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Abstract. Trends for Formal Methods are reviewed and illustrated by several 
industrial applications: logical foundations of combination, verification, trans-
formation, testing, and tool support. The UniForM Workbench is the background 
for highlighting experiences made over the past 20 years. 

1 Introduction 

This paper outlines some state of the art technology in Formal Methods and attempts 
to extrapolate towards the next century. The UniForM Workbench (Universal Formal 
Methods Workbench, cf. Krieg-Brückner et al. 1996) is developed by the Universities 
of Bremen and Oldenburg, and Elpro, Berlin, funded by the German Ministry for 
Education and Research, BMBF. In its present state, it provides a focal point to  
• review experiences in the past decades developing languages, methods and tools, 
• give an illustrative example of state of the art technology, 
• evaluate preliminary experiences with industrial applications, and  
• assess the industrial potential for the future and illuminate technological trends. 

2 Logical Foundations 

The first use of Formal Methods in software development, regarded by many as the 
most prominent, is for modelling, using a mathematically well-founded specification 
language. The need for modelling arises in many aspects and properties of software, 
or more generally systems: for the physical environment of a hybrid hardware / soft-
ware system, for the timing behaviour and real-time constraints of an embedded sys-
tem, for the hazards and safety requirements of a safety-critical system, for the con-
current interactions of a reactive system, for deadlock and livelock prevention, for 
performance and dependability analysis, for architectural and resource requirements, 
and, finally, at many stages of the software development process for requirements and 
design specifications, etc., to the implementation of a single module. The important 
distinction between property-oriented and model-oriented specifications is now uni-
versally accepted: the former are sufficiently loose to avoid over-specification, cap-
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turing just the necessary properties and leaving freedom of choice for the implemen-
tor; the latter are geared towards describing a particular, operational implementation, 
giving sufficient detail to allow e.g. detailed performance analysis. 

The second and equally important use of Formal Methods is to provide support for 
correct development, i.e. mathematical notions of refinement or implementation that 
guarantee correctness preservation w.r.t. the initial requirements, be it by the invent-
and-verify paradigm, synthesis or transformation.  

1.12.1 Combination of Formal Methods 

How can we ever hope for a unique standard formalism to cover all the needs listed 
above? Instead, the solution is a variety of formalisms that complement each other, 
each adapted to the task at hand: specification languages and development method-
ologies, specific development methods or proof techniques, with a whole spectrum of 
tool support. Thus the challenge is to cater for correct combination of formalisms to 
1. ensure correct transition from abstract to concrete specifications when switching 

between formalisms during the development process ("vertical composition"), 
2. ensure correct combination of formalisms in a heterogeneous situation, e.g. com-

bining concurrent and sequential fragments ("horizontal composition"), 
3. attach various kinds of tools, e.g. for performance or deadlock analysis, and 
4. provide "hooks" for specifications that do not affect semantics but allow the use of 

tools, e.g. ordering of operation symbols or equations for effective rewriting to pro-
totype, or guidance for design choices w.r.t. expenditure of resources such as speed 
vs. space, or relative usage of operations of an abstract data type. 

Such combinations are by no means easy to achieve. The need for research on the first 
two has been recognised and requires demanding mathematical foundations, such as 
advanced methods in category theory. This has lead to languages for "institution in-
dependent" heterogeneous composition of modules ("in the large", see e.g. Astesiano 
and Cerioli 1994, Tarlecki 1996, Diaconescu 1998); approaches for reasoning about 
correct composition of the logics capturing the semantics "in the small" (see e.g. 
Mossakowski 1996, Mossakowski et al. 1997, 1998b, Sernadas et al. 1998a, 1998b) 
introduce notions such as embedding, translating one formalism to another (cf. (1) 
above), combination of two formalisms, or projecting to either from the combination.  
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Fig. 1. Semantic Representation in UniForM 
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Semantic Representation. The approach of UniForM is to represent the semantics 
underlying a particular formalism or language in higher-order logic (HOL) as it is re-
alised in the logical framework Isabelle (Paulson 1995). Fig. 1 shows a tiny Logic 
Graph for Z, CSP and their projections from the combination Z+CSP, plus the logic 
encoding into HOL at the meta level. Specifications in these languages are repre-
sented as theories in Isabelle and used for theorem proving with the verification sys-
tem IsaWin on top of Isabelle (cf. section 3.1), and, as a basis for transformational de-
velopment (cf. section 3.3), for proving the correctness of transformation rules. 

HOL-Z, HOL-CSP and HOL-CASL. In HOL-Z, the logic of Z has been represented 
(cf. Kolyang et al. 1996a, 1996b, 1997, Kolyang 1997, Lüth et al. 1998b) and the 
mathematical tool kit has been proved correct (in co-operation with the ESPRESS 
project); this resulted in ca. 1k theorems, a 4k line proof script, and ca. 3 person-years 
of effort.  

HOL-CSP represents the logic of CSP; a small but pervasive error in the 20 year 
old theory of CSP has been found and corrected (cf. Tej and Wolff 1997, Tej 1999). 
The process algebra has been proved correct; this resulted in ca. 3k theorems, a 17k 
line proof script, and ca. 3 person-years of effort. The example shows that such an en-
deavour is by no means trivial but pays off in the end. The proof of correctness of 
transformation rules, in particular, is now much easier.  

The above statistics includes the effort of becoming familiar with the intricacies of 
Isabelle, and most of the effort went into the proof of the process algebra of CSP. A 
subsequent representation of the logics and static semantics of CASL basic specifica-
tions (including an intricate overloading resolution) only required about 1 person-year 
of effort (see Mossakowski et al. 1998a).  
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Fig. 2. Method Combination in UniForM 
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Reactive Real-Time Systems. The first instantiation of UniForM has been for Z and 
CSP since these are considered to be rather mature and relatively well established in 
industry. At the moment, we are working on methods ("structural transformations") to 
project not only from Z+CSP (actually Object-Z, cf. Fischer 1997), but also from 
CSP+t, i.e. CSP with real-time constraints, to CSP without such constraints on the one 
hand, and simple timer processes on the other, cf. fig. 2. Thus specialised methods 
can be used in the projected domains. This breakdown is also successfully used for 
testing of real-time and hybrid systems (cf. section 3.1). 

A special class of hybrid systems, so-called PLC-Automata, generate real-time 
programs for Programmable Logic Controllers directly (cf. Dierks 1997, Tapken 
1997, 1998). They have a semantics as DC-implementables, a subset of Duration Cal-
culus (Zhou et al. 1992). Further extensions towards hybrid systems are planned. 

1.22.2 Standard Family of Specification Languages 

A standard formalism for all aspects of formal methods seems pragmatically undesir-
able (if not impossible) since a projection to a restricted and supposedly simpler for-
malism allows easier reasoning and specialised tools. However, standardisation 
should be aimed for in well-defined areas. IFIP WG 1.3 (Foundations of System 
Specification), based on more than 7 years of experience of the ESPRIT WG 
COMPASS, (cf. e.g. Krieg-Brückner 1996), started the Common Framework Initiative 
for Algebraic Specification and Development, CoFI. 

CoFI, an international effort by primarily European groups, is developing a family 
of specification languages, a methodology guide and associated tools (see CoFI, 
Mosses 1997). The major language in this family, the Common Algebraic Specifica-
tion Language CASL, has just been completed; it is the basis for sublanguages and ex-
tensions in the family. Its formal semantics only awaits a final revision. Various par-
sers exist as well as a prototype implementation of the static semantic analysis for ba-
sic specifications in Isabelle for the UniForM Workbench (Mossakowski et al. 1997); 
it allows theorem proving and will be the basis for transformational development.  

CASL is a rather powerful and general specification language for first-order logic 
specifications with partial and total functions, predicates, subsorting, and generalized 
overloading (cf. CoFI, Cerioli et al. 1997). Sublanguages of CASL, in connection with 
the planned extensions towards higher-order, object-oriented and concurrent aspects, 
allow interfacing to specialised tools and mapping from/to other specification lan-
guages (cf. Mossakowski 1998); this aspect is crucial for its intended impact.  

3 Verification and Validation 

Formal Methods are meant for the development of dependable systems: apart from 
safety and security, aspects of availability, reliability, fault-tolerance, and a general 
adherence to functionality requirements are important. Thus correctness is only one 
aspect, but obviously at the heart of the matter. In particular in safety-critical do-
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mains, application developers become increasingly aware of the importance of meth-
ods guaranteeing correctness w.r.t. a formal specification, the "contract". 

1.13.1 Testing vs. Correctness Proofs 

In many applications, complete formal development is regarded as unrealistic so far; 
the technology is only emerging. Often, only the critical kernel is formally developed 
But even with large systems, formal methods become increasingly important:  

Verification, validation and testing. Peleska (1996) has developed a methodology 
and the tool kit VVT (cf. also Peleska and Siegel 1996, 1997), presently being inte-
grated into the UniForM Workbench, that allows automatic testing. Test cases are gen-
erated from a real-time specification; they drive the completed hardware/software sys-
tem as a "black box" in a hardware-in-the-loop configuration from a separate com-
puter containing the test drivers, simulating a normal or faulty environment. The test-
ing theory ensures, that each test will make an actual contribution, approximating and 
converging to a complete verification.  

Even more important in practice is that thousands of lines of generated test cases 
can also be checked automatically against the formal specification; manual inspection 
is quite impossible. This approach is very cost-effective. It has been applied success-
fully to part of the case study of UniForM, a control computer on board of a train for 
railway control, developed by Elpro, Berlin (cf. Amthor and Dick 1997), and to an 
electric power control component of a satellite developed by OHB, Bremen.  

Abstraction to verify special properties. Another team lead by Peleska (Buth et al. 
1997, 1998, Urban et al. 1998) has developed a technique for abstracting from an ex-
isting program to verify the absence of deadlocks and livelocks. It was applied suc-
cessfully to more than 100k lines of Occam implementing a safety layer of a fault tol-
erant computer to be used in the International Space Station Alpha developed by 
DASA RI, Bremen; thus it is scalable and applicable to realistic applications. 

The concrete program is abstracted to a formal specification in CSP containing 
only the essential communication behaviour; the approach guarantees, that the proof 
for the abstract program implies the proved property for the concrete one. If the proof 
fails, the property does not hold, or the abstraction is not yet fine enough. The task is 
split into manageable subtasks by modularisation according to the process structure, 
and a set of generic composition theories developed for the application. The modules 
are then model-checked using the tool FDR (Formal Systems Ltd., Oxford).  

The abstraction was done by hand; future research will focus on implementing 
formal abstraction transformations in the UniForM Workbench to support the process.  

1.23.2 Model-Checking vs. Interactive Proofs 

Model-checking is a very important technique in practice. The FDR tool is very use-
ful for CSP, mostly for validating specifications, proving properties such as deadlock-
freeness, and for development, proving the correctness of a refinement in the invent-
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and-verify paradigm. But it can do more: the transition graph it generates can be in-
terpreted at run-time; this technique has been used for the safety layer of a computer 
on-board a train (see above). The abstraction and modularisation method applied to 
the International Space Station, described in the preceding paragraphs, shows two 
things: 
• Model-checking is extremely useful when the resp. data-types are essentially enu-

meration types and the systems small enough. 
• For large systems, these properties are likely to be violated; reasoning about modu-

larisation and composition properties is necessary; proof tools are desirable. 

Thus both model-checking and (interactive) proofs should go hand in hand. In the 
UniForM Workbench, a link from the interactive proof tool (see next paragraph) to the 
FDR tool is presently being implemented. 

Moreover, the experience of Haxthausen and Peleska (1998) when solving the train 
control problem in general has been, that reasoning about algebraic properties at a 
high level of abstraction is necessary, with subsequent refinements; model-oriented 
specifications and model-checking are not enough for this very practical problem that 
had defied a general solution thus far.  

 

Fig. 3. The Isabelle Proof Assistant IsaWin in UniForM 

A Window to Isabelle. The UniForM Workbench makes extensive use of the generic 
theorem prover Isabelle (Paulson 1995), and heavily relies on the possibilities for in-
teraction and tactic definition. A graphical user interface, a "window to Isabelle", 
IsaWin, has been constructed that hides unnecessary details from the uninitiated user 
(see Kolyang et al. 1997, Lüth and Wolff 1998). Objects such as theories, substitu-
tions, proof rules, simplification sets, theorems and proofs are typed (cf. fig. 3); icons 
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can be dragged onto each other or onto the manipulation window to achieve various 
effects. This graphical and gesture-oriented approach is as a major advance over the 
rather cryptic textual interface. In the example, a set of rewrite rules for simplification 
is dragged onto the ongoing proof goal in the manipulation. 

Architecture of the UniForM Transformation and Verification System. In fact, 
theorem proving and transformation, both a form of deduction, are so analogous, that 
the UniForM Verification System IsaWin shares a substantial part of its implementa-
tion with the Transformation System TAS (cf. fig. 4, see Lüth  and Wolff 1998, Lüth 
et al. 1998a). Like Isabelle, it is implemented in Standard ML; sml_tk (Lüth et al. 
1996) is a typed interface in SML to Tcl/Tk; on top, the generic user interface GUI 
provides the appearance of fig. 3 and fig. 5. This basic system is then parametrized (as 
a functor in SML terminology) either by the facilities for theorem proving of IsaWin 
or those for transformation of TAS. In addition, both share focussing and manipula-
tion of scripts, i.e. proofs or development histories. 

Tcl/Tk
Wish

Logics

Standard ML

Isabelle/HOL

sml_tk

Generic GUI

Transformation System TAS

Transformation Rules

 

Fig. 4. Architecture of TAS, the UniForM Transformation System 

 

Fig. 5. Application of a Parametrized Transformation Rule 
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1.33.3 Transformation vs. Invent-and-Verify 

Synthesis by Transformation. While the invent-and-verify paradigm is already sup-
ported by IsaWin, we definitely prefer synthesis-by-transformation over invent-and-
verify as the pragmatically more powerful paradigm. First of all, the latter can be im-
plemented by the former as a transformation rule that generates the necessary 
verification condition from the applicability condition. Secondly, this automatic 
generation of the required verification conditions is precisely one of the advantages of 
the transformational approach. The developer can concentrate on the development 
steps (viz. applications of transformation rules) first while the verification conditions 
are generated on the side and tabled for later treatment. Above all perhaps, single 
transformation rules and automated transformation methods embody development 
knowledge in a compact and accessible form like design patterns. Transformation 
rules preserve correctness; they can themselves be proved correct in UniForM against 
the semantics of the object language, e.g. at the level of the logic representation in 
HOL, cf. fig. 1. 
TAS, the UniForM Transformation System. TAS may be parametrized by logics (i.e. 
semantic representation of the formalism involved) at the Isabelle level, and by trans-
formation rules at the level of TAS itself, cf. fig. 4 (Lüth 1997). On top of the basic 
architecture that it shares with IsaWin, TAS provides icons for (program or specifica-
tion) texts, transformation rules, possibly parametrized, and transformational devel-
opments in progress, in analogy to proofs (cf. shaded icon and manipulation window 
in fig. 5). In the example, a parametrized transformation rule is applied to the high-
lighted fragment denoted by focussing, and a window for the editing of parameters is 
opened. Once input of parameters is completed, the rule is applied, and a further proof 
obligation is possibly generated. A proof obligation may be discharged during or after 
the development by transferring it to IsaWin or another verification system such as a 
model checker (presently FDR). 

The functionality of TAS subsumes that of a forerunner, the PROSPECTRA system 
(cf. Hoffmann and Krieg-Brückner 1993). However, the basis of Isabelle allows a 
more compact, more flexible and more powerful realisation: parametrisation by addi-
tional transformation rules is a matter of minutes (instantiation of a functor rather than 
recompilation of the whole system!); static semantic analysis can often be mapped to 
type checking of Isabelle; proof tactics can be defined as SML programs and often 
allow the automation of applicability conditions, such that much fewer residual verifi-
cation conditions need to be interactively proved by the user. 

 
Development History. Note also the History button that allows navigation in the de-
velopment history, in particular partial undo for continuation in a different way. The 
whole development is documented automatically and can be inspected in a WWW 
browser, see fig. 6. The example shows the development of a communication protocol 
with send and receive buffers by a sequence of transformations in CSP. 

Reusability of Developments. The development history is a formal object as well, 
(partial) replay is possible. A development can be turned into a new transformation 
rule by command; the generated verification conditions are then combined to a new 
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applicability condition. Combined with abstraction, developments themselves become 
reusable in new situations, not just their products, i.e. modules (cf. Lüth et al. 1999). 

 

 

Fig. 6. Initial and Current Specification, Proof Obligations, and Development History 
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4 Integration into the Software Life Cycle 

Integration of Formal Methods into Existing Process Models is important for suc-
cess in industry. The Software Life Cycle Process Model V-Model (1997), originally 
a German development standard, has become internationally recognised. As many 
such standards, it loads a heavy burden on the developer by prescribing a multitude of 
documents to be produced. Thus tool support is essential to 
1. tailor the V-model first to the needs of a particular enterprise, then  
2. tailor the V-model to the special project at hand, fixing methods and tools, 
3. support its enactment guiding and controlling the use of methods and tools, and 
4. provide automatically generated development documents. 

 

Fig. 7. Example of a V-Model Process Graph as supported by the UniForM Workbench 

Blank Purper and Westmeier  (1998) are presently developing the Graphical Develop-
ment Process Assistant, adapting the V-model to formal methods, where development 
and quality assurance are intimately related. The V-model is presented as a heavily 
interwoven hypertext document, generated from a common database, and tools sup-
port items 1 to 4 above; cf. also fig. 7. Integration into a development environment 
such as the UniForM Workbench allows the coordination with its methods and tools 
(item 3). Tools themselves, on the other hand, can generate development documents 
in conformance with the V-model (cf. item 4), such as the development history of fig. 
6. 

Isolation of Dependable Parts is an issue that is at the heart of the combination 
problem; at the same time it offers possibilities for a kind of "divide and conquer" ap-
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proach since methods and tools can be tailored to more specialised problems, cf. the 
projection into fragments with and without time for real-time systems in section 2.1. 

Combination of Conventional, Semi-Formal and Formal Techniques arises natu-
rally when interfacing with other methods in the context of the V-model. Safety con-
siderations, and thus the employment of formal methods, will often be restricted to 
parts of a system. Ideally, graphical interfaces will give the illusion of working with 
an informal method while an underlying formal semantics provides hooks to the use 
of formal methods (cf. the PLC-Automata in section 2.1); this area has great potential.  

At the same time, it is sometimes advisable to flip back and forth between informal 
techniques at a high level of abstraction, e.g. requirements analysis, and formal meth-
ods, once more detail is required; complete formalisation might be premature and 
rather a burden, but formal methods are already useful at an early stage to support the 
analysis. An example is the specialisation of fault trees for hazard analysis to develop 
safety requirements and safety mechanisms, cf. (Lankenau et al. 1998). 

5 Tool Support 

Large, Integrated Systems become unmaintainable dinosaurs very fast, in particular 
when several distant development teams are trying to coordinate, and maintenance 
threatens to cease. 

 
Collections of Loosely Coupled Specialists are the obvious solution – unfortunately 
often large specialised tools, given the complexity of formal methods. It is most im-
portant that each tool can be developed and maintained by one or very few persons 
such that an overview over its functionality and integrity can be obtained and main-
tained in one head, not necessarily the same over time.  

Increase of Productivity by Functional Languages. It is quite obvious that we 
should use formal methods eventually to produce our own tools; but is this realistic 
for really large systems? and during the initial bootstrapping phase of developing the 
first tools that allow scaling up? The answer is to use programming languages whose 
• high-level aids self-documentation and maintenance, 
• features for genericity instigate compactness and reuse, 
• modularisation, information-hiding and inheritance features encourage structuring, 
• static properties such as strong typing allow comprehensive checks, 
• implementation permits separate compilation and, ideally, interpretation. 

Our experience has been best with functional programming languages so far; we es-
timate the increase of productivity over, say, C, to a factor of 3. Without them, the 
development of large, non-trivial tools over a period of several years would have been 
impossible in an academic environment. TAS and IsaWin are extensions of Isabelle 
and comprise about 25k lines of SML; the graph visualisation system daVinci with 
thousands of users was developed by Fröhlich and Werner (1994, see also (Fröhlich 
1997), and cf. fig. 7) over a period of 5 years comprising about 35k lines of a func-
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tional language developed at Bremen, plus about 10k lines of C for interfacing; the 
tool integration framework of the UniForM Workbench, developed (see below), con-
tains about 50k lines of Haskell. 

 
Integration of Tools in the UniForM Workbench is described in detail in a compan-
ion paper (Karlsen 1998a; see also 1998b). Control and data integration is provided 
by the Subsystem Interaction Manager; based on the UniForM Concurrency Toolkit, 
tools interact like communicating concurrent agents and are, in general, loosely cou-
pled by intermittent adaptors (cf. Karlsen 1997a, 1997b). The Repository Manager is a 
graphical interface (using daVinci) to a public domain version of the industry standard 
Portable Common Tool Environment and provides version and configuration control, 
etc. (cf. (PCTE 1994), (H-PCTE 1996), and (Karlsen and Westmeier 1997)).  

The User Interaction Manager provides presentation integration, incorporating in-
terfaces to daVinci and its extension Forest, a WWW-browser, and Tcl/Tk for window 
management. In particular the latter two become much more manageable and homo-
geneous by encapsulation into a typed, high-level interface in Haskell. 

Haskell is the internal integration language; thus even higher-order objects and 
processes can be transmitted as objects. External tools are wrapped into a Haskell in-
terface; however, we plan an adaptation of the Interface Definition Language of the 
industry standard CORBA to Haskell that will then shortly open more possibilities to 
integrate tools in, say, C, C++, or Java.  

 
The Most Promising Architectures for Development Tools are those that avoid 
self-containment and allow integration with others. The possibility for control and 
data integration of a tool as an "abstract data type" is the most important (and not ob-
vious since the tool may e.g. not allow remote control and insist on call-backs); inte-
gration of persistent data storage in a common repository is next (this may require ex-
port and import w.r.t. local storage); presentation integration with the same user inter-
face is last - in fact it is most likely that the tool has its own graphical user interface. 
However, interactive Posix tools usually have a line-oriented interface that can easily 
be adapted (Karlsen 1997b). 

This way, a graphical interface to HUGS was developed in a matter of weeks. Isa-
belle, IsaWin and TAS have been integrated, and a Z-Workbench with various tools 
has been instantiated from the UniForM Workbench (Lüth et al. 1998a, 1998b). 

6 Conclusion 

Formal methods are on the verge of becoming competitive in an industrial context, 
they are even cost-effective now when we consider their use in automated testing or 
deadlock detection for software that has been developed in a conventional way. 
We have presented the following theses: 
• Combination of various methods is essential; more basic research is needed here. 
• Treatment of real-time and hybrid systems, in particular, is just emerging. 
• Testing benefits greatly from the use of Formal Methods. 
• Model checking and interactive verification of properties both are necessary. 
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• Synthesis by transformation has great potential over invent-and-verify. 
• Reuse of formal developments is much more powerful than reuse of products. 
• Tools for process models should support tailoring and generation of documents. 
• The success of formal methods depends on the usability of support tools. 
• Development environments should integrate tools in a loosely coupled way. 
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