps follow from Equations (18) and (16), respectively. The theorem now
follows from our choice of �t. ut
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