
Debugging via Run-Time Type Checking

Alexey Loginov, Suan Hsi Yong, Susan Horwitz, and Thomas Reps
Computer Sciences Department, University of Wisconsin-Madison

1210 West Dayton Street, Madison, WI 53706 USA
Electronic mail: {alexey, suan, horwitz, reps}@cs.wisc.edu

1 Introduction

Java programmers have the security of knowing that
errors like out-of-bounds array indexes or attempts to
dereference a null pointer will be detected and reported
at runtime. Java also provides security via its strong
type system. For example:

• There are no union types in Java, so it is not pos-
sible for a program to write into a field of one type
and then access that value via a field of a different
type.

• Only very restricted kinds of casting are allowed;
for example, it is not possible to treat a pointer as
if it were an integer or vice versa.

• When an object is down-cast to a subtype, a run-
time check is performed to ensure that the actual
type of the object is consistent with the cast.

C and C++ programmers are not so lucky. These
languages are more liberal than Java in what they al-
low programmers to express; the static type system is
weaker; and the run-time system provides little in the
way of protection from errors caused by misuse of casts,
bad pointer dereferences, or array out-of-bounds errors.
Programmers can use Purify[9], Safe-C[2], and shadow
processing[14] to help detect bad memory accesses, but
those tools provide no help with the many additional
kinds of errors that can be introduced into C and C++
programs due to their weak type systems.

This paper describes the design and implementation
of a tool for C programs that provides run-time checks
based on type information. The tool instruments a pro-
gram to monitor the type stored in each memory loca-
tion (which may differ from the static type of that lo-
cation due to the use of unions, pointers, and casting).
Whenever a value is written into a location, the loca-
tion’s run-time type tag is updated to match the type of
the value. Also, the location’s static type is compared
with the value’s type; if there is a mismatch, a warning
message is issued. Whenever the value in a location is
used, its run-time type tag is checked, and if the type is
inappropriate in the context in which the value is being
used, an error message is issued.

The tool has the potential to find all of the run-time
storage violations found by Purify (e.g., a use of an
uninitialized variable or an out-of-bounds array access).
In these cases, the tool’s error messages are roughly

equivalent to those reported by Purify on a given run
of a faulty program. The warning messages, however,
provide more information about what occurred prior to
the error, which can be of great help when trying to
identify the statements that actually caused the error.
In addition, the tool has the potential to find errors that
Purify cannot detect (e.g., a write into one member of
a union followed by a read from a different member).

In preliminary tests, the tool has been used to find
bugs in several Solaris utilities and Olden benchmarks.
The information provided by the tool is usually succinct
and precise in showing the location of the error.

The remainder of the paper is organized as follows:
Section 2 provides several examples that illustrate how
the tool works and what kinds of errors it can detect.
Section 3 describes a preliminary implementation of the
tool. Section 4 discusses the results of some exper-
iments. Section 5 concerns related work. Section 6
draws some conclusions and discusses possible future
work.

2 Motivating Examples

In this section, we provide three motivating examples
to illustrate the potential benefits of providing run-time
type checking. In each case, we describe the kind of
error that might be made, how our tool would detect
the error at run-time, and the interesting issues raised
by the example.

2.1 Bad Union Access

A very simple example of a logical error that manifests
itself as a bad run-time type is writing into one field of
a union and then reading from another field. This is
illustrated by the following code fragment:

1. union U { int u1; int *u2; } u;
2. int *p;
3. u.u1 = 10; /* write into u.u1 */
4. p = u.u2; /* read from u.u2 – warning ! */
5. *p = 0; /* bad pointer deref – error ! */

In this example, an integer value is written into vari-
able u (on line 3), and is subsequently read as a pointer
(on line 4). The value that is read from u is stored in
variable p, which is then dereferenced (on line 5). The
symptom of the error is the attempt to use the value 10

as an address on line 5; however, the actual point of the
error can be said to be on line 4, when a value of one
type is read as if it were another type (i.e., the run-time
type of u.u2 is not the same as its static type).

For this simple example, static analysis could be
used to track the most-recently-written field of union
u, and to give a warning that on line 4, field u2 is read,
while it was field u1 that was most recently written. In
general, however, static analysis is not an adequate so-
lution: a safe analysis finds too many potential errors,
leading to so many warnings that they are effectively
useless, while an analysis that identifies only definite
errors is likely to miss most actual errors.

A tool like Purify would report an error when line 5
was executed; however, it would not be able to point to
line 4 as the source of the error.

Recall that our tool instruments the program to track
the run-time types of memory locations. In the exam-
ple, the location that corresponds to both u.u1 and
u.u2 would have an associated run-time type. That
type would be set to int after the assignment u.u1 =
10 on line 3. On line 4, the location is read, and its
value is assigned to a pointer; this is a type mismatch,
and therefore our tool would produce a warning mes-
sage when line 4 is executed (as well as an error message
reporting the run-time type violation at line 5).

2.2 Heterogeneous Arrays

C programmers sometimes try to avoid the overhead
of the malloc and free functions by writing their own
dynamic memory-management functions. For example,
a programmer might allocate a large chunk of memory
using a single call to malloc via an assignment like the
following:

char *myMemory = (char *)malloc(BLOCKSIZE);

(where BLOCKSIZE is some large integer value). Sub-
sequently, when new memory is needed, a call to a
user-defined function, e.g., myMalloc, is made, rather
than a call to malloc. The myMalloc function returns a
pointer to an appropriate part of the myMemory “chunk”.
Similarly, calls to free are replaced by calls to myFree,
which updates the appropriate data structure to keep
track of which parts of myMemory are currently in use.
In essence, variable myMemory is used as a heterogeneous
array; i.e., different parts of the array contain values of
different types.

For example, the programmer’s code might include
the following declarations and calls:

1. struct node { int data;
struct node *next;

} *n, *tmp;
2. int *p = (int *)

myMalloc(100 * sizeof(int));
3. n = (struct node *)

myMalloc(sizeof(struct node));

The call on line 2 allocates an array of 100 integers, and
the call on line 3 allocates one node for a linked list.

Now suppose that there is a bug in the program-
mer’s memory-allocation code that causes it to return
overlapping chunks of memory. In particular, assume

that the value assigned to variable n on line 3 is the
same as the address of p[98]. In addition, assume that
pointers and integers both take 4 bytes, and that there
is no padding between the two fields of struct node.
In this case, after the call to myMalloc on line 3, the
address of n->data is the same as the address of p[98],
and the address of n->next is the same as the address of
p[99]. Now consider what happens when the following
statements are executed:

4. n->next = (struct node *)
myMalloc(sizeof(struct node));

5. p[99] = 0;
6. tmp = n->next;

Since p[99] and n->next refer to the same location,
the assignment on line 5 overwrites the value assigned
to n->next on line 4 with the value 0, essentially re-
placing the link to the next node in the list with a (list-
terminating) NULL. Therefore, future accesses to the list
will find only one node. If the assignments on lines 4 and
5 were in different parts of the code (e.g., in unrelated
functions) the source of this error might be very difficult
to track down (and a tool like Purify would not be able
to help, since there are no bad pointer dereferences or
array-access errors. Of course, if the assignment on line
5 set p[99] to some value other than zero, then future
accesses to the list would probably cause a bad pointer
dereference, which would be detected by a tool like Pu-
rify. However, as in the “bad union access” example
above, Purify would not help to locate the source of the
error.)

Our tool would tag the elements of myMemory with
their run-time types. For example, after the assignment
on line 4, the location that corresponds to n->next
would be tagged with type pointer. The assignment
on line 5 would change that annotation to int. Finally,
the use of the value in n->next on line 6 would cause
a warning message to be reported, because the location
is annotated with run-time type int, and its value is
being assigned to a pointer (tmp).

2.3 Using Structures to Simulate Inheri-
tance

C is not an object-oriented language, and therefore has
no classes. However, programmers often try to simu-
late some of the features of classes using structures[16].
For example, the following declarations might be used
to simulate the declaration of a superclass Sup and a
subclass Sub:

struct Sup { int a1; int a2; };
struct Sub { int b1; int b2; char b3; };

A function might be written to perform some operation
on objects of the superclass:

void f(struct Sup *s) {
s->a1 = ...
s->a2 = ...

}

and the function might be called with actual arguments
either of type struct Sup * or struct Sub *:

2

struct Sup sup;
struct Sub sub;
f(&sup);
f(&sub);

The ANSI C standard guarantees that the first field of
every structure is stored at offset 0, and that if two
structures have a common initial sequence – an initial
sequence of one or more fields with compatible types
– then corresponding fields in that initial sequence are
stored at the same offsets. Thus, in this example, fields
a1 and b1 are both guaranteed to be at offset 0, and
fields a2 and b2 are both guaranteed to be at the same
offset. Therefore, while the second call, f(&sub), would
cause a compile-time warning (which could be averted
with an appropriate type cast), it would cause neither
a compile-time error nor a run-time error, and the as-
signments in function f would correctly set the values
of sub.b1 and sub.b2.

However, the programmer might forget the conven-
tion that struct Sub is supposed to be a subtype of
struct Sup, and might change the type of one of the
common fields, might add a new field to struct Sup
without adding the same field to struct Sub, or might
add a new field to struct Sub before field b2. For exam-
ple, suppose the declaration of struct Sub is changed
to:
struct Sub {

int b1; float f1; int b2; char b3;
};

Now, when the second call to f is executed, the assign-
ment s->a2 = ... would write into the f1 field of sub
rather than into its b2 field. The fact that the b2 field is
not correctly set by the call to f, or the fact that the f1
field is overwritten with a garbage value will probably
either lead to a run-time error later in the execution, or
will cause the program to produce incorrect output.

Once again, the use of run-time types can help. The
assignment s->a2 = ... causes sub.f1 to be tagged
with type int. A later read of sub.f1 in a context that
requires a float would result in an error message due
to the mismatch between the required type (float) and
the current run-time type (int).

Note that in this example, a tool like Purify would
not report any errors, because there are no bad pointer
or array accesses: function f is not writing outside the
bounds of its structure parameter, it just happens to be
the wrong part of that structure from the programmer’s
point of view.

3 Implementation

Our debugging tool has been implemented for all of
ANSI C except bit fields (currently programs with bit
fields are rejected by the tool). It has two major com-
ponents: a compiler front-end that instruments the pro-
gram, and a run-time system that tracks the dynamic
type associated with each memory location.

3.1 Tracking Type Information

The run-time component is implemented by storing type
information in a “mirror” of the memory used by the

program. Each byte of memory maps to a four-bit nib-
ble in the mirror. Of these four bits, one “continuation”
bit encodes the extent of the object (0 denotes the start
of a new object, 1 denotes a “continuation” nibble), and
three “data bits” encode other information. In the first
nibble of an object’s tag, the “data bits” encode the
object’s current type (one of unallocated, uninitialized,
integral, real, and pointer); in the second nibble (if the
object is larger than one byte in size) the “data bits”
encode (log2 of) the size of the object. This scheme
allows for quick comparisons between two objects by
merely comparing the first eight bits (two nibbles) of
their tags. For objects larger than two bytes, the re-
maining “data bits” are currently unused (they may
potentially be used to encode information for future en-
hancements or optimizations).

The tags for some common scalar types (with their
sizes) are illustrated below:

1 1unused unused10

0

0 1

10 1 1unused unused

0 1 1 1unused unused 1 . . .

0

int

int (4 bytes)

int

char (1 byte)

log 4

uninitialized short (2 bytes)

pointer (4 bytes)

double (8 bytes)

ptr log 4

uninit log 2

real log 8

uninitialized char (1 byte)

uninit

Different pointer types are not distinguished, since
C’s casting in a sense makes any pointer a “generic”
pointer. Aggregate objects (structures, unions, and ar-
rays) are broken down into their scalar components,
whose types are tracked individually.

The mirror is allocated in 4K segments as the amount
of memory in use by the program increases. Point-
ers to these “mirror pages” are stored in a table in-
dexed by the most significant 12 bits of the user-space
address, so accesses to an object’s tag are fast. The
interface to the run-time system consists primarily of
procedures (implemented using macros whenever possi-
ble to cut down on the overhead of function calls) that
set a tag (setUninitTag and setScalarTag), copy a
tag (copyTag), and verify that a tag agrees with an
expected type (verifyTag). There is also a procedure
(verifyPtr) to verify that a pointer points to allocated
memory before it is dereferenced, and a set of proce-
dures to handle the passing of function parameters and
return values (processArgTag and processReturn).

3.2 Source-Level Instrumentation

To instrument a program, the tool performs a source-
to-source transformation on the C source files using
Ckit[6], a C front end written in ML. Working at the
source level gives the tool access to all the source-level
type information it needs. Also, the flexibility of the
comma operator in C makes it possible to preserve the

3

ANSI C semantics of the original program while retain-
ing portability: an instrumented C file can, in principle,
be compiled on multiple platforms.1

Handling the C language was non-trivial because a
number of C’s features make correct instrumentation
difficult. The following summary of the instrumentation
actions that the tool performs highlights some of the
issues:

1. Every instance of main is renamed to prog main.
Our run-time system defines its own main func-
tion, which performs some initialization before call-
ing prog main. This way, we can filter out command-
line arguments for the run-time system, and ini-
tialize the tags for the argv arrays. Also, this way
recursive calls to main do not cause any problems.

2. Each program expression is instrumented via a set
of syntax-directed transformations. Code for set-
ting, copying, or verifying tags is added to expres-
sions; the instrumented code makes extensive use
of the comma operator (see Section 3.4 for an ex-
ample).

3. Local variables are initially tagged uninitialized. A
local variable that is initialized is processed as if
the initialization expression were assigned to that
variable. Because the instrumentation code needs
to be able to take the address of all variables,
register variables are demoted to regular auto
variables. (The fact that C does not allow the ad-
dress of a bit field to be taken is the reason we do
not presently handle them.)

4. Tags for global variables are initialized in a special
init function; one such function is created per
source file. Our main function calls each of these
init functions before calling prog main. The list
of init functions from the different source files is
collected at link time.

5. extern variables that are not defined in any of
the instrumented source files are treated specially.
To allow our instrumented source file to be linked
with uninstrumented object code (most commonly
library modules), we assume that extern variables
are “well-behaved”, and so initialize their tags to
contain their declared types. However, the tool
is limited by what is visible to it. In particular,
it cannot initialize the tags for incomplete array
types (e.g., int a[];) because the size of the array
is not visible.

6. To handle function calls, the tags of the function’s
parameters must be communicated between the
caller and the callee. At the callsite, code is added
to store the tags for the actual parameters in an
array, whose address is kept in a global pointer,
globalArgTags. At the head of the function defi-
nition, code is added to extract the tags of the pa-
rameters passed to the function. The same mech-
anism is used to pass the tag(s) of the return value
back to the callsite.

1Note: the Ckit front end does not currently support C-
preprocessor directives, so at present we can only instrument pre-

processed C code. This limits portability to some extent, but is not
a fundamental limitation of our approach.

To allow a mix of instrumented and uninstrumented
functions to work properly, including where instru-
mented functions are invoked via callbacks from
uninstrumented library functions, the instrumen-
tation code of the caller stores the address of the
callee in a global pointer, globalCallTarget. The
instrumentation code of an instrumented callee al-
ways compares its own address with globalCall-
Target. If the addresses match, it means that
the caller is instrumented, so the tags for function
arguments and return value are processed as de-
scribed above. If the addresses do not match, how-
ever, it means that the caller is uninstrumented, so
tags for function parameters cannot be extracted
from globalArgTags.

7. At a return statement in a function f, the mir-
ror for the entire stack frame of f must be cleared
to unallocated. This is done by processReturn,
a procedure in our run-time system. The start of
the stack frame for f is assumed to be the greatest2

of the addresses of f ’s formal parameters (if any)
and the first local variable declared in f (a vari-
able specially added by our instrumentation pro-
cess). Since the call to processReturn itself has
advanced the stack-frame pointer beyond the end
of f ’s stack frame, a lower bound on the end of
f ’s stack frame is obtained by taking the address
of a local variable declared within processReturn
itself.

3.3 Other Components and Features

Another component necessary for proper type checking
is one that handles malloc functions specially. We re-
place each call to malloc (and its relatives) with our
own version that, upon successfully allocating a block
of memory, initializes the mirror for that memory block
with the uninitialized tag. Similarly, our free function
resets the mirror to be of unallocated type. Our ver-
sions of these functions do their own bookkeeping so we
know how many bytes are being freed by a call on free
at run-time.

As indicated by items 5 and 6 above, the approach
we have taken allows us to link instrumented modules
with uninstrumented ones, with the only requirement
being that the program’s main function must be re-
named to prog main. This flexibility is useful if, for
example, a programmer only wants to debug one small
component of a large program: they can instrument
just the files of interest, and link them in with the other
uninstrumented object modules. A caveat when doing
this, however, is that it may lead to the reporting of
spurious warning and error messages because the unin-
strumented parts of the code do not maintain type in-
formation. For example, if a reference to a valid object
in the uninstrumented portion of the program is passed
to an instrumented function, the tool will think that the
object is unallocated, and may output spurious warning
messages.

2Assuming that the stack grows downwards in memory (from high
to low addresses). For stacks that grow upwards, we use the lowest
of the addresses of f ’s formal parameters and its first local variable.

4

exp instr(exp,enforce) instr(exp,enforce,tagptr)

id
*(verifyTag(&id, typeof(id)),1

&id)

*(tagptr = &id,
verifyTag(&id, typeof(id)),1

&id)

∗e

*(tmpptr = instr(e, true),
verifyTag(tmpptr, typeof(∗e)),2

tmpptr)

*(tagptr = instr(e, true),
verifyTag(tagptr, typeof(∗e)),2

tagptr)

e1 = e2

(tmpassign =
instr(e1, false, tmpptr1) =
instr(e2, enforce, tmpptr2),

copyTag(tmpptr1, tmpptr2, typeof(e1)),
tmpassign)

(tmpassign =
instr(e1, false, tagptr) =
instr(e2, enforce, tmptp2),

copyTag(tagptr, tmptp2, typeof(e1)),
tmpassign)

1 omit if enforce = false
2 call verifyPtr instead if enforce = false

Table 1: Examples of instrumentation rules.

This problem extends, in general, to library mod-
ules. For example, the flow of values in a function
like memcpy, the initialization of values from input in
a function like fgets, and the types in a static buffer
returned by a function like ctime would not be cap-
tured. To handle these, we have created a collection
of instrumented versions of common library functions
that affect type flow. These are wrappers of the orig-
inal functions, hand-written to perform the necessary
tag-update operations to capture their type behavior.
However, we have not yet written wrappers for variable-
argument functions (like scanf).

Finally, our tool lends itself naturally to interactive
debugging. When a warning or error message is issued,
a signal (SIGUSR1) is sent, and can be intercepted by
an interactive debugger like GDB[20]. The user is then
able to examine memory locations, including the mirror,
and make use of GDB’s features to better track down
the cause of an error.

3.4 Instrumentation Example

To illustrate the syntax-directed transformations that
are performed to instrument C expressions, consider in-
strumenting the expression x = *p. The instrumenta-
tion function, instr, takes as arguments the expression
to be instrumented, a Boolean (enforce) that specifies
whether the expression’s run-time type must match its
static type, and an optional third argument (tagptr).
The rules for instrumenting the expressions id, ∗e, and
e1 = e2 are shown in Table 1.3

The tmp variables are temporaries (of appropriate
type) introduced by the instrumentation code. The in-
strumented expression is shown in the second and third
columns: column two shows how instrumentation is car-
ried out when the optional third argument is absent;
column three shows the instrumentation strategy when
the third argument, tagptr, is present. At run-time, the
tagptr variable will be set to point to an object whose

3We omit some details that would simply complicate the exam-
ple. For instance, we actually perform slightly different actions for
instrumenting lvalues and rvalues.

mirror is tagged with the expression’s dynamic type.
The pointer assigned to tagptr will be used in the in-
strumentation code of an enclosing expression (see the
cases for e1 = e2). The verifyTag procedure is used to
verify that the tag associated with a given object agrees
with a given type.

For the id case, the only check done (when enforce
= true) is to verify that id ’s dynamic type agrees with
its declared type.

For the dereference case, the subexpression e is first
instrumented by passing true as the second (enforce)
argument to instr (since e will be dereferenced, i.e.,
“used”). After that, if enforce = true, we verify that
the dynamic type of ∗e agrees with its declared type.
If enforce = false, we do not require that ∗e’s dynamic
type match its declared type; however, we still want to
make sure that ∗e is not unallocated (i.e., that e is a
“valid” pointer). This is performed by the verifyPtr
procedure, and allows the tool to output an error mes-
sage before an invalid pointer dereference occurs.

In the assignment case, expression e1 is instrumented
with enforce = false, since we do not care about the
type of the data that is about to be overwritten (e2 is
instrumented with enforce = true only if the assignment
expression is being instrumented with enforce = true).
The copyTag procedure copies the tag of the right-hand-
side expression to the mirror of the left-hand-side ex-
pression, and also issues a warning message if the type
of the right-hand-side expression is not compatible with
the static type of the left-hand-side expression.

For the id and ∗e cases, the instrumented code has
the form *(...,ptr); this is so that the instrumented
expression is a valid lvalue. The assignment expression
is not an lvalue, and so does not need to be instrumented
in this way. However, we must still make sure that the
instrumented expression preserves the correct rvalue,
which is the purpose of tmpassign.

To instrument the statement x = *p; we would ap-
ply these rules by calling instr on the expression x =
*p with enforce = false and no tagptr argument. Given
that x is of type int and p is of type int *, the gener-
ated code is shown in Figure 1.

5

(tmp1 =
*(tmp2 = &x, &x) =

*(tmp3 = *(verifyTag(&p, pointer_type),
&p),

verifyPtr(tmp3, int_type),
tmp3),

copyTag(tmp2, tmp3, int_type),
tmp1)

Figure 1: Output of instr(x = *p, false).

4 Experiments

4.1 Identifying Bugs

To test the effectiveness of our debugging tool, we used
Fuzz[12] to find Solaris utilities that crash on some
inputs, and instrumented five such programs for test-
ing (nroff, plot, ul, units, col). We also tracked
down bugs that appear in two programs from the Olden
benchmark suite (health, voronoi). A summary of
what our tool revealed about these runs is given below.

nroff: An array of pointers is accessed with a nega-
tive index, and the retrieved word, when derefer-
enced, causes a segmentation fault. The instru-
mented program, before crashing, warns that the
retrieved word that is about to be dereferenced
actually contains an array of characters.

plot: A rogue pointer, after passing beyond the bounds
of a local array, walks up the stack, writing bytes
as it goes. It eventually attempts to write to in-
valid memory, at which point the program crashes.
The instrumented program outputs a long list of
warning messages signaling these writes to unal-
located memory, accurately identifying the line of
code where this occurs.

ul: The original program crashes during a call to fgetwc,
while the instrumented program crashes during a
call to fprintf as our instrumentation code is at-
tempting to write a warning message. The cause
of the crash in the original program was difficult
to diagnose, but “accessing unallocated memory”
error messages generated by our instrumented pro-
gram led us to the cause of the crash: a pointer,
after passing beyond the bounds of an array, walks
through the bss section and eventually overwrites
part of the global iob array (which contains infor-
mation about stdin, stdout, and stderr). This
causes the subsequent call to fgetwc in the origi-
nal code, and fprintf in the instrumented code,
to crash.

units: In the original program, an errant pointer man-
ages to corrupt the “save” area of the call stack,
resulting in bizarre behavior that was difficult to
track down. The instrumented program issues a
type-violation error message after the character
pointer cp is set to point to itself, and is subse-
quently used to write a character value onto itself.
The next dereference of cp generates another error
message, and then the program crashes.

col: The original program crashes on a dereference of a
bad pointer, but our instrumented program does
not crash; instead, it fails to terminate (at least,
after two hours we stopped waiting for it to termi-
nate). The first of many error messages generated
by our instrumented program signals a dereference
into unallocated memory, and points to the line in
the program where the crash occurs (in the unin-
strumented code). The point where the error mes-
sage was generated is probably close to where the
pointer first stepped out of bounds of the global
array to which it pointed.

health: In the semantics of C, memory allocated by
malloc, unlike calloc, is not required to be zero-
initialized, although many programmers assume
that it is (and indeed, malloc’ed memory that has
not been previously freed does tend to be zero-
initialized on many platforms). In this program,
the pointer fields in two recursive data structures
are not initialized after allocation via malloc. While
traversing these structures, the original program
counts on the pointer fields being NULL to indi-
cate the absence of some substructure. The instru-
mented program warns of an access to uninitialized
memory each time the program checks to see if one
of these pointer fields is NULL. All memory allo-
cated with malloc on this run happens to be zero-
initialized (partially due to the fact that no deal-
location takes place), and so neither the instru-
mented nor the uninstrumented program crashes.
However, the erroneous assumption about malloc
is a program flaw that may cause a crash on a dif-
ferent execution (or when the program is run on a
different platform).

voronoi: Some bit-level manipulations are performed
on a pointer to a struct, yielding a pointer to a
“field” that does not belong to the struct, since
some assumptions made by voronoi about the
size of the struct do not hold on our test ma-
chine. A subsequent assignment of this pointer
(as a function argument) generates a warning mes-
sage stating that an unallocated object is being
passed. Later, when the pointer (which happens
to be NULL) is actually dereferenced, the instru-
mented program gives a “accessing unallocated mem-
ory” error message before crashing.

In most cases, crashes in the test programs were
found to have been caused by a pointer (or array in-
dex) that had gone astray. In every case, our tool was
able to detect the out-of-bounds memory accesses be-
cause the type of the pointed-to memory was different
from the expected type. While these results are very en-
couraging, these kinds of errors would also be detected
by Purify.

We can easily create examples (such as the ones
given in Section 2) for which our tool is able to de-
tect errors that are not detected by Purify; however,
we have not yet found examples of those kinds of bugs
in real programs. We suspect that such bugs are more
likely to occur in larger, more complicated programs,
but due to limitations of the current version of the Ckit
front end, we have not been able to successfully compile
many large programs. Furthermore, the code that we

6

running time (secs)
lines of uninstru- instru- slow-

program C code mented mented down
bh 1,049 12.57 1984.13 157.8
bisort 570 9.66 194.50 20.1
em3d 414 3.40 45.87 13.5
health 559 7.54 87.04 11.5
mst 493 4.01 151.93 37.9
perimeter 389 2.70 97.76 36.2
power 679 13.77 405.76 29.5
treeadd 291 4.46 93.67 21.0
tsp 567 16.79 260.95 15.5
compress 1,491 35.49 2096.49 59.1
go 26,917 29.75 1621.86 54.5
li 6,272 2.13 235.79 110.7
vortex 52,624 23.51 3322.79 141.3
col 502 3.68 51.24 13.9
nroff 11,018 1.62 181.04 111.8
plot 326 10.05 56.09 5.6
ul 468 2.13 35.54 16.7
units 457 2.18 28.99 13.3

Table 2: Performance on the benchmarks. (“Lines of
C code” reports the number of unpreprocessed lines of
source code, with comments and blank lines removed.)

have used to date for testing our technique is in most
cases robust code that has been in use for quite some
time. As a result, the likelihood of finding errors is
lower than if the tool were applied to code during the
software-development cycle.

4.2 Performance

Not surprisingly, the extensive checking performed by
our tool comes at a performance cost. This cost is due to
the execution of our type-tracking procedures, as well as
to the transformation of the original program’s expres-
sions into more complicated ones in order to allow type
tracking while preserving the original expressions’ val-
ues, types, and side-effects. To measure the execution-
time overhead that is introduced by our tool, we instru-
mented the five Solaris utilities described above, as well
as several programs from the SPEC and Olden bench-
marks. The benchmarks were executed with legitimate
inputs (that do not cause crashes) on a 300 MHz Sun
Ultra 10 workstation with 256 MB of RAM and 1.1
GB of virtual memory. The sizes of the benchmarks,
as well as the execution times (user+system time) and
slowdowns are reported in Table 2.

The first nine benchmarks listed in Table 2 are from
the Olden benchmark suite,4 which is a set of programs
that make intensive use of pointers and heap-allocated
storage. These benchmarks allocate large amounts of
heap memory where they store linked data structures
used in the computation kernels. We chose these bench-
marks for testing because we believe that benchmarks

4
voronoi is excluded because both the original and instrumented

versions always crash. The program makes some platform-specific
assumptions that do not hold on our testing platform.

with such behavior are susceptible to the types of bugs
that our tool can help locate. For example, mst man-
ages its own heap memory, into which it places objects
of different types, and bh simulates subtyping and in-
heritance through casting of structure pointers. While
these benchmarks are relatively small in terms of num-
ber of lines–and so are not likely to have many problems–
we did find some bugs, as reported in Section 4.1.

The slowdowns we observe on these benchmarks range
from about 6 times to 158 times. As a point of compar-
ison, the slowdown factor for Purify tends to be in the
range of 10 to 20. The exorbitant slowdown exhibited
by bh is due mainly to the fact that for this program,
about 17% of copyTag invocations (which happen on
assignments, function parameter passing, and function
return) involve copying structures. The copyTag proce-
dure in our run-time system can only copy the tags of
structures by an expensive function call. The slowdown
in power is also due partly to the occurrences of many
structure copies. Just because a program uses struc-
tures does not necessarily mean that the instrumented
version will run slowly, however, since it is typically
more common to pass structures by using a pointer in
order to lower the copying overhead of parameter pass-
ing. Also, the instrumented versions of assignments to
individual fields of structures do not suffer from such
slowdowns.

Another common cause of slowdown comes from the
fact that, for calls to functions like malloc and memset,
we cannot precisely mimic the type behavior intended
by the user. The mirror for this memory is initialized
as an array of one-nibble tags (uninitialized char for
malloc, and char for memset). As currently imple-
mented, the instrumentation code performs an expen-
sive function call the first time these tags are overwrit-
ten with larger-sized tags. This is a major factor in the
slowdown of mst.

The middle four benchmarks (compress, li, go, vor-
tex) are from the SPEC benchmark suite. The per-
formance degradation incurred by the instrumentation
on these benchmarks is high. For compress, li, and
vortex this is largely due to the overhead of writing
out spurious warning and error messages generated by
the tool, which mainly result from the tool’s inability to
cleanly capture the type behavior of varargs, calloc-
initialized memory, and scanf. The program compress
also performs a lot of masking operations where it treats
integers as arrays of characters – technically a type vio-
lation. We believe that the slowdown in go is due to the
fact that variables are accessed much more frequently
than they are defined. Whereas in the uninstrumented
code the values of these variables can be maintained in
registers between definitions, the instrumentation cur-
rently forces every variable use to involve a memory
access. The writing of tags in go is relatively infre-
quent, with many checks occurring without intervening
updates. This behavior lends itself nicely to an opti-
mization that will be discussed in Section 6.

The remaining five programs, col, nroff, plot, ul,
and units, are the five Solaris utilities mentioned in
Section 4.1. The excessive slowdown in nroff is again
due to spurious warning and error messages generated
by the tool. Most of these are due to the use of ctype
macros (isalpha, isdigit, etc.), which access an ex-
ternal array (defined in the standard C library) whose

7

size is not visible at instrumentation time; therefore the
instrumented program can only assume that it is unal-
located and generate an error message on each access.
Additionally, nroff makes use of the sbrk function, the
type behavior of which we do not currently capture.

4.3 Instrumentation Interference

As described in Section 4, the behaviors of the test pro-
grams ul, units, and col were modified by the intro-
duction of instrumentation code. Our experience during
the development of our tool has been that it is a great
challenge to preserve the semantics of non-portable C
programs while performing extensive run-time checking.
It is not just with our tool that this happens: Purify
also significantly changes the behaviors of some C pro-
grams (e.g., for nroff, the Purified version crashed on
one input for which the original version did not crash,
and for go, the Purified version consistently produced
output different from the original program).

In the case of Purify, the modified layout of heap-
allocated memory sometimes results in behavioral changes
for C programs. In the case of our tool, the behav-
ioral changes are partly due to the addition of local
temporary variables, which are necessary for the instru-
mented code to preserve the language-level semantics of
the original program. Since these temporary variables
are currently allocated on the stack, they alter the lay-
out of local variables in a function’s activation record.5

While correct and portable programs do not make any
assumptions about the layout of a function’s activation
record, these changes do affect the behavior of many
non-portable programs and can also affect the behavior
of programs that contain bugs.

Our instrumentation may also affect program behav-
ior because register variables are demoted to auto. In
the uninstrumented version of program units, for in-
stance, a corrupted register pointer overwrites a stack
frame’s “save” area, while in the instrumented program
the demoted pointer is eventually set to point to itself
and then overwrites its own value.

In cases like these, the behavior of the original pro-
gram and that of the instrumented one differ, even
though the cause of the errors is the same.

5 Related Work

Approaches to detection of errors in C programs by
means of executing a program instrumented to perform
run-time checks have been developed in the past.

Safe-C[2] provides run-time detection of array ac-
cess and pointer dereference errors, such as array out-
of-bounds errors, stale-pointer accesses, and accesses re-
sulting from erroneous pointer arithmetic. This is done
by keeping track of attributes of the referent of each
pointer by transforming C code to C++ code, and tak-
ing advantage of operator overloading to perform appro-
priate checks whenever certain operators are applied.
Purify[9] detects errors similar to those found by Safe-C,

5In this case, moving the temporary data to the heap and making
use of page-protection tricks would allow us to lower the interference
of our instrumentation, as well as to protect the type-state data from
buggy code.

and, in addition, identifies uninitialized memory reads
and memory leaks. Purify performs these checks by
instrumenting object files and modifying the layout of
heap-allocated memory in order to catch access errors.
Our approach catches most of these errors in addition to
run-time type violations that are not covered by Purify
and Safe-C. Furthermore, the warning messages pro-
vided by our tool provide a history of suspicious type
propagation that can aid in pinpointing the true cause
of an error.

In the realm of security, tools have been developed
to prevent “stack smashing” (where the return address
in the activation record is modified by a malicious agent
to obtain control of the program)[10][19]. Our tool also
detects such attacks, which fall under the general cate-
gory of “type errors” detected by our tool.

A technique to enable efficient checking of array-
access and pointer-dereference errors in a multiproces-
sor environment was presented in [14]. They achieve
low-cost checking by creating a version of the program
that contains only computations that affect pointer and
array accesses, instrumenting that version, and running
it in parallel with the original program. We may be able
to use this technique to improve our tool’s performance.

There have also been a number of efforts to address
the problem of identifying errors in C programs due to
out-of-bounds array indexes and misuses of type casts
based on the use of static analysis. Work on static anal-
ysis that can be applied to checking for out-of-bounds
array accesses includes [7, 22, 15, 3, 23]. The idea of
applying alternative type systems to C has been inves-
tigated by a number of groups, including [8, 18, 13, 17];
most of this work has discussed how to apply parametric
polymorphism to C. Algorithms for points-to analysis
that distinguish among fields of structures [21, 25] and
for so-called “physical type checking” [5] can also be
used to perform static safety checks. However, most of
the work based on static analysis cited above has used
flow-insensitive techniques, which is likely to cause an
enormous number of warnings of possible misuses to be
generated when applied to safety checking of real-life C
programs. The advantage of a dynamic type-checking
tool like the one reported in this paper is the ability to
obtain more accurate information about type misuses
and access errors, albeit only for ones that occur during
a given run of the program.

6 Conclusions and Future Work

We have described the design and initial implementa-
tion of a tool for C programs that provides run-time
checks based on type information. The tool has the
potential to find all of the run-time storage violations
found by tools like Purify and Safe-C, as well as errors
that those tools cannot detect. Furthermore, while Pu-
rify, Safe-C, and our tool all give error messages when
run-time storage violations occur, initial experiments
indicate that our tool’s warning messages can provide
additional help in locating the original source of the
error.

Future work includes using static analysis to reduce
the amount of instrumentation introduced by our tool
(thus reducing its overhead). For example, if the value
in a location is used multiple times, and there is no

8

possibility that its type is modified between the uses,
then only the first use needs to be checked.

Another goal is to add features to our tool to help
programmers identify the logical errors in their code
that (eventually) manifest themselves as bad uses of
run-time types. For instance, in the example given in
Section 2.3, a logical error occurs when an integer value
is written into the f1 field of sub in function f, but no
warning or error messages are output by our tool until
that field is used in a context that requires a floating-
point value. Static and dynamic program slicing [24, 11,
1] can be used in this context to help identify the point
at which the logical error occurred, by starting from
the point at which the type violation was detected, and
following the flow of data backwards.

Another possibility is to provide a way for the user to
roll back the program state (including the type state) to
an earlier point in order to find the source of a problem.
This is similar to reverse execution in debuggers and
requires the use of a checkpointing scheme [4].

References

[1] H. Agrawal and J. Horgan. Dynamic program slic-
ing. In ACM SIGPLAN ’90 Conference on Pro-
gramming Language Design and Implementation
(SIGPLAN Notices 25(6)), pages 246–256, 1990.

[2] T. Austin, S. Breach, and G. Sohi. Efficient de-
tection of all pointer and array access errors. In
ACM SIGPLAN ’94 Conference on Programming
Language Design and Implementation, 1994.

[3] R. Bodik, R. Gupta, and V. Sarkar. ABCD: Elimi-
nating array bounds checks on demand. In SIG-
PLAN Conf. on Prog. Lang. Design and Impl.,
pages 321–333, New York, NY, 2000. ACM Press.

[4] B. Boothe. Efficient algorithms for bidirectional
debugging. In SIGPLAN Conf. on Prog. Lang.
Design and Impl., pages 299–310, New York, NY,
2000. ACM Press.

[5] S. Chandra and T. Reps. Physical type checking for
C. In Proc. of PASTE ’99: SIGPLAN-SIGSOFT
Workshop on Program Analysis for Softw. Tools
and Eng., pages 66–75, New York, NY, 1999. ACM.

[6] Ckit. http://cm.bell-labs.com/cm/cs/what/
smlnj/doc/ckit/.

[7] P. Cousot and N. Halbwachs. Automatic discovery
of linear restraints among variables of a program.
In Conf. Rec. of the Fifth annual ACM Symp. on
Princ. of Prog. Lang., pages 84–96. ACM, January
1978.

[8] F.-J. Grosch and G. Snelting. Polymorphic com-
ponents for monomorphic languages. In R. Prieto-
Diaz and W. B. Frakes, editors, Proc. of 2nd
ACM/IEEE Int. Workshop on Softw. Reusability,
pages 47–55. IEEE Computer Society Press / ACM
Press, 1993.

[9] R. Hasting and B. Joyce. Purify: Fast detection of
memory leaks and access errors. In Proceedings of
the Winter Usenix Conference, 1992.

[10] Immunix stack guard. http://www.csw.ogi.edu/
DISC/projects/immunix/StackGuard/.

[11] B. Korel and J. Laski. Dynamic program slic-
ing. Information Processing Letters, 29(3):155–163,
1988.

[12] B. Miller, D. Koski, C.P. Lee, V. Maganty,
R. Murthy, A. Natarajan, and J. Steidl. Fuzz revis-
ited: A re-examination of the reliability of UNIX
utilities and services. Technical report, University
of Wisconsin-Madison, 1995.

[13] R. O’Callahan and D. Jackson. Detecting shared
representations using type inference. Technical
Report CMU-CS-95-202, School of Comp. Sci.,
Carnegie Mellon Univ., Pittsburgh, PA, USA,
September 1995.

[14] H. Patil and C. Fischer. Low-cost, concur-
rent checking of pointer and array accesses in
C programs. Software–Practice and Experience,
27(27):87–110, 1997.

[15] R. Rugina and M. Rinard. Symbolic bounds analy-
sis of pointers, array indices, and accessed memory
regions. In SIGPLAN Conf. on Prog. Lang. Design
and Impl., pages 182–195, New York, NY, 2000.
ACM Press.

[16] M. Siff, S. Chandra, T. Ball, K. Kunchithapadam,
and T. Reps. Coping with type casts in C. In Proc.
of ESEC/FSE ’99: Seventh European Softw. Eng.
Conf. and Seventh ACM SIGSOFT Symp. on the
Found. of Softw. Eng., pages 180–198, September
1999.

[17] M. Siff and T. Reps. Program generalization for
software reuse: From C to C++. In Proc. of the
Fourth ACM SIGSOFT Symp. on the Found. of
Softw. Eng., pages 135–146, New York, October
1996. ACM Press.

[18] G. Smith and D.M. Volpano. Towards an ML-
style polymorphic type system for C. In 6th Euro-
pean Symposium on Programming, volume 1058 of
Lec. Notes in Comp. Sci., pages 341–355. Springer,
April 1996.

[19] Stack shield. http://www.angelfire.com/sk/
stackshield/info.html.

[20] R. Stallman and R. Pesch. Using GDB: A Guide
to the GNU Source-Level Debugger. July 1991.

[21] B. Steensgaard. Points-to analysis by type infer-
ence of programs with structures and unions. In
6th Int. Conf. on Compiler Construction, volume
1060 of Lec. Notes in Comp. Sci., pages 136–150.
Springer, April 1996.

[22] C. Verbrugge, P. Co, and L.J. Hendren. General-
ized constant propagation: A study in C. In 6th
Int. Conf. on Compiler Construction, volume 1060
of Lec. Notes in Comp. Sci., pages 74–90. Springer,
April 1996.

9

[23] D. Wagner, J.S. Foster, E.A. Brewer, and A. Aiken.
A first step towards automated detection of buffer
overrun vulnerabilities. In Symposium on Net-
work and Distributed Systems Security (NDSS ’00),
pages 3–17, San Diego, CA, February 2000.

[24] M. Weiser. Program slicing. IEEE Transactions
on Software Engineering, 10(4):352–357, 1984.

[25] S. Yong, S. Horwitz, and T. Reps. Pointer analysis
for programs with structures and casting. In ACM
SIGPLAN ’99 Conference on Programming Lan-
guage Design and Implementation, pages 91–103,
May 1999.

10

