Automated Scoring of a NeuropsychologicalTest:
The Rey Osterrieth Complex Figure.

R.O.CanharhS.L. SmithandA.M. Tyrrell
Departmenbof Electronics Universityof York,
Heslington,York, England.

sls@ohm.york.ac.uk

Abstract

TheRey OsterriethComple Figure (ROCF) is a widely
usedneunpsytological testfor visualperceptionandlong
term visual memory Many scoring systemsare usedto
guantifythe accuracy of the drawings; theseare currently
implementedy handin a subjectivemanner This paper
givesdetails of the current progressof a novel technique
to locatethe scoringsectionsof the mostcommonof these
system(the Osterrieth Scoring System)with the ultimate
goal to automatingthe scoringsystem.High levelsof dis-
tortion are possiblemakingthis an extremelydifficult task;
however, location and perceptualgrading of the basicge-
ometricfeatues(triangles,rectanglesand diamondshave
beemmostsuccessfulAll but onesectionin thetestdatawas
located(99.3%successand 78% of the perceptualgrades
calculatedwere within 5% of gradesgeneiatedby indepen-
dentraters. Unary spatial metricshavebeenimplemented
to reducethe possiblesectioncandidatesy an average of
75%withoutthe lossof a singlesection.

1. Intr oduction

Neuropsychologist&oncernedvith thebehaioural ex-
pressiorof braindysfunction[19]) make useof mary tests
whenassessingeurologicablysfunctionin asubject.Much
information can be obtainedby the useof advancedscan-
ning techniquegsuchas CAT and MRI scans);however,
therearestill casesvherea simplepaperandpenciltestcan
give additional, valuableinformation. In mary situations
the size of a lesion (a localisedabnormaltissuechange)
doesnot accuratelyreflectthe degreeof dysfunction.Neu-
ropsychologicatestscanprovide valuabledataconcerning
the progressof patientsthroughtreatmentand provide a
key tool for researchinto the organisationof brain activ-
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ity andits translationinto behaviour, brain disordersand
behaioural disabilities. One suchtestis the Rey Oster

rieth Figure (ROCF), which was devised by Rey [24] and
standardisetly Osterriet24] to testvisualperceptiorand
longtermvisualmemoryfunction. It is usedasaneurologi-
cal evaluationtool for bothchildrenandadultsfor adiverse
numberof conditionsfrom child developmentalproblems
to dementiatraumaandinfectiousprocessesThetestre-

quiresthesubjectto copy, andlaterreproducdrom memory
thediagramshown in figure1.

S

Figure 1. The Rey-Osterrieth Comple x Figure .
Typicall y 20cm in length.

TheROCFis widely used bothin aclinical andresearch
ervironmentand numerousstudieshave beenperformed
uponit (see[19, 29 for extensie lists). The orderandac-
curag in which thefigureis copiedanddrawn from recall
providesusefulinformationconcerninghelocationandex-
tentof any damageTo derive a morequantitatve valuefor
theaccurag of asubjects drawing variousscoringsystems
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Figure 2. The Osterrieth Scoring System

Unit Correct

PlacedProperly 2
PlacedPoorly 1

Unit Distorted,incompletebut recognisable PlacedProperly 1

Absentor Unrecognisable

PlacedPoorly  1/2

0

Table 1. Osterrieth marking allocation

havebeenemployed. Themostwidely useds theOsterrieth
systen19, 24]; thefigureis splitin to eighteendentifiable

areaqseefigure 2), eachof whichis consideredeparately
andmarkedontheaccurag of its positionandthedistortion

exhibited,usingthe scaleshovn in tablel.

Limitationsof this scoringsystemincludethelack of or-
ganisationalnformation(suchaswhetherthe drawing was
producedin a piecemealor a logical fashion)and failure
to differentiatethe diagnosticimportanceof differentsec-
tions. Consequentlya numberof scoring systemshave
been developed, including those by Waber and Holmes
[31, 32], Bennett-Ley [2], Hamby[14], Fastenayl10] and
TheBostonQualitative ScoringSystenmby Sternetal [28].

Thesescoringsystemsare currently performedby hand
in whattendsto be a subjectve manney which is opento
interpretation. The Osterriethsystemwas accuratelyde-
fined by Taylor (reproducedn [27]); however this is not
universallyadheredo. Theindividual scoringsectiongend
to have very poorinter-raterreliability [29] andthe system
hasbeencriticisedfor its lack of thoroughtesting[10]. It
hasalso beennotedthat to aid marking, the criteria have

beenset artificially strict or lenient[2]. Variousaspects
of the WaberandHolmes’ systemhave alsoproducedow
inter-raterreliability. The BostonQualitatve ScoringSys-
tem makesuseof guidesandtemplateso producea very
comprehensie score;however, onedrawing takesbetween
five and15 minutesto mark.

It is proposedto producean automatedimplementa-
tion of the Osterriethscoringsystem. Suchan automation
would not only provide an objective and consistentresult
but would alsoalleviate a highly skilled clinician from ate-
diousandtime consumingask.

Recordinga subjects’drawing using a digitising tablet
would provide anunobtrusve methodof recordingthecon-
structionalsequencehat is requiredin somescoringsys-
tems(no satishctoryprocesds currentlyavailable). How-
ever, the tabletalso recordsdynamicdatawhich hasbeen
showvn to contain valuable information on simpler neu-
ropsychologicatopying test[9], openingup aninteresting
avenueof research.

The first stepin this automationis the location of the
relevantscoringsectionswithin anoff-line, scannedmage.



This papergivesanoverview of the currentprogresf this
work with a detaileddescriptionof the ROCF to placethe
work in context. Full technicaldetailscanbefoundin [6, 5]
by theauthors.

Section2 of the papergivesa review of previous work
andprovidesan overview of the difficultiesof the problem.
Theproposedechniquds givenin section3 andtheresults
areshavn in section4. Finally the papers conclusionsare
givenin section5.

2. Overview of Problemsand Previous Work

Automatingthelocationof the ROCFscoringsectionds
averydifficult problem.TheROCFis, by definition,acom-
plex figureandthereproductiondy patientstypically have
very high levels of distortion,mary of which have clinical
implications. Thefigure canbe drawn in a piecemeafash-
ion, with sectionsmisplacedrepeatedr missingaltogether
Sectioncanhave largegapsin the sidesor cornerspecon-
structedusingmultiple strokes,be squashedr twistedwith
curvedor steppedsides.

Handdrawn line figuresandsketchesaregeneratedn a
numberof applicationsanda greatdeal of work hasbeen
performedto provide robust techniquedo interpretthem.
Both on andoff-line applicationshave beenconsideredin-
cludingcomputergraphicaluserinterfaceq7, 26] andcon-
versionsfor CAD input or for tidying plansor schematics
[3, 22, 4, 23, 13, 1]. Theseimagescontainaninherentde-
greeof distortionandinaccurag that the techniquesmust
be ableto accommodatehowever, the distortionproduced
by the ROCF is beyond the capabilitiesof thesesystems.
Neuralnetworks [20, 30] andotheradaptie/learningtech-
niques[16, 11, 12, 17] have beenappliedto handdravn
figuresandsimilar applicationsout with muchsimplerdata
setswith, by comparisorto the ROCFE minimal distortion.
With suchavastdegreeof variationpossibleén theROCFit
would be difficult to producethe largetraining setrequired
for suchsystemsandno suitabletechniquehasbeenidenti-
fied.

Although much recenteffort in computervision tech-
niqueshas,understandablyoeenaimedat adaptve andau-
tomatedsystemsthereis alarge body of work thatreduces
animageinto a comple line imagebeforeapplyinga suit-
ableknowledgebasedsystem(see[8] for acomprehensie
suney). Many make useof Gestaltpsychologyto iden-
tify features;a systemthat identifies perceptuallysignifi-
cantgroupingpropertiesin humanvision baseduponfea-
turessuchasco-termination,continuationalonga straight
or smoothlychangingpath,symmetryandclosure[15]. A
suney of perceptualorganisationin computervision can
befoundin [25]. Thereis a significantdifferencebetween
thesecomputervision systemsandthe applicationdetailed
here;thecomputervision systemis inherentlyprobabilistic

in nature wherea fundamentallycorrectimageis distorted
by noise,opticalimperfectionor problemsassociatedavith
the featureextraction, while the ROCF datais inherently
fuzzyin nature.

3. Approach Adopted and Implementation to
Date

The approachtaken to locatethe scoringsectionsis to
first identify all the suitablebasicgeometricshapeawithin
thefigure. In orderto facilitate developmentonly scoring
sectionshasedon triangles,rectanglesdiamondsand sim-
plelinesareto beconsideredtthistime. However, thiswill
still demonstrat¢he suitability of thetechniquegmployed.
With suchlarge levels of distortionit is difficult to crisply
catgorisea shapeasbeingpresenbr notandsoa gradeof
perceptualistortionis calculatedwhich not only provides
ascaleto which a cut off point canbeassignedut canalso
beusedasametricin furtherprocessing.

3.1 BasicGeometric Feature Location and Rating

The geometricfeaturesare locatedby the searchof an
AttributedRelationalGraph(ARG) thatis generatedo rep-
resentthe vectorisedbinary scannedmage. ARGs have
beenusedin similarapplicationssuchas[22, 21]. Thevec-
torisationis asimpleproces®f thinningtheimageandthen
applying a line following algorithm. Line seggmentsthat
arecollineararethenjoined usinga novel collinearmetric
baseduponfuzzy metricsof the lines closenesanddiffer-
encein angle[6].

The ARG is constructedto representhe connectvity
of the collinear lines; eachnode of the ARG representa
collinear line and the joining arcsrepresenta connected
line. However, dueto the distortionthe connectvity is of-
tenbrokenandsoa ‘closenessmetricis used.The ARG is
searchedndependentiyfor eachshape.Eachnodeis used
asastartingpointandall the connectedhodesaretested.If
thetestsucceedshatline becomeghe currentline andthe
processs repeatedwhile failure resultsin chronological
backtrackingo performanexhaustve depthfirst search.

Thetestis in the form of a setof productionrulesthat
describes corner aline continuationanda cornertrunca-
tion. Thedistortioncanbe so high thatthelines construct-
ing a straightside canhave sucha large deviation that un-
derothercircumstance# couldbe consideredicornerand
sothe joining of line segmentsto form collinearlines can
only be practisedon stronglycollinearlines. To accommo-
datecontinuoussideswith greaterdistortionsit is necessary
to includea definition of a straightline continuationin the
ARG search.

A commonproblemwith the large rectangularscoring
section(sectionnumber?2) is the truncationof a corneras



shown in figure 3. Anotherrule sethasbeencreatedo ac-
countfor atruncatedcorner

t@:‘.’:

Figure 3. Example of atruncated rectangle

If the original nodeis encountereéndthe correctnum-
berof cornershave beenfoundthentheshapedatais stored.

Eachcandidateshapefound is then ‘rated’ to describe
its level of perceptuadlistortion. Thisis naturallydescribed
by fuzzy setsandlinguistic variableg33] thatallow anin-
tuitive descriptionof a shapeto be producedbasedupon
Gestaltprinciplesof perceptuallysignificantfeatures.This
calculatesamembershipo ratehow “good” the shapes.

The metric usedis the collinearity of eachside, based
uponthe differenceof angleandclosenessf line termina-
tion. However, this givesa ‘local’ collinearity metric and
soaglobalmetric of the maximumperpendiculadeviation
from the straightpathis alsoincluded. Cornerproperties
of the deviation from 90° (for rectanglesandclosenes®sf
line terminationare usedtogetherwith a symmetrymetric
for diamonds.Eachmetricis combinedusinganappropri-
ately weightedYagerintersectionfunction [18]. Many of
the metricsmale useof relative sizesanddistanceghence
theratingprocesscould not be integratedin to thelocation
processsincethe sizeof the featureis required).However,
it wasfoundthatrelative measurenadatendeng to score
very large or very small structureseither too leniently or
harshly; thereis a more complec relationshipdue to the
figure’s overall size, and so an absoluteelementwas also
included. The parametersisedto controlthe fuzzy metrics
arecurrentlysetby hand;however, they arein aformatthat
canbeautomatedisinga suitablegeneticalgorithm.

Dueto the multi-stroke natureof the drawn figuresit is
possiblefor a numberof very similar featuresto be found
andcatgyorisedasseperateshapesA fuzzy closenesset-
ric is usedto groupsimilar featuresinto a single element.
For full technicaldetailssee[6].

3.2 Identification of Scoring Sections

The collectionof geometricshapesnustnow be exam-
inedto identify the correctfeatures.This is a considerable

problem,sincethe variationof thefigureis extreme.There
is no guaranteedlatumwithin the figure andmostmetrics
mustbe relative to an uncertainbase. The computational
expenseof calculatingtheserelative metricsis greatandso
afirst passs performedio remove the mostunsuitablefea-
turesusingunary metricswhereonly absolutefeaturesare
considered.The goal of this processs to remove asmary
unsuitablefeaturesaspossiblewithout thelossof any scor
ing sections.

To locatethe sectionsa numberof basicspatialrelations
areconsideredgroupedn to the approximatecateyoriesof
position, orientation,size and basicfeatures. Onceagain
fuzzy logic is employedto accommodatéhedistortionand
variationspossiblein a naturalandintuitive manner

Basic Shape Features. The most fundamental basic
shapdeatureis theshapedypeitself, whetherit is atriangle,
rectangleor diamond.Rectangletave anaspectatiowhile
trianglescanbe aright angledtriangleand have symmetry
in agivenplane.

Size. The sizeof the featureis taken asthe ratio of the
features areaandthetotal figure areato give anindication
of thesizein bothplanes.However, thesquareaootis taken
to give amorelinearattribute.

Position. Thepositionof afeatureis consideredndepen-
dentlyin the x andy planesinceit is possiblefor it to be
correctlypositionedin onebut not the otherplane.All cor

nerpointsareconsideredndtheworsecaseused.

N

Figure 4. Example of an incorrectl y placed tri-
angle with symmetr y

Orientation. Thebasicorientationof a featureis a func-
tion of its sideanglescomparedo the orientationanglebe-
ing considered. Diamond featuresusedthe angle of the
axes. Trianglesalso have directional orientations. A tri-

anglewith a vertical sidecanbefacingto theleft or right.

Usingtriangularsection13in figure 2 asan example,it is
clearto seethatit shouldhave a right facing orientation.
Triangleswith a horizontalside can also have an up and
down facing orientationand a suitableright angletriangle



Figure 5. Example of pre-processing steps. a. original b. thinned image c. vector representation
(consists of 241 lines) d. collinear lines (consist of 119 lines)

canhave bothaleft/right andup/dovn orientation(seesec-
tion 9in figure 2).

The location of the featurescan be missed-placedut
muststill be identified. Symmetryis identified by Gestalt
psychology[15] as an importantfactor Hencea miss-
placedfeaturewith symmetricabropertiedo its correctlo-
cationmustbeconsideredsmoresignificantthatonewith-
out. Thuswhenconsideringhe directionof a triangle,the
directionfrom the centreline is alsoinclude, againin the
appropriateplane. If thetriangularsectionl3is usedasan
exampleandplacedin a symmetricalpositionasshowvn in
figure4 thenit will faceaway from the centreline.

Themetricscalculatedor eachsectionareaggreyatedo
form a singlemeasurausinga generalisednean[18]. See
[5] for furthertechnicaldetails.

4. Results

The techniqueswere testedusing a randomsampleof
31 drawings of the ROCF producedby childrenattending
theInstituteof Child Health,London,who displayeda typ-
ical spreadf ilinessesseerby theneuropsychologicalnit.
Of these 16 drawingswereproducedoy copying thefigure
and15 from recall. Only therectangulartriangularanddi-
amondscoringsectionswere consideredwhich constitute
scoringsection2, 6,9, 13,14 and18 (seefigure 2).

Of the 31 drawings mary had sectionsmissing or so
highly distortedthatit is not possibleto locatethemat this
stagen theprocessingndareonly identifiableby ahuman
obsenerwith useof contectual information. Hencea total

of 140scoringsectionsvereconsideredtheir composition
is shavnin table2.

Sectionnumber | 5 | & | o | 13| 14| 18
underconsideration

Numberof 28| 20| 23| 26| 22| 21
SeCt|0n$resent

Table 2. Composition
present

of scoring sections

The pre-processingtagef thinning, vectorisatiorand
groupingof collinearline segmentsperformedwell, reduc-
ingthemeanmumberof collinearlinesto 126from 2860rig-
inal lines. Someexamplesaregivenin figure5.

Thelocationprocessalsoperformedvery well, locating
all sectionsexceptone(99.3%success).The natureof the
distortionof themissedeatureis suchthatit is very difficult
to locateand henceit is bestlocatedin a later processing
stagewith theaid of contextualinformation. A selectionof
examplescoringsectiondoundaregivenin figure6.

The perceptualgradescalculatedby the processwere
comparedo scoreggeneratedby six independentaters.To
simplify thisgradingprocesgheraterswhereaslkedto grade
eachshapeinto a classthat mappedonto a bandof values
within theautomatedcale.If the calculatedgradefell out-
sidethe bandthenthe distanceto the edgeof the bandwas
expresse@sa percentagerror. Thesubjectieresultswere
quitediverseandsothemodalaveragewastakento remove
theextremescores.



Figure 6. Example of scoring sections located. Rectangle 2 and diamond 14 are highlighted

in (a),

(c) and (e). Rectangle 6, triangle 9, triangle 13 and square 18 are highlighted (if present) in (b), (d)

and (f).

The rating procesgdid prove to generatesery goodap-
proximationsfor the degreeof distortion. Whencompared
to the gradesgeneratedby the independentaters, some
78%of thecalculatedresultshadanerrorof 5% or lessand
all but 2 featureq98.6%0f thedata)hadanerrorof 10%or
less. Table 3 shows the percentagef shapeswith anerror
of 5% and 10%, or less, broken down into the individual
scoringsections.

The averagenumberof shapedound with a perceptual
gradehigherthanthe working thresholdwas 53.5 rectan-
gles, 103.2trianglesand 48.8 diamondsper figure. The
unary metricswere usedto discardfeaturesthat were un-
suitablefor eachscoringsectionandhencediscardedanav-
erageof 75% of thesefeatureswithout the lossof a single
scoringsection. The breakdaevn for the individual scoring
sectionds givenin table4.

It is noticeablehattherectangulascoringsectiont per
formed lesswell comparedto the other sections. This is
understandablerhenthe datais examinedi;it is in a areaof
highline densitywith ahigh degreeof variability in sizeand
positionpossiblefor thatfeature.Henceit is notpossibleto
discardtoo mary featureswithout dangerof discardinga
scoringsection.

Section 2 6 9 13 | 14| 18
Error< 5% 75 | 75| 77 | 81 | 77| 86
Error<10% || 100 | 95| 100 | 100 | 95| 100

Table 3. Percentage of features with calcu-
lated grades within given errors of indepen-
dent raters’ grades



Section 2 6 9 13 14 18
number
Percentage| g0 | 50.4 | 71.6 | 81.8 | 89.0 | 88.9
reduction

Table 4. Percentage of features discar ded, us-
ing unary metrics, for each scoring section

5. Conclusions

The Rey OsterriethComplex Figure (ROCF) is a “pen
andpaper”’neuropsychologicakstusedto evaluateneuro-
logical dysfunctionin visual perceptionandlong term vi-
sualmemory A subjectis askedto copy thecomplex figure
andthenreproducet from memory It is widely usedin
researchandclinical environments.The Osterriethscoring
systems themostpopularsystemof mary scoringsystems
availablethat producea quantitatie scorefor the accurag
of the drawing. Currentlythe scoringis undertalen man-
ually in a subjectve mannerand hasbeencriticisedfor its
unreliability in a numberof publications. Automatingthe
scoringprocessasdescribedn the paper producesan ob-
jective result and removes a time consumingand tedious
taskfrom a skilled clinician (someschemegantake up to
15 minutesperfigure).

The first stageof this automationis the ability to iden-
tify thescoringsectionswithin the possiblyhighly distorted
figure. A novel processthatemploys fuzzy metricsbased
upon Gestaltpsychology hasbeendescribedthat locates
and gradesthe basicgeometricshapeson a scaleof per
ceptualdistortion. This procesgunctionedextremelywell,
locatingall but onefeaturefrom arandomsetof testdraw-
ings (99.3%success)The gradingprocessalsoperformed
well whencomparedo subjectve gradesproducedy 6 in-
dependentaters; 75% of the featureswere within 5% of
the subjectie gradesand 98.6%within 10%. The process
to identify the relevant scoringsectionfrom within all the
geometricshapegound requiresa computationallyexpen-
sive procesausing binary metrics. A setof unary metrics
have beenimplementedo remove unsuitablefeaturesand
hencespeedhebinarymetriccalculations.Thisprocesse-
movedanaverageof 75% of the featureswithout removing
asinglescoringsection.
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