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Abstract

TheRey OsterriethComplex Figure (ROCF) is a widely
usedneuropsychological testfor visualperceptionandlong
term visual memory. Many scoring systemsare usedto
quantifythe accuracyof the drawings; theseare currently
implementedby hand in a subjectivemanner. This paper
givesdetails of the current progressof a novel technique
to locatethescoringsectionsof themostcommonof these
system(the OsterriethScoringSystem),with the ultimate
goal to automatingthe scoringsystem.High levelsof dis-
tortion are possiblemakingthis an extremelydifficult task;
however, location and perceptualgrading of the basicge-
ometricfeatures(triangles,rectanglesanddiamonds)have
beenmostsuccessful.All but onesectionin thetestdatawas
located(99.3%success)and78%of theperceptualgrades
calculatedwerewithin 5%of gradesgeneratedby indepen-
dentraters. Unary spatialmetricshavebeenimplemented
to reducethe possiblesectioncandidatesby an average of
75%withoutthelossof a singlesection.

1. Intr oduction

Neuropsychologists(concernedwith thebehaviouralex-
pressionof braindysfunction[19]) make useof many tests
whenassessingneurologicaldysfunctionin asubject.Much
informationcanbe obtainedby the useof advancedscan-
ning techniques(suchas CAT and MRI scans);however,
therearestill caseswhereasimplepaperandpenciltestcan
give additional,valuableinformation. In many situations
the size of a lesion (a localisedabnormaltissuechange)
doesnot accuratelyreflectthedegreeof dysfunction.Neu-
ropsychologicaltestscanprovide valuabledataconcerning
the progressof patientsthrough treatmentand provide a
key tool for researchinto the organisationof brain activ-
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ity and its translationinto behaviour, brain disordersand
behavioural disabilities. One such test is the Rey Oster-
rieth Figure(ROCF), which wasdevisedby Rey [24] and
standardisedby Osterrieth[24] to testvisualperceptionand
longtermvisualmemoryfunction. It is usedasaneurologi-
calevaluationtool for bothchildrenandadultsfor adiverse
numberof conditionsfrom child developmentalproblems
to dementia,traumaandinfectiousprocesses.The testre-
quiresthesubjectto copy, andlaterreproducefrom memory
thediagramshown in figure1.

Figure 1. The Rey-Osterrieth Comple x Figure .
Typicall y 20cm in length.

TheROCFis widely used,bothin aclinical andresearch
environment and numerousstudieshave beenperformed
uponit (see[19, 29] for extensive lists). Theorderandac-
curacy in which thefigure is copiedanddrawn from recall
providesusefulinformationconcerningthelocationandex-
tentof any damage.To derivea morequantitativevaluefor
theaccuracy of asubject’sdrawing variousscoringsystems



1: Cross

2: Large Rectangle

3: Diagonal Cross

4: Horizontal Line

5: Vertical Line

6: Small Rectangle

7: Small Segment

8: Parallel Lines 9: Triangle

10: Line

11: Circle with 3 Dots

12: Parallel Lines

13: Triangle

14: Diamond15: Line

16: Line

17: Cross18: Square

Figure 2. The Osterrieth Scoring System

Unit Correct PlacedProperly 2
PlacedPoorly 1

Unit Distorted,incompletebut recognisable PlacedProperly 1
PlacedPoorly

� � �

Absentor Unrecognisable 0

Table 1. Osterrieth marking allocation

havebeenemployed.Themostwidelyusedis theOsterrieth
system[19, 24]; thefigureis split in to eighteenidentifiable
areas(seefigure2), eachof which is consideredseparately
andmarkedontheaccuracy of its positionandthedistortion
exhibited,usingthescaleshown in table1.

Limitationsof thisscoringsystemincludethelackof or-
ganisationalinformation(suchaswhetherthedrawing was
producedin a piecemealor a logical fashion)and failure
to differentiatethe diagnosticimportanceof differentsec-
tions. Consequentlya numberof scoring systemshave
been developed, including those by Waber and Holmes
[31, 32], Bennett-Levy [2], Hamby[14], Fastenau[10] and
TheBostonQualitativeScoringSystemby Sternet al [28].

Thesescoringsystemsarecurrentlyperformedby hand
in what tendsto be a subjective manner, which is opento
interpretation. The Osterriethsystemwas accuratelyde-
fined by Taylor (reproducedin [27]); however this is not
universallyadheredto. Theindividualscoringsectionstend
to have very poor inter-raterreliability [29] andthesystem
hasbeencriticisedfor its lack of thoroughtesting[10]. It
hasalso beennotedthat to aid marking, the criteria have

beenset artificially strict or lenient [2]. Variousaspects
of the WaberandHolmes’ systemhave alsoproducedlow
inter-raterreliability. TheBostonQualitative ScoringSys-
tem makesuseof guidesandtemplatesto producea very
comprehensivescore;however, onedrawing takesbetween
fiveand15 minutesto mark.

It is proposedto producean automatedimplementa-
tion of the Osterriethscoringsystem.Suchan automation
would not only provide an objective andconsistentresult
but wouldalsoalleviateahighly skilledclinician from ate-
diousandtime consumingtask.

Recordinga subjects’drawing usinga digitising tablet
wouldprovideanunobtrusivemethodof recordingthecon-
structionalsequencethat is requiredin somescoringsys-
tems(no satisfactoryprocessis currentlyavailable). How-
ever, the tabletalsorecordsdynamicdatawhich hasbeen
shown to contain valuable information on simpler neu-
ropsychologicalcopying test[9], openingup aninteresting
avenueof research.

The first step in this automationis the location of the
relevantscoringsectionswithin anoff-line, scannedimage.



Thispapergivesanoverview of thecurrentprogressof this
work with a detaileddescriptionof the ROCF to placethe
work in context. Full technicaldetailscanbefoundin [6, 5]
by theauthors.

Section2 of the papergivesa review of previous work
andprovidesanoverview of thedifficultiesof theproblem.
Theproposedtechniqueis givenin section3 andtheresults
areshown in section4. Finally thepaper’s conclusionsare
givenin section5.

2. Overview of Problemsand Previous Work

Automatingthelocationof theROCFscoringsectionsis
averydifficult problem.TheROCFis,by definition,acom-
plex figureandthereproductionsby patientstypically have
very high levelsof distortion,many of which have clinical
implications.Thefigurecanbedrawn in a piecemealfash-
ion,with sectionsmisplaced,repeatedormissingaltogether.
Sectionscanhavelargegapsin thesidesor corners,becon-
structedusingmultiplestrokes,besquashedor twistedwith
curvedor steppedsides.

Handdrawn line figuresandsketchesaregeneratedin a
numberof applicationsanda greatdealof work hasbeen
performedto provide robust techniquesto interpretthem.
Both on andoff-line applicationshave beenconsidered,in-
cludingcomputergraphicaluserinterfaces[7, 26] andcon-
versionsfor CAD input or for tidying plansor schematics
[3, 22, 4, 23, 13, 1]. Theseimagescontainan inherentde-
greeof distortionandinaccuracy that the techniquesmust
beableto accommodate,however, the distortionproduced
by the ROCF is beyond the capabilitiesof thesesystems.
Neuralnetworks [20, 30] andotheradaptive/learningtech-
niques[16, 11, 12, 17] have beenappliedto handdrawn
figuresandsimilar applicationsbut with muchsimplerdata
setswith, by comparisonto theROCF, minimal distortion.
With suchavastdegreeof variationpossiblein theROCFit
would bedifficult to producethelargetrainingsetrequired
for suchsystemsandno suitabletechniquehasbeenidenti-
fied.

Although much recenteffort in computervision tech-
niqueshas,understandably, beenaimedat adaptiveandau-
tomatedsystems,thereis a largebodyof work thatreduces
animageinto a complex line imagebeforeapplyinga suit-
ableknowledgebasedsystem(see[8] for a comprehensive
survey). Many make useof Gestaltpsychologyto iden-
tify features;a systemthat identifiesperceptuallysignifi-
cantgroupingpropertiesin humanvision baseduponfea-
turessuchasco-termination,continuationalonga straight
or smoothlychangingpath,symmetryandclosure[15]. A
survey of perceptualorganisationin computervision can
befound in [25]. Thereis a significantdifferencebetween
thesecomputervision systemsandtheapplicationdetailed
here;thecomputervision systemis inherentlyprobabilistic

in nature,wherea fundamentallycorrectimageis distorted
by noise,opticalimperfectionsor problemsassociatedwith
the featureextraction, while the ROCF datais inherently
fuzzy in nature.

3. Approach Adopted and Implementation to
Date

The approachtaken to locatethe scoringsectionsis to
first identify all the suitablebasicgeometricshapeswithin
thefigure. In orderto facilitatedevelopment,only scoring
sectionsbasedon triangles,rectangles,diamondsandsim-
plelinesareto beconsideredatthistime. However, thiswill
still demonstratethesuitabilityof thetechniquesemployed.
With suchlarge levelsof distortionit is difficult to crisply
categorisea shapeasbeingpresentor not andsoa gradeof
perceptualdistortionis calculatedwhich not only provides
ascaleto whichacutoff point canbeassignedbut canalso
beusedasametricin furtherprocessing.

3.1. BasicGeometricFeatureLocation and Rating

The geometricfeaturesare locatedby the searchof an
AttributedRelationalGraph(ARG) thatis generatedto rep-
resentthe vectorisedbinary scannedimage. ARGs have
beenusedin similarapplicationssuchas[22, 21]. Thevec-
torisationis asimpleprocessof thinningtheimageandthen
applying a line following algorithm. Line segmentsthat
arecollineararethenjoinedusinga novel collinearmetric
baseduponfuzzy metricsof the linesclosenessanddiffer-
encein angle[6].

The ARG is constructedto representthe connectivity
of the collinear lines; eachnodeof the ARG representa
collinear line and the joining arcs representa connected
line. However, dueto the distortionthe connectivity is of-
tenbrokenandsoa ‘closeness’metricis used.TheARG is
searchedindependentlyfor eachshape.Eachnodeis used
asa startingpoint andall theconnectednodesaretested.If
the testsucceedsthat line becomesthecurrentline andthe
processis repeated,while failure resultsin chronological
backtrackingto performanexhaustivedepthfirst search.

The test is in the form of a setof productionrulesthat
describesa corner, a line continuationanda cornertrunca-
tion. Thedistortioncanbesohigh that the linesconstruct-
ing a straightsidecanhave sucha largedeviation thatun-
derothercircumstancesit couldbeconsideredacornerand
so the joining of line segmentsto form collinear lines can
only bepractisedon stronglycollinearlines. To accommo-
datecontinuoussideswith greaterdistortionsit is necessary
to includea definitionof a straightline continuationin the
ARG search.

A commonproblemwith the large rectangularscoring
section(sectionnumber2) is the truncationof a corneras



shown in figure3. Anotherrule sethasbeencreatedto ac-
countfor a truncatedcorner.

Figure 3. Example of a truncated rectangle

If theoriginal nodeis encounteredandthecorrectnum-
berof cornershavebeenfoundthentheshapedatais stored.

Eachcandidateshapefound is then ‘rated’ to describe
its level of perceptualdistortion.This is naturallydescribed
by fuzzy setsandlinguistic variables[33] thatallow anin-
tuitive descriptionof a shapeto be producedbasedupon
Gestaltprinciplesof perceptuallysignificantfeatures.This
calculatesamembershipto ratehow “good” theshapeis.

The metric usedis the collinearity of eachside, based
uponthedifferenceof angleandclosenessof line termina-
tion. However, this givesa ‘local’ collinearity metric and
soa globalmetricof themaximumperpendiculardeviation
from the straightpath is also included. Cornerproperties
of thedeviation from � � � (for rectangles)andclosenessof
line terminationareusedtogetherwith a symmetrymetric
for diamonds.Eachmetric is combinedusinganappropri-
ately weightedYagerintersectionfunction [18]. Many of
themetricsmake useof relative sizesanddistances(hence
theratingprocesscouldnot beintegratedin to thelocation
processsincethesizeof thefeatureis required).However,
it wasfound that relative measurehada tendency to score
very large or very small structureseither too leniently or
harshly; there is a more complex relationshipdue to the
figure’s overall size,andso an absoluteelementwasalso
included.Theparametersusedto control thefuzzy metrics
arecurrentlysetby hand;however, they arein a formatthat
canbeautomatedusinga suitablegeneticalgorithm.

Due to themulti-stroke natureof thedrawn figuresit is
possiblefor a numberof very similar featuresto be found
andcategorisedasseperateshapes.A fuzzy closenessmet-
ric is usedto groupsimilar featuresinto a singleelement.
For full technicaldetailssee[6].

3.2. Identification of ScoringSections

The collectionof geometricshapesmustnow be exam-
inedto identify thecorrectfeatures.This is a considerable

problem,sincethevariationof thefigureis extreme.There
is no guaranteeddatumwithin the figureandmostmetrics
mustbe relative to an uncertainbase. The computational
expenseof calculatingtheserelativemetricsis greatandso
a first passis performedto removethemostunsuitablefea-
turesusingunarymetricswhereonly absolutefeaturesare
considered.Thegoalof this processis to remove asmany
unsuitablefeaturesaspossiblewithout thelossof any scor-
ing sections.

To locatethesectionsanumberof basicspatialrelations
areconsidered,groupedin to theapproximatecategoriesof
position, orientation,size andbasicfeatures. Onceagain
fuzzy logic is employedto accommodatethedistortionand
variationspossiblein a naturalandintuitivemanner.

Basic Shape Features. The most fundamental basic
shapefeatureis theshapetypeitself,whetherit is atriangle,
rectangleor diamond.Rectangleshaveanaspectratiowhile
trianglescanbea right angledtriangleandhave symmetry
in a givenplane.

Size. The size of the featureis taken as the ratio of the
feature’s areaandthetotal figureareato give an indication
of thesizein bothplanes.However, thesquareroot is taken
to giveamorelinearattribute.

Position. Thepositionof a featureis consideredindepen-
dently in the x andy planesinceit is possiblefor it to be
correctlypositionedin onebut not theotherplane.All cor-
nerpointsareconsideredandtheworsecaseused.

Figure 4. Example of an incorrectl y placed tri-
angle with symmetr y

Orientation. Thebasicorientationof a featureis a func-
tion of its sideanglescomparedto theorientationanglebe-
ing considered. Diamond featuresusedthe angleof the
axes. Trianglesalso have directionalorientations. A tri-
anglewith a verticalsidecanbe facingto the left or right.
Using triangularsection13 in figure2 asanexample,it is
clear to seethat it shouldhave a right facing orientation.
Triangleswith a horizontalside can also have an up and
down facingorientationanda suitableright angletriangle



a. b.

c. d.

Figure 5. Example of pre-pr ocessing steps. a. original b. thinned image c. vector representation
(consists of 241 lines) d. collinear lines (consist of 119 lines)

canhavebotha left/right andup/down orientation(seesec-
tion 9 in figure2).

The location of the featurescan be missed-placedbut
muststill be identified. Symmetryis identifiedby Gestalt
psychology[15] as an important factor. Hencea miss-
placedfeaturewith symmetricalpropertiesto its correctlo-
cationmustbeconsideredasmoresignificantthatonewith-
out. Thuswhenconsideringthedirectionof a triangle,the
directionfrom the centreline is also include,againin the
appropriateplane.If thetriangularsection13 is usedasan
exampleandplacedin a symmetricalpositionasshown in
figure4 thenit will faceaway from thecentreline.

Themetricscalculatedfor eachsectionareaggregatedto
form a singlemeasureusinga generalisedmean[18]. See
[5] for furthertechnicaldetails.

4. Results

The techniqueswere testedusing a randomsampleof
31 drawings of the ROCF producedby childrenattending
theInstituteof Child Health,London,who displayeda typ-
ical spreadof illnessesseenby theneuropsychologicalunit.
Of these,16drawingswereproducedby copying thefigure
and15 from recall. Only therectangular, triangularanddi-
amondscoringsectionswereconsidered,which constitute
scoringsections2, 6, 9, 13,14and18 (seefigure2).

Of the 31 drawings many had sectionsmissing or so
highly distortedthat it is not possibleto locatethemat this
stagein theprocessingandareonly identifiableby ahuman
observer with useof contextual information. Hencea total

of 140scoringsectionswereconsidered;their composition
is shown in table2.

Sectionnumber
underconsideration

2 6 9 13 14 18

Numberof
sectionspresent

28 20 23 26 22 21

Table 2. Composition of scoring sections
present

Thepre-processingstagesof thinning,vectorisationand
groupingof collinearline segmentsperformedwell, reduc-
ing themeannumberof collinearlinesto126from 286orig-
inal lines.Someexamplesaregivenin figure5.

The locationprocessalsoperformedvery well, locating
all sectionsexceptone(99.3%success).Thenatureof the
distortionof themissedfeatureissuchthatit is verydifficult
to locateandhenceit is bestlocatedin a later processing
stagewith theaid of contextual information.A selectionof
examplescoringsectionsfoundaregivenin figure6.

The perceptualgradescalculatedby the processwere
comparedto scoresgeneratedby six independentraters.To
simplify thisgradingprocesstheraterswhereaskedtograde
eachshapeinto a classthat mappedonto a bandof values
within theautomatedscale.If thecalculatedgradefell out-
sidethebandthenthedistanceto theedgeof thebandwas
expressedasapercentageerror. Thesubjectiveresultswere
quitediverseandsothemodalaveragewastakento remove
theextremescores.



a. b.

c. d.

e. f.

Figure 6. Example of scoring sections located. Rectangle 2 and diamond 14 are highlighted in (a),
(c) and (e). Rectangle 6, triangle 9, triangle 13 and square 18 are highlighted (if present) in (b), (d)
and (f).

The rating processdid prove to generatevery goodap-
proximationsfor thedegreeof distortion. Whencompared
to the gradesgeneratedby the independentraters,some
78%of thecalculatedresultshadanerrorof 5%or lessand
all but 2 features(98.6%of thedata)hadanerrorof 10%or
less.Table3 shows thepercentageof shapeswith anerror
of 5% and10%, or less,broken down into the individual
scoringsections.

The averagenumberof shapesfound with a perceptual
gradehigher than the working thresholdwas53.5 rectan-
gles, 103.2 trianglesand 48.8 diamondsper figure. The
unarymetricswereusedto discardfeaturesthat wereun-
suitablefor eachscoringsectionandhencediscardedanav-
erageof 75%of thesefeatureswithout the lossof a single
scoringsection.The breakdown for the individual scoring
sectionsis givenin table4.

It is noticeablethattherectangularscoringsection6 per-
formed lesswell comparedto the other sections. This is
understandablewhenthedatais examined;it is in a areaof
highline densitywith ahighdegreeof variability in sizeand
positionpossiblefor thatfeature.Henceit is notpossibleto
discardtoo many featureswithout dangerof discardinga
scoringsection.

Section 2 6 9 13 14 18
Error � 5% 75 75 77 81 77 86
Error � 10% 100 95 100 100 95 100

Table 3. Percenta ge of features with calcu-
lated grades within given errors of indepen-
dent rater s’ grades



Section
number

2 6 9 13 14 18

Percentage
reduction

68.0 50.4 71.6 81.8 89.0 88.9

Table 4. Percenta ge of features discar ded, us-
ing unar y metrics, for each scoring section

5. Conclusions

The Rey OsterriethComplex Figure (ROCF) is a “pen
andpaper”neuropsychologicaltestusedto evaluateneuro-
logical dysfunctionin visual perceptionandlong term vi-
sualmemory. A subjectis askedto copy thecomplex figure
and then reproduceit from memory. It is widely usedin
researchandclinical environments.TheOsterriethscoring
systemis themostpopularsystemof many scoringsystems
availablethatproducea quantitative scorefor theaccuracy
of the drawing. Currently the scoringis undertaken man-
ually in a subjective mannerandhasbeencriticisedfor its
unreliability in a numberof publications.Automatingthe
scoringprocess,asdescribedin thepaper, producesanob-
jective result and removesa time consumingand tedious
taskfrom a skilled clinician (someschemescantake up to
15minutesperfigure).

The first stageof this automationis the ability to iden-
tify thescoringsectionswithin thepossiblyhighly distorted
figure. A novel process,thatemploys fuzzy metricsbased
upon Gestaltpsychology, hasbeendescribedthat locates
and gradesthe basicgeometricshapeson a scaleof per-
ceptualdistortion.This processfunctionedextremelywell,
locatingall but onefeaturefrom a randomsetof testdraw-
ings(99.3%success).Thegradingprocessalsoperformed
well whencomparedto subjectivegradesproducedby 6 in-
dependentraters;75% of the featureswere within 5% of
the subjective gradesand98.6%within 10%. Theprocess
to identify the relevant scoringsectionfrom within all the
geometricshapesfound requiresa computationallyexpen-
sive processusingbinary metrics. A setof unarymetrics
have beenimplementedto remove unsuitablefeaturesand
hencespeedthebinarymetriccalculations.Thisprocessre-
movedanaverageof 75%of thefeatureswithout removing
asinglescoringsection.
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