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Abstract

We show that oblivious transfer can be based on a very general notion of asymmetric information
difference. We investigate a Universal Oblivious Transfer, denoted UOT(X,Y), that gives Bob
the freedom to access Alice’s input X in an arbitrary way as long as he does not obtain full
information about X. Alice does not learn which information Bob has chosen. We show that
oblivious transfer can be reduced to a single execution of UOT(X,Y) with Bob’s knowledge
Y restricted in terms of Rényi entropy of order @ > 1. For independently repeated UOT the
reduction works even if only Bob’s Shannon information is restricted, i.e. if H(X|Y) > 0 in every
UOT(X,Y). Our protocol requires that honest Bob obtains at least half of Alice’s information
X without error.

Keywords. Cryptographic Protocols, Oblivious Transfer, Shannon Entropy, Rényi Entropy,
Statistical Security, Multiparty Computation.

1 Introduction

Oblivious transfer is a cornerstone in the foundations of cryptography. Oblivious transfer was
introduced some time ago in several variations [Rab81, EGL83] and has since become the basis for
realizing a broad class of interactive protocols, such as bit commitment, zero-knowledge proofs, and
general secure multiparty computation [Yao86, GMWS87, GV88, Kil88].

In this paper, we view oblivious transfer (OT) as asymmetric information distribution between
two participants. An OT from Alice to Bob corresponds to a pair of correlated random variables
X and Y with specially connected distributions. Alice’s input X is transformed into Bob’s output
Y according to the specification of the OT protocol.

In Rabin’s OT, Alice sends a bit that is received by Bob with probability % [Rab81]; in chosen
one-out-of-two OT, denoted by (%)—OT, Bob has the choice of obtaining one of two bits sent by
Alice [EGLS83]. A generalized oblivious transfer (GOT) allows Bob to choose among all binary
functions from Alice’s two bits [BCR86].

All of these are protocols in which Alice is willing to apply a probabilistic mapping to her
information X, i.e., to send X over some channel X — Y to Bob, where Bob may choose the
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channel hidden from Alice from a previously agreed-on set and/or the channel may add noise to
the transmission.

The question we investigate is: What if we allow Bob to choose from a much more general class
of channels that is characterized only by the amount of information that observing the channel
output gives about the input? The corresponding primitive is called a universal oblivious transfer
(UOT) and has been proposed by Brassard and Crépeau [BC97]. For example, Bob could be allowed
to read both of Alice’s bits through a binary symmetric channel, which flips each bit independently
with some probability. Or Bob could compute secretly any function of Alice’s information as long
as the function’s range is smaller than its domain.

In terms of correlated random variables, UOT is a protocol in which Bob can choose Pxy, the
joint distribution of X and Y, subject only to an upper limit on the amount of information that
Y will give him about X. (Naturally, his choice has to be consistent with Px, Alice’s view of the
UQOT.) Bob can obtain some part of X without error; our reductions require this part to be at least
one half of X, generally.

Key factors that distinguish different flavors of UOT are whether repeated execution of UOT
is allowed and which information measure is used to restrict Bob’s knowledge.

As an example of UOT consider the black-box function model, as e.g. studied by Kilian [Kil91].
This paper shows how a black box computing any function f with a certain property can be used
as the basis for secure two-party protocols. (The extension to multi-party computation is given
by Kushilevitz et al. [KMO94].) In the two-party case, Alice and Bob send their inputs to f over
private channels to the black box but the output of f is public and available to both. The particular
f computed by the box is known to Alice and Bob. UOT can be considered as a generalization of
this scenario where the box is produced by Bob and f is unknown to Alice; she can only observe
the size of the public output.

We stress that this work is not about realizing UOT in terms of other primitives (as e.g. [IK97]).
Furthermore, the results on general secure multiparty computation cited before imply that GOT
and its extension to arbitrary lengths can be reduced to @)—OT. (Such a reduction seems however
not possible for UOT because Bob can choose to access Alice’s information in infinitely many
different ways.) The focus of UOT is to weaken Alice’s security requirements in oblivious transfer
by giving Bob more options to choose from. The question we investigate is how much freedom Bob
can be given such that UOT still retains the power of oblivious transfer.

1.1 Ouwur Results

Let a universal oblivious transfer UOT(X,Y) be a protocol for a sender Alice and a receiver Bob,
where Alice sends a random variable X with alphabet X and Bob obtains a random variable Y.
Bob can secretly specify the distributions Py x_, for all z € X such that ¥ does not give Bob
complete information about X.

We present security proofs for the reduction of @)—OT to UOT. The results are stated in
terms of the extension of (?)—OT to k-bit string oblivious transfer, denoted (%)—OT’C [EGL83]. The
protocol is essentially the same as used by Brassard and Crépeau for simplifying the implementation
of string OT from (%)—OT [BCY7] and is based on privacy amplification [BBCM95]. In extension
of their work, our protocol can be based on any universal hash function. Bob’s information is
measured in terms of min-entropy Ho,, Rényi entropy H, of order a > 1, and Shannon entropy H
(see Section 2 for definitions).

UOT Without Repetition—Rényi Entropy, Min-Entropy (Thm. 3):
(?)—OT’“ string OT can be reduced to a single execution of UOT(X,Y’) when Ho (XY =y) =



Q(;%5k) for all y € Y and « > 1; in particular also if Hoo(X|Y = y) = Q(k) for all y € V.

Independent Repeated UOT—Shannon Entropy (Thm. 5):
String OT can be reduced to independent repetitions of UOT(X,Y") when H(X|Y) > 0.

Adaptive Repeated UOT—Shannon Entropy (Thm. 6):
String OT can be reduced to n repetitions UOT(X® V) for i = 1,...,n, where Bob can
choose Py )y ) adaptively when for all 4", ... 4™ it holds H(X®W |y () =40 vy =
(n)
y'") > 0.

Connecting the second and third results (Theorems 5 and 6), we show also that string OT
cannot be reduced to adaptively linked repetitions of UOT if only H(X|Y) > 0 is assumed.

The security of the reductions is statistical, tolerating an exponentially small failure probability
and leakage of an exponentially small amount of information.

1.2 Related Work

Reductions among oblivious transfers and disclosure problems have a long history in cryptogra-
phy. It is known how to implement any of the basic variants, OT, (?)—OT, and GOT, in terms of
each other [BCR86, Cré88], even in a way where an online protocol uses only precomputed trans-
fers [Bea95]. Several ways to weaken the security assumptions for oblivious transfer were considered
previously by Crépeau and Kilian [CK8§].

Research on reductions from (?)—OT’C string OT to bitwise (?)—OT has for a long time concen-
trated on using self-intersecting codes for the constructions [BCS96], but recent work by Brassard
and Crépeau [BC97] shows that the reduction can be done much more efficiently using privacy am-
plification [BBR86, ILL89, BBCM95]. This technique allows to weaken the security assumptions for
Bob, permitting him not only to read one of the two bits, but also the XOR of both bits or even any
binary function of them (GOT). Brassard and Crépeau also suggested the further generalization to
UOT. This paper extends their work [BC97] and solves most of their open problems.

1.3 Organization of the Paper

UOT and the protocol for reducing (f)—OTk to UOT are introduced in Section 3. In Section 4,
reduction to one execution of UOT is investigated. Conditions under which (?)—OT’C can be reduced
to repeated use of UOT are described in Section 5 and Section 6 examines a further generalization
of UOT. We start with defining terminology, assembling some tools, and introducing information-
theoretic notions.

2 Preliminaries

We consider four basic variants of oblivious transfer:

OT: In Rabin’s OT, Alice sends a bit b and Bob receives either A (“failed”) or b, both with
probability %, but Alice does not learn which one.

(%)-OT: In chosen one-out-of-two OT, Alice has two input bits by and by, Bob chooses ¢ and
obtains b, but Alice does not learn c.

(f)—OTk: In string OT, Alice has two k-bit input strings wg and wy, Bob chooses ¢ and obtains
we, but Alice does not learn c.



GOT: In generalized OT, Alice has input bits by and by, Bob chooses any function f : {0,1}? —
{0,1} and obtains f(bg, b1), but Alice does not learn f.

Our reductions follow the information-theoretic definitions of unconditional security for oblivi-
ous transfer and other multiparty protocols [BCS96, BC97, DPP96], but formal treatment lies not
in the scope of this paper. Informally, an OT protocol is correct if it accomplishes the transmission
of information between honest parties. The protocol is private if a malicious party cannot obtain
information about the honest party’s input beyond the specification, except with negligible prob-
ability. Since UOT is by definition perfectly private for Bob, privacy is only an issue with respect
to Alice (against a malicious Bob).

We now repeat some definitions of information theory [CT91] and introduce the notation. A
random variable X induces a probability distribution Px over an alphabet X. Random variables
are denoted by capital letters. The cardinality of a set S is denoted by |S| and logarithms are
to the base 2. Usually, the alphabet of a random variable is denoted by the corresponding script
letter. Concatenation is denoted by o or by juxtaposition.

The (Shannon) entropy of a random variable X with probability distribution Px and alphabet
X is defined as

ZPX IOgP)(( )

zeX

The binary entropy function is h(p) = —plogp — (1 — p)log(1l — p). The conditional entropy of X
conditioned on a random variable Y is

HXY) = > Pr(yHX|Y =y)
yey

where H(X|Y = y) denotes the entropy of the conditional probability distribution Px|y—,.
The Rényi entropy of order a of a random variable X with alphabet X is

1
1 Px (x)®
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Ho(X) =

for « > 0 and « # 1 [Rén61]. The limit of Rényi entropy for @« — 1 is Shannon entropy. The other
limiting case o — oo is min-entropy, defined as

Hy(X) = —logglea;(PX(a:).

For a fixed random variable X, Rényi entropy is a continuous positive decreasing function of a.
For 0 < o < 3, we have H,(X) > Hg(X), with equality if and only if X is the uniform distribution
over a subset of X. In particular

log |[X] > H(X) > Ha(X) > Hoo(X). (1)

The well-known Fano inequality gives a lower bound on the error probability of guessing X from
knowledge of a correlated random variable Y [CT91]. W.Lo.g. the estimate X for X is a function
of Y. The Fano inequality states that the error probability p, = P[X # X] satisfies

h(pe) + pelog(|X] — 1) = H(X]Y). (2)



Universal hash functions were introduced by Carter and Wegman [CWT79]. A wuniversal hash
function is a set G of functions X — Y if, for all distinct 1,29 € X, there are at most |G|/|)|
functions ¢ in G such that g(zq) = g(x29).

Entropy smoothing by universal hashing is a widely-used technique to concentrate the ran-
domness inherent in a probability distribution known in different contexts as privacy amplifica-
tion [BBR86, BBCMY5] or the leftover hash lemma [ILL89].

In cryptography, privacy amplification can be used to extract a short secret key from shared
information about which an adversary has partial knowledge. Assume Alice and Bob share a random
variable W, while an eavesdropper Eve knows a correlated random variable V' that summarizes her
knowledge about W. The details of the distribution Py, and thus of Eve’s information V' about W,
are unknown to Alice and Bob, except that they assume a lower bound on the Rényi entropy of
order 2 of Py —, for the particular value v that Eve observes.

Using a public channel, which is susceptible to eavesdropping but immune to tampering, Alice
and Bob wish to agree on a function g such that Eve knows nearly nothing about g(W). The
following theorem shows that if Alice and Bob choose g at random from a universal hash function
G : W — Y for suitable ), then Eve’s information about Y = g(W) is negligible.

Theorem 1 (Privacy Amplification [BBCM95]). Let X be a random variable over the alpha-
bet X with Rényi entropy Ho(X), let G be the random variable corresponding to the random choice
(with uniform distribution) of a member of a universal hash function G : X — Y, and letY = G(X).
Then

glog |V| - H2(X)

HY|G) > log V]~ =

(3)

To apply the theorem in the described scenario, replace Px by the conditional probability
distribution Py |y —,. The theorem can be extended from Rényi entropy of order 2 to any order
a > 1 [Cac9Th].

Proofs for applications of privacy amplification often involve spoiling knowledge [BBCM95,
Cac97a]: Suppose side information is made available to Bob by an oracle. The side information is
tailored for Bob’s distribution and serves the purpose of increasing his Rényi entropy of order 2. This
can be exploited to extract a larger secret key by privacy amplification. Note that the oracle giving
spoiling knowledge is used only as a proof technique and not for carrying out privacy amplification.

We will need the following lemma about the reduction of min-entropy induced by observing
side information.

Lemma 2. Let X and U be random variables with alphabets X and U, respectively, and let s be a
security parameter. With probability ot least 1 — 2%, U takes on a value u for which

Hyo(X|U =u) > Hy(X) —log|U| —s.

Proof. Let pg =27 %/|U|. Then values u for which Py(u) < pg occur with probability less than 27%.
Thus, for all u with Py (u) > po and for any =

Pyjy—u(r) = P’;Z((Z’)“) < 1;;(((3 < P);Ea”) = Px(a) U] 2°.

The lemma follows by taking logarithms. U



3 Universal Oblivious Transfer (UOT)

We introduce our notion of a universal oblivious transfer, in which only the amount of information
that Bob obtains about the input is bounded and describe the protocol that is used for reducing
string OT to UOT under several assumptions.

Definition 1. A universal oblivious transfer, denoted by UOT(X,Y’), is a protocol for a sender
Alice and a receiver Bob, where Alice sends a random variable X with alphabet X and Bob obtains
a random variable Y. Bob can secretly specify the distributions Py x_, for all z € X such that YV
does not give Bob complete information about X.

Remark. The requirement that Bob “is not given complete information” about X is deliberately
imprecise. In terms of entropy this could be expressed by the condition H(X|Y) > 0. But for
the reductions to UOT, we usually need stronger and more complex assumptions about Pxy. It
is therefore the general idea of Bob choosing and obtaining some, but not all information that the
notion of a universal oblivious transfer tries to capture. We insist, however, that the restriction of
Bob’s information is given in terms of an information measure, such as entropy. In particular, the
size of Y is not explicitly bounded, as is the case for (?)—OT or GOT.

Since Bob’s input to the UOT, the distributions Py x_, for € X, is equivalent to specifying
Pxy consistent with Alice’s Py, these formulations are used interchangeably. For the simplicity of
notation, we assume that Alice’s input to the UOT is a binary string of fixed length.

We use the following protocol to implement UOT and prove its security later with different
restrictions on Bob’s information about X. This protocol has been used by Brassard and Crépeau
for the efficient reduction of string OT to (?)—OT and to GOT [BC97].

In the protocol and the security proofs in Section 4, X is a binary string of length 2n that is the
concatenation of two n-bits strings Xy and X;. However, X could be any uniformly distributed ran-
dom variable with at least 22" values. The protocol implements a reduction of (%)—OTk(U)U, wi)(c)
to UOT(X,Y), such that X = {0,1}?".

3.1 The Protocol for (%)-OT*(wy,w;)(c)

1: Let X = Xy o0 Xy, where Xy and X; both are random binary strings of length n and chosen by
Alice according to the uniform distribution.

2: Alice and Bob run UOT(X,Y), where Bob chooses Py x_, for z € X' to obtain X, i.e. such
that Y = X,.

3: Alice chooses independently two members Gg, G from a universal hash function mapping n-bit
strings to k-bit strings and announces them to Bob.

4: Alice computes My = Go(Xy) and M; = G1(X1). She encodes wqy and wy as Zy = My & wy and
71 = My ® wy and sends Zy and Z; to Bob.

5: Bob computes w. as G.(Y) & Z..

We first investigate a single execution of UOT in Section 4. Then we slightly modify the protocol
for Section 5 and examine the repeated use of UOT in step 2 of the protocol. It makes sense to
distinguish these two cases: On the one hand, repetitions can often be treated independently of each
other—such methods are used widely. On the other hand, there are scenarios in which repetition
of an experiment does not help because the adversary is free to link repetitions arbitrarily.



4 UQOT Without Repetition

We show under what conditions a k-bit string OT, (%)—OT’C(U)[],U)l)(C), can be reduced to a single
execution UOT(X,Y). Recall that Bob free to specify Pxy at his choice and that X = Xy o X3
consists of two n-bit strings. If Bob is honest, he follows the above protocol and obtains ¥ = X.,.
Alice knows only X and the restriction on Bob’s output Y.

Theorem 3. Let s > 0, let a« > 1, and let UOT(X,Y) be a universal oblivious transfer such that
X is a 2n-bit string and Ho(X|Y =y) > 1 for all y € Y, where

(0%

n>1> (2k +log(n + s+ 3) + 3s + 2). (4)

a—1
Then @)—OT"C string OT can be reduced to a single execution of UOT(X,Y).
In particular, these conditions hold if Hoo(X|Y =1y) > 1 for all y € Y, where

n > 1> 2k+log(n+s+3)+3s+2. (5)

Remark. In all our results, s is implicitly used as the security parameter. The resulting (%)—OT’“
protocol is perfectly private for Bob (Alice learns nothing about Bob’s choice by the definition of
the UOT) and unconditionally private for Alice with leaking at most 27° bits of information to
Bob, except with probability 275,

Proof. 1t is straightforward to verify that the protocol is correct. We show that Bob has substantial
uncertainty about at least one of Xy, X; after step 3 of the protocol. From this we conclude that
he obtains at most an exponentially small amount of information about either My or M7 and thus
also about one of wy, w; because wy and w; are encrypted with a one-time pad using My and M;
as keys, respectively.

In the proof we examine Bob’s uncertainty about Xy and his uncertainty about X; given any
particular value of Xj. A similar argument applies with Xy and X; interchanged.

First, we note that the main statement of the theorem (4) follows from the second statement (5)
by the following observation. For any o > 1 and any random variable V, it holds

1 1
a H, (V) = log max Py (v)* >

11—« veY 11—«

log Y Py(v)* = Hy(V).

a—1

Therefore, if Hy(X|Y = y) is at least -%5 times bigger than Hu(X|Y = y), the general bound (4)
follows from (5). This leaves to prove the particular case (5).

Fix the particular y that Bob has received. Suppose he obtains from an Oracle side informa-
tion that depends on his distribution Py,y—,. The purpose of side information is to induce an
almost uniform distribution on Bob’s view of Xj. Although Bob may not actually receive the side
information, he cannot deny having seen it and therefore have more knowledge.

The side information is the random variable U = f(X) with alphabet & = {0,...,d} for some
fixed d to be specified later, defined by

i) = d if Pyyjy—y(z) <27°
' |~ log Px,y—y(7)] otherwise.

(Side information U of this type has also been called log-partition spoiling knowledge [Cac97b]). U
partitions the values of Xy into sets of approximately equal probability under Py y—, y—,. For



d > log | X[, = n, the values of the probability distributions Py, y—, y—, differ at most by a factor
of two for all u except for u = d and therefore

B HSIE%X PXg\Y:y,U:u(mU) < H%én PXO\Y:y,U:u(fI?O)- (6)
We now make sure that U # d with high probability. Choosing d = n + s 4+ 2 guarantees that

PU=d] = > Pyyly—y(mg) < 27 < 27570, (7)

o PXO\Y:y(:UU) <27d

We assume u # d for the rest of the proof. Lemma 2 imposes an upper bound on the reduction
of Bob’s min-entropy about XyX; induced by observing the side information U. With probability
at least 1 — 277!, U takes on a value u such that

Hoo(XoX1|Y =y, U =1u) > Hoo(XoX1|Y =y) —log(d+1) —s—1 > 2k+2s+1, (8)

where the second step follows from the assumption of the theorem. We have for all zg and z;

(;I,lizi) PXOXI\Y:y,U:u(%amﬁ) > PXO\Y:y,U:u(TI?O) 'le\yzy,U:u,onxo(fIfl)
071
> n;}n PXO\Y:y,U:u(f’?B) : PXI\Y:y,U:u,XO:zo (z1)
0
1
>

2 U;f}X PXO\Y:y,U:u(If)) : PXl\Y:y,U:u,Xg:xO (1)
0

where the last step follows from (6). Because this holds for all 1, we can rewrite it in terms of
min-entropy. Inserting (8) we obtain

Hoo(XolY =y, U = u) + Hyo (X1 Y =y, U = u, Xy = x)
> Hoo(Xo XY =y, U=u)—1 > 2k+2s (9)

for all zg. Either the min-entropy of Xy or the min-entropy of X; given any particular value of X
is at least k + s.

Privacy amplification transforms the n-bit strings Xy and X; into the k-bit strings M, and
M. Because the min-entropy of a random variable is a lower bound for its Rényi entropy of order
two, Theorem 1 guarantees that Bob’s information about either My or M; given any Xy = xg is
exponentially small in s. Formally, there is a value ¢ > 0 such that Ho(Xo|Y =y, U = u) =t and

H(My|Go,Y =y, U=u) > k—2""/In2

on the one hand and Hoo (X1]Y =y, U = u, Xg = 1¢) > Hoo(XoX1|Y =y, U =u) —t > 2k +2s — ¢
and

H(M|G1,Y =y, U =u,Xg=x¢) > k—2F12/1n2

for any xo on the other hand. (To apply Theorem 1, we have made implicit use of (1).) At least
one of the exponents is not greater than —s. This analysis can fail in (7) or (8) with probability at
most 275! each, so that the overall failure probability is bounded by 27%. O



In particular, the above theorem covers the case that Bob knows any deterministic function of
X with output size no more than 2n — [ bits, i.e. such that Y = f(X) satisfies log|)Y| < 2n —1. The
following corollary is an immediate consequence of fact that Px is the uniform distribution over
2n-bit strings.

Corollary 4. Let s > 0 and let UOT(X, f(X)) be a universal oblivious transfer such that X is a
2n-bit string and Bob can obtain f(X) for any function f of his choice with output size at most
2n — 1 bits, where n > 1> 2k +log(n+s+3) +3s+2. Then (f)—OTk string OT can be reduced to
a single execution of UOT(X, f(X)).

As mentioned in Section 1.2, string OT can be reduced to generalized oblivious transfer (GOT),
where Bob can obtain any binary function from a pair of bits held by Alice [BC97]. The reduction
from string OT uses GOT n times, so that Bob in fact can obtain any n-bit function of n pairs
of bits that can be computed pairwise. Corollary 4 generalizes this to arbitrary n-bit functions of
Alice’s 2n bits.

We note that Theorem 3 is the most general result with respect to a that we can obtain in
the non-repetitive case. For o — 1, Rényi entropy of order o becomes Shannon entropy, but a
lower bound on the Shannon entropy H(X|Y = y) is not sufficient for applying privacy amplifi-
cation [BBCM95]. For example, suppose H(X|Y = y) > [. Then Bob could choose to obtain the
complete 2n-bit string X with probability ~ 1 — ﬁ and an uncorrelated 2n-bit string otherwise.
No matter what Alice does, Bob obtains Alice’s complete information with constant probability.

5 Repeated UOT

In this section we consider repeated application UOT from pairs of bits. The n bit pairs sent by
Alice are denoted by

XMW= xMoxM o xt) = x{Moe x(
and the random variables received by Bob are YW .. Y™ The repetitions are denoted by
UOT(X(i), Y(i)) for i = 1,...,n and the second step in the protocol is replaced by:

2’: For i = 1,...,n, Alice and Bob run UOT(X®,Y®), where Bob chooses Py i) x () =g for
() € {0,1} such that he obtains x.

Repeated UOT was proposed by Brassard and Crépeau [BC97] without explicitly addressing
the question of independence among the instances of UOT. We distinguish between three forms of
dependence for the repetition of UOT in order of increasing generality, corresponding to increasing
power for Bob.

Independent UOT: In the most restrictive case, Bob must choose all n UOT to be indepen-
dent. For example, Bob would have the freedom to obtain all of Alice’s bits over a discrete
memoryless channel.

Dependent UOT: Bob can induce some dependence among successive UOT such that the result-
ing probability distribution can be seen as a discrete channel with memory.

Adaptive UOT: The most powerful strategy available to Bob is adaptive. Thus, he chooses the
distribution for the i-th UOT based on the outcome of the first # — 1 UOT.



We consider first independent UOT. In this case, Bob has to fix PY(iJ\X(i)::c(i) forie=1,...,n

in advance and his knowledge about X is determined only by Y(?). We show that if in every
UOT Bob does not get the full information about Alice’s bits in terms of Shannon entropy, then
string OT can be realized from independent repetitions of UOT.

Theorem 5. Let s > 0 and 3 > 0. Then @)—OT"c string OT can be reduced to n independent
repetitions of UOT(X,Y) such that X € {0,1}? with uniform distribution, H(X|Y) > 3, and
n = @((k + s)/log é), where pg 15 a constant depending on 3.

Proof. Again, the protocol from Section 3 is used, which is easily seen to be correct.
Because Alice’s input to the UOT are uniformly random bits and Bob’s choices of Py(iJ\X(i):z(i)
are independent, we have for all i = 1,...,n,

H(XOyW ...yt = g(x®y®),
For guessing the value of X@  Bob needs only consider Y. Let X0 = f( ) denote Bob’s
optimal guess for X and let pg) = P[)?(i) # X]. Then we have P[)?( ) = XM, ..,)?(") =
XM =TIm,0 - p(J)). It follows from the Fano inequality (2) that

h(p®) +pPlog3 > H(XD)yDy > g

for all ¢ = 1,...,n. Let pg be the unique value in [0, %] satisfying h(pg) + pglog3 = (. It

follows that pg is a lower bound for all pg). The probability that Bob can guess xM o x(0)
correctly is at most pg" and his min-entropy about XM X™) given any particular observation
Y =4 v = ¢ gatisfies

Hoo(XW oo Xy M = () y () = )y > —nlogpgs.
Theorem 3 completes the proof. ]

If Bob is allowed dependent choice of the UOT, then this reduction is not possible. Consider
the following adaptive strategy. Alice transmits n pairs of bits X for i = 1,...,n. Let B be a
uniformly random bit chosen before the protocol starts. When B = 0, Bob chooses his distributions
such that Y@ = X for all i = 1,...,n. Otherwise, he does not want to learn anything about
XM XM at all (eg. Y = A for all i). This choice satisfies H(X®|Y(#)) > 1 and even
HX®)y®...y(@) > 1, but Bob obtains everything from Alice with probability %

Although this example suggests that dependence gives Bob too much freedom, adaptive UOT
can nevertheless be used when Bob’s information is restricted in every particular case and not only
on the average through the conditional entropy, as in Theorem 5.

Theorem 6. Let s > 0 and B > 0. Then (2) OT* string OT can be reduced to n adaptive
repetitions of UOT(X Y) such that XU € {0,1}? with uniform distribution and H(X®|y (1) =
y Y =)y > 3 fori =1,...,n and all y), ...y, where n = @((k—i—s)/logli) for

some constant pg depending on (3.

Proof. In contrast to the proof of the preceding theorem, Bob’s information about X can de-
pend on all of YV, ... V(™ W.lo.g. his optimal guess X for X is a deterministic function
LYW Y™ for i =1,....n. Then for all y"), ... y(™ we have conditional independence

LR Z x Wy @) Z )y )

= [[PIR® = xO[y®) =y y® = ym)
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and the theorem follows from the Fano inequality and from Theorem 3 in a similar way as Theo-
rem 5. ]

6 Extensions

In a UOT as described so far, Bob can always access at least half of X without error. It seems
possible to extend UOT to the notion of a noisy UOT, where Bob cannot obtain even a small part
of Alice’s information without the chance of an error.

In non-repeated use of noisy UOT, error correction has to succeed always except with negligible
probability; methods similar to those used in worst-case communication complexity [Orl90] can be
employed to correct errors, but the matter is complicated by the fact that interaction is generally
not possible or Alice could learn something about Bob’s choice.

For an example of a noisy UOT, assume that in an UOT(X,Y), any number of up to [ bits
in Alice’s bit string X = X; o Xy, are flipped before it is sent over the channel selected by Bob.
Then our protocol can still be used to reduce (f)—OT’C to noisy UOT when Alice sends Bob also the
syndromes of X and X using a linear systematic code that corrects up to [ errors. (The reduction
of Bob’s entropy can be bounded by Lemma 2.)

In repeated use of noisy UOT, better error correction techniques can be applied and the scenario
resembles the repeated use of a binary symmetric channel in work to reduce OT to a noisy channel
from Alice to Bob [CK88, Cré97].

The noisy channel model differs from UOT in another way: knowledge about the channel
characteristics is symmetric for Alice and Bob (both of them know the transition probabilities).
In contrast, UOT is inherently asymmetric. We raise the question whether there is a concept of
information distribution between two parties that encompasses both UOT and the noisy channel
model as special cases.
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