UniForM Per spectives for Formal Methods

Bernd Krieg-Briickner

Bremen Institute of Safe Systems

TZI, FB3, University of Bremen
P.O. Box 330440, D-28334 Bremen

bkb@Informatik.Uni-Bremen.DE

Abstract. Trends for Formal Methods are reviewed and ilatetl by several
industrial applications: logical foundations of damation, verification, trans-
formation, testing, and tool support. TheiForM Workbench is the background
for highlighting experiences made over the pasyedrs.

1 Introduction

This paper outlines some state of the art techiyolog-ormal Methods and attempts
to extrapolate towards the next century. ThéForM Workbench (Universal Formal
Methods Workbench, cKrieg-Briickner et al. 1996s developed by the Universities
of Bremen and Oldenburg, arilpro, Berlin, funded by the German Ministry for
Education and Research, BMBF. In its present stgpeovides a focal point to

* review experiences in the past decades developimgubges, methods and tools,

« give an illustrative example of state of the acht®logy,

 evaluate preliminary experiences with industrigblagations, and

 assess the industrial potential for the future ilachinate technological trends.

2 Logical Foundations

The first use of Formal Methods in software deveiept, regarded by many as the
most prominent, is for modelling, using a matheraly well-founded specification
language. The need for modelling arises in mang@spand properties of software,
or more generally systems: for the physical envitent of a hybrid hardware / soft-
ware system, for the timing behaviour and real-teoestraints of an embedded sys-
tem, for the hazards and safety requirements affetyscritical system, for the con-
current interactions of a reactive system, for dmeidand livelock prevention, for
performance and dependability analysis, for architel and resource requirements,
and, finally, at many stages of the software dgwalent process for requirements and
design specifications, etc., to the implementatbra single module. The important
distinction between property-oriented and modediieéd specifications is now uni-
versally accepted: the former are sufficiently ds avoid over-specification, cap-

D. Hutter, W. Stephan, P. Traverso, M. Ullmann (gds
Applied Formal Methods — FM-Trends 98.
International Workshop on Current Trends in Applieatmal Methods
Lecture Notes in Computer Science 1641. Spring@@9)1251-265

2 Krieg-Bruckner

turing just the necessary properties and leaviegdom of choice for the implemen-
tor; the latter are geared towards describing éiqudar, operational implementation,
giving sufficient detail to allow e.g. detailed f@mance analysis.

The second and equally important use of Formal btighs to provide support for
correct development, i.e. mathematical notionsefihement or implementation that
guarantee correctness preservation w.r.t. thealniiquirements, be it by the invent-
and-verify paradigm, synthesis or transformation.

142.1 Combination of Formal Methods

How can we ever hope for a unique standard formmatis cover all the needs listed

above? Instead, the solution is a variety of forsmaé that complement each other,

each adapted to the task at hand: specificatiogukges and development method-

ologies, specific development methods or proof négples, with a whole spectrum of

tool support. Thus the challenge is to cater foresi combination of formalisms to

1. ensure correct transition from abstract to cetecispecifications when switching
between formalisms during the development prockest{cal composition"),

2. ensure correct combination of formalisms in &et@eneous situation, e.g. com-
bining concurrent and sequential fragments ("hariabcomposition™),

3. attach various kinds of tools, e.g. for perfont®or deadlock analysis, and

4. provide "hooks" for specifications that do néfeat semantics but allow the use of
tools, e.g. ordering of operation symbols or eaquetifor effective rewriting to pro-
totype, or guidance for design choices w.r.t. exjitene of resources such as speed
VS. space, or relative usage of operations of atradt data type.

Such combinations are by no means easy to achiéxeeneed for research on the first
two has been recognised and requires demandingematfcal foundations, such as
advanced methods in category theory. This has tedanguages for "institution in-
dependent" heterogeneous composition of modulestlfg large", see e.@stesiano
and Cerioli 1994 Tarlecki 1996 Diaconescu 1998 approaches for reasoning about
correct composition of the logics capturing the aatits "in the small" (see e.g.
Mossakowski 1996Mossakowski et al. 19971998k Sernadas et al. 199849980
introduce notions such asmbedding, translatingne formalism to another (cf. (1)
above),combinationof two formalisms, oprojectingto either from the combination.

Meta Level HOL Proof of Correctness
A AN e
Encoding 7+ CSP
| PR 0,— =0,
z CSsP

Object Level Correct Transformation Rule

Fig. 1. Semantic RepresentationlimiForM

UniForM Perspectives for Formal Methods 3

Semantic Representation. The approach oft)niForM is to represent the semantics
underlying a particular formalism or language ighwer-order logic (HOL) as it is re-
alised in the logical frameworlsabelle (Paulson 1996 Fig. 1 shows a tiny Logic
Graph for Z, CSRand their projections from the combination Z+CSRsphe logic
encoding into HOL at the meta level. Specificatianghese languages are repre-
sented as theories Isabelle and used for theorem proving with the verificatgys-
temlsaWin on top ofisabelle (cf. section 3.}, and, as a basis for transformational de-
velopment (cfsection 3.3 for proving the correctness of transformatiolesu

HOL-Z, HOL-CSP and HOL-CAsL. In HOL-Z, the logic of Z has been represented
(cf. Kolyang et al. 1996a1996h 1997 Kolyang 1997 Lith et al. 1998p and the
mathematical tool kit has been proved correct @roperation with the ESPRESS
project); this resulted in ca. 1k theorems, a Ak lproof script, and ca. 3 person-years
of effort.

HOL-CSP represents the logic of CSP; a small butgséve error in the 20 year
old theory of CSP has been found and correctedT@fand Wolff 1997 Tej 1999.
The process algebra has been proved correct; ébidted in ca. 3k theorems, a 17k
line proof script, and ca. 3 person-years of effdite example shows that such an en-
deavour is by no means trivial but pays off in #rel. The proof of correctness of
transformation rules, in particular, is now muclsiea

The above statistics includes the effort of becgramiliar with the intricacies of
Isabelle, and most of the effort went into the frobthe process algebra of CSP. A
subsequent representation of the logics and statitantics ofCasL basic specifica-
tions (including an intricate overloading resolafimnly required about 1 person-year
of effort (seeMossakowski et al. 1998a

DC Hybrid Systems

Z+CSP+t PLC- Real-Time Systems

/\ Automata
I

Transformation in
Z+ CSP CSP +t Isabelle/HOL

Normal Form
Translation

|

y
C-Code /Interpreter C-Code PLC-Code Target Code

Fig. 2. Method Combination ituniForM

4 Krieg-Bruckner

Reactive Real-Time Systems. The first instantiation ofJniForM has been for Z and
CSP since these are considered to be rather mahoreelatively well established in
industry. At the moment, we are working on meth@d#uctural transformations”) to
project not only from Z+CSP (actually Object-Z, &fischer 199Y, but also from
CSP+t, i.e. CSP with real-time constraints, to @&Rout such constraints on the one
hand, and simple timer processes on the otheffigcf2. Thus specialised methods
can be used in the projected domains. This breakdevalso successfully used for
testing of real-time and hybrid systems @#ction 3.}

A special class of hybrid systems, so-called PLGefata, generate real-time
programs for Programmable Logic Controllers dingcftf. Dierks 1997 Tapken
1997 1998. They have a semantics as DC-implementableshsesof Duration Cal-
culus ghou et al. 199 Further extensions towards hybrid systems aaangd.

4£22.2 Standard Family of Specification L anguages

A standard formalism for all aspects of formal noeth seems pragmatically undesir-
able (if not impossible) since a projection to attieted and supposedly simpler for-
malism allows easier reasoning and specialisedstoblowever, standardisation
should be aimed for in well-defined areas. IFIP VW@ (Foundations of System
Specification), based on more than 7 years of éspee of the ESPRIT WG
COMPASS, (cf. e.g.Krieg-Briickner 199§ started the Common Framework Initiative
for Algebraic Specification and DevelopmeatFI.

CoFl, an international effort by primarily European gps, is developing a family
of specification languages, a methodology guide asslociated tools (se@oFl,
Mosses 1997 The major language in this family, the Commomge¥raic Specifica-
tion LanguageCAsL, has just been completed; it is the basis for sigalages and ex-
tensions in the family. Itdormal semanticonly awaits a final revision. Various par-
sers exist as well as a prototype implementatiothefstatic semantic analysis for ba-
sic specifications in Isabelle for thuniForM Workbench (Mossakowski et al. 1997
it allows theorem proving and will be the basistfmnsformational development.

CasL is a rather powerful and general specification leage for first-order logic
specifications with partial and total functionsegicates, subsorting, and generalized
overloading (cf.CoFl, Cerioli et al. 199Y. Sublanguages @AsL, in connection with
the planned extensions towards higher-order, ofgjgented and concurrent aspects,
allow interfacing to specialised tools and mappfrgm/to other specification lan-
guages (cfMossakowski 1998 this aspect is crucial for its intended impact.

3 Veification and Validation

Formal Methods are meant for the development oeddable systems: apart from
safety and security, aspects of availability, taliy, fault-tolerance, and a general
adherence to functionality requirements are impartdhus correctness is only one
aspect, but obviously at the heart of the matterparticular in safety-critical do-

UniForM Perspectives for Formal Methods 5

mains, application developers become increasingigra of the importance of meth-
odsguaranteeingcorrectness w.r.t. a formal specification, theritcact".

£43.1 Testing vs. Correctness Proofs

In many applications, complete formal developmenteigarded as unrealistic so far;
the technology is only emerging. Often, only thiéiaal kernel is formally developed
But even with large systems, formal methods becmareasingly important:

Verification, validation and testing. Peleska 1996 has developed a methodology
and the tool kit VVT (cf. alsd’eleska and Siegel 1998997, presently being inte-
grated into theuniForM Workbench, that allowsautomatictesting. Test cases are gen-
erated from a real-time specification; they drikke tompleted hardware/software sys-
tem as a "black box" in a hardware-in-the-loop @pnfation from a separate com-
puter containing the test drivers, simulating anmalror faulty environment. The test-
ing theory ensures, that each test will make anahcontribution, approximating and
converging to a complete verification.

Even more important in practice is that thousarfdénes of generated test cases
can also be checked automatically against the flospecification; manual inspection
is quite impossible. This approach is very cosegtfe. It has been applied success-
fully to part of the case study ohiForM, a control computer on board of a train for
railway control, developed bglpro, Berlin (cf. Amthor and Dick 199) and to an
electric power control component of a satellitealeped byOHB, Bremen.

Abstraction to verify special properties. Another team lead by Peleskauth et al.
1997 1998 Urban et al. 1998has developed a technique for abstracting frorexan
isting program to verify the absence of deadloakd Evelocks. It was applied suc-
cessfully to more than 100k lines of Occam impletimgna safety layer of a fault tol-
erant computer to be used in the International Spatation Alpha developed by
DASA RI, Bremen; thus it is scalable and applicablesalistic applications.

The concrete program is abstracted to a formal ipattion in CSP containing
only theessential communication behaviptine approach guarantees, that the proof
for the abstract program implies the proved propést the concrete one. If the proof
fails, the property does not hold, or the abstaarcis not yet fine enough. The task is
split into manageable subtasks by modularisatiaroraing to the process structure,
and a set of generic composition theories develdpethe application. The modules
are then model-checked using the tool FDR (Forrgate®ns Ltd., Oxford).

The abstraction was done by hand; future reseaitthfoeus on implementing
formal abstraction transformations in theiForM Workbench to support the process.

£23.2 Model-Checking vs. I nteractive Proofs
M odel-checking is a very important technique in practice. The FOR is very use-

ful for CSP, mostly for validating specificatiormoving properties such as deadlock-
freeness, and for development, proving the coressrof a refinement in the invent-

6 Krieg-Bruckner

and-verify paradigm. But it can do more: the trdosi graph it generates can be in-

terpreted at run-time; this technique has been fmethe safety layer of a computer

on-board a train (see above). The abstraction aodutarisation method applied to

the International Space Station, described in tleecquing paragraphs, shows two

things:

* Model-checking is extremely useful when the resgiadypes are essentially enu-
meration types and the systems small enough.

» For large systems, these properties are likelyetoiblated; reasoning about modu-
larisation and composition properties is necesgagef tools are desirable.

Thus both model-checking and (interactive) prodfeud go hand in hand. In the
UniForM Workbench, a link from the interactive proof tool (see nesgrragraph) to the
FDR tool is presently being implemented.

Moreover, the experience of Haxthausen and Peld€g88 when solving the train
control problem in general has been, that reasoabmt algebraic properties at a
high level of abstraction is necessary, with subeat| refinements; model-oriented
specifications and model-checking are not enouglthis very practical problem that
had defied a general solution thus far.

Fig. 3. Thelsabelle Proof AssistantsaWin in UniForM

A Window to Isabelle. The UniForM Workbench makes extensive use of the generic
theorem provetsabelle (Paulson 1995 and heavily relies on the possibilities for in-
teraction and tactic definition. A graphical useterface, a "window to Isabelle",
Isawin, has been constructed that hides unnecessarysdetem the uninitiated user
(seeKolyang et al. 1997L0th and Wolff 1998 Objects such as theories, substitu-
tions, proof rules, simplification sets, theoremsl @roofs are typed (cfig. 3); icons

UniForM Perspectives for Formal Methods 7

can be dragged onto each other or onto the matipulavindow to achieve various
effects. This graphical and gesture-oriented apgraa as a major advance over the
rather cryptic textual interface. In the examplsea of rewrite rules for simplification
is dragged onto the ongoing proof goal in the malaifon.

Architecture of the UniForM Transformation and Verification System. In fact,
theorem proving and transformation, both a forndefluction, are so analogous, that
the UniForM Verification SystemisaWin shares a substantial part of its implementa-
tion with the Transformation SystemAS (cf. fig. 4, see Lith and Wolff 1998 lith

et al. 1998n Like Isabelle, it is implemented in Standard ML; sml_tkith et al.
1996 is a typed interface in SML to Tcl/Tk; on topgtlyeneric user interface GUI
provides the appearancefaf. 3 andfig. 5. This basic system is then parametrized (as
a functor in SML terminology) either by the fad#is for theorem proving dfawin

or those for transformation afAS. In addition, both share focussing and manipula-
tion of scripts, i.e. proofs or development hisstri

Transformation Rules

Transformation System TAS

Generic GUI

Isabelle/HOL ~+—— |ogics

-I\-,?lllls-l;\k L sml_tk

Standard ML

Fig. 4. Architecture ofTAS, theUniForM Transformation System

= UniForM Transformation Application System =]
File Edit settings Help
A - - -
7[5 [5h
OF Spec cPiDel [oPepel [Euterim
— UniForM Transformation application Sustem CP_Spec [=l
EE;H proof Obligations: O
{mu (2COPY. leftl —» rightl —> coP¥)) ||| CopE2
= Please enter parameters | | 1
[m 1> [midl
[1> [EeRT
< | History | > | Adld Pararrieter

Fig. 5. Application of a Parametrizetransformation Rule

8 Krieg-Bruckner
433.3 Transformation vs. Invent-and-Verify

Synthesis by Transformation. While the invent-and-verifparadigm is already sup-
ported bylsawin, we definitely prefer synthesis-by-transformatiover invent-and-
verify as the pragmatically more powerful paradigfirst of all, the latter can be im-
plemented by the former as a transformation rulat thenerates the necessary
verification condition from the applicability coridin. Secondly, thisautomatic
generation of the required verification conditioagprecisely one of the advantages of
the transformational approach. The developer carcextrate on the development
steps (viz. applications of transformation ruld@s3tfwhile the verification conditions
are generated on the side and tabled for latetnteza. Above all perhaps, single
transformation rules and automated transformaticethods embody development
knowledge in a compact and accessible form likdgdepatterns. Transformation
rules preserve correctness; they can themselvgsdved correct iruniForM against
the semantics of the object language, e.g. atabel lof the logic representation in

HOL, cf. fig. 1.) . o
TAS, the UniForM Transformation System. TAS may be parametrized by logics (i.e.

semantic representation of the formalism involvathelsabelle level, and by trans-
formation rules at the level afAs itself, cf. fig. 4 (Lath 1997. On top of the basic
architecture that it shares witkawin, TAS provides icons for (program or specifica-
tion) texts, transformation rules, possibly paraimet, and transformational devel-
opments in progress, in analogy to proofs (cf. sbaidon and manipulation window
in fig. 5). In the example, a parametrized transformatida s applied to the high-
lighted fragment denoted by focussing, and a winflawthe editing of parameters is
opened. Once input of parameters is completedulbeas applied, and a further proof
obligation is possibly generated. A proof obligatimay be discharged during or after
the development by transferring it kaWin or another verification system such as a
model checker (presently FDR).

The functionality ofTAS subsumes that of a forerunner, BROSPECTRA system
(cf. Hoffmann and Krieg-Brickner 1993However, the basis dbabelle allows a
more compact, more flexible and more powerful lon: parametrisation by addi-
tional transformation rules is a matter of minufi@stantiation of a functor rather than
recompilation of the whole system!); static sen@atialysis can often be mapped to
type checking ofsabelle; proof tactics can be defined as SML programs afiteh
allow the automation of applicability conditionsich that much fewer residual verifi-
cation conditions need to be interactively provgdHe user.

Development History. Note also the History button that allows navigatio the de-
velopment history, in particular partial undo fantinuation in a different way. The
whole development is documented automatically zeml loe inspected in a WWW
browser, sedig. 6. The example shows the development of a commiuaitpatotocol
with send and receive buffers by a sequence otoamations in CSP.

Reusability of Developments. The development history is a formal object as well
(partial) replay is possible. A development cantlmmed into a new transformation
rule by command; the generated verification condgiare then combined to a new

UniForM Perspectives for Formal Methods 9

applicability condition. Combined with abstractiaievelopments themselvescome
reusable in new situations, not just their produots modules (cfLiith et al. 1999

Program Development:
CP_Spec

Initial Spec

COBY1 ||| COPYZ2

Current Spec

(/X leftl -» cl -» al -» X[cl<-midl] [al<-ackl]y |||
(F X left2 -»
c2 ->

al -

H[c2¢-mid2] [af<-ack2]) | 14{al, =2}[|F X
(al -» ackl -» T) |]
al -»

ackZ -»
E N {al, aZ)|]4el, c2p[1F X (el -» midl -» E) |]
c2 ->
mid2 -
E % {cl, cl2}|]{midl, ackl} Un
{midZ,
ack2}[| (4 K. midl -» rightl -» ackl -» X) |||
{/ . nid2 -»> rightZ -»> ack® -» X) % {midl, ackl} Un {mid2, ackZ}

Currently at lewel ¥
FProof obligations
1. midl ~= leftl & ackl ~= leftl & midl ~= rightl & ackl ~= rightl

2. mid2 ~= leftf & ackl ~= left? & midf ~= rightl & ack2 ~= rightf

Dievelopment history

COPYL ||| COPYZ

§ Apply Transformation COPY1_def

{/ CcOPY. leftl -» rightl -» COPY) ||| COPYZ

i Apply Transformation COPY2_def

(/ cOPY. leftl -» rightl -» COPY) ||| (f COPY. left2 -» rightZ -» COPY)

i Apply Transformation Bufferintre

{/ % leftl -»

midl -

ackl -»

E|]{midl, =ackli[|/ X midl -»> rightl -» ackl -»> X % {midl, ackl}) |||
{/ COPY. leftZ -» rightZ -» COPY)

i Apply Transformation Bufferintre

{/ % leftl -»

midl -

ackl -»

H|]4midl, =ackli[|/ X midl -» rightl -» ackl -»> X % {midl, ackl}) |||
(F E. leftl? -»

mid2 -

Fig. 6. Initial and Current Specification, Proof Obligatsyrand Development History

10 Krieg-Bruckner

4 Integration into the Software Life Cycle

Integration of Formal Methods into Existing Process Models is important for suc-
cess in industry. The Software Life Cycle Processl®dV-Model (1997),originally
a German development standard, has become intamalyi recognised. As many
such standards, it loads a heavy burden on thdagereby prescribing a multitude of
documents to be produced. Thus tool support iséaséo

1. tailor the V-model first to the needs of a parar enterprise, then

2. tailor the V-model to the special project atdhalixing methods and tools,

3. support its enactment guiding and controlling tise of methods and tools, and

4. provide automatically generated development oaous.

davinci ¥2.1 alphal0 - swde

[

Fle Edit View Mavigation Abstraction Layout Options

Help |

Zi

o

g k.
£ Diata Dictionary

»%’c-,)l

fa

- SW Design

|

Coding of Realization of
.3 | W hodules Database
=S

ocs, ion Diocs.,

fion O
(W Module) (Databiase)
vy
SD6.3 I

Seff-Assessment otthe
SW hoduleDiatabase

Datahase

S\ Module

E

Saving status done.

= i
(Drag & Drop) GraphEditor ¥2.1 |

Fig. 7. Example of a V-Model Process Graph as supportatidyniForM Workbench

Blank Purper and Westmeier (1998% presently developing ti&raphical Develop-
ment Process Assistamtdapting the V-model to formal methods, whereettgyment
and quality assurance are intimately related. Theddel is presented as a heavily
interwoven hypertext document, generated from armom database, and tools sup-
port items 1 to 4 above; cf. al§ig. 7. Integration into a development environment
such as th&niForM Workbench allows the coordination with its methods and tools
(item 3). Tools themselves, on the other hand, geerate development documents
in conformance with the V-model (cf. item 4), swhthe development history fid.

6.

Isolation of Dependable Parts is an issue that is at the heart of the combinatio
problem; at the same time it offers possibilities d kind of "divide and conquer” ap-

UniForM Perspectives for Formal Methods 11

proach since methods and tools can be tailoreddie repecialised problems, cf. the
projection into fragments with and without time feal-time systems isection 2.1

Combination of Conventional, Semi-Formal and Formal Techniques arises natu-
rally when interfacing with other methods in thentaxt of the V-model. Safety con-
siderations, and thus the employment of formal wwedh will often be restricted to
parts of a system. Ideally, graphical interfacel give the illusion of working with
an informal method while an underlying formal seti@nprovides hooks to the use
of formal methods (cf. the PLC-Automatasaction 2.); this area has great potential.

At the same time, it is sometimes advisable tollgk and forth between informal
techniques at a high level of abstraction, e.guiregnents analysis, and formal meth-
ods, once more detail is required; complete forsadilon might be premature and
rather a burden, but formal methods are alreadfuliaean early stage to support the
analysis. An example is the specialisation of faeles for hazard analysis to develop
safety requirements and safety mechanismsl.ahkenau et al. 1998

5 Tool Support

Large, Integrated Systems become unmaintainable dinosaurs very fast, inquaatr
when several distant development teams are tryongobrdinate, and maintenance
threatens to cease.

Collections of Loosely Coupled Specialists are the obvious solution — unfortunately
often large specialised tools, given the complexity of formadthods. It is most im-
portant that each tool can be developed and maedaby one or very few persons
such that an overview over its functionality antegrity can be obtained and main-
tained in one head, not necessarily the same wer t

Increase of Productivity by Functional Languages. It is quite obvious that we
should use formal methods eventually to produceawum tools; but is this realistic
for really large systems? and during the initiabtstrapping phase of developing the
first tools that allow scaling up? The answer isi$e programming languages whose
 high-level aids self-documentation and maintenance,

 features for genericity instigate compactness ande,

* modularisation, information-hiding and inheritarfeatures encourage structuring,
* static properties such as strong typing allow cahpnsive checks,

* implementation permits separate compilation anehligt, interpretation.

Our experience has been best with functional progiag languages so far; we es-
timate the increase of productivity over, say, € atfactor of 3. Without them, the
development of large, non-trivial tools over a pdrof several years would have been
impossible in an academic environmemAS andlsaWin are extensions dkabelle
and comprise about 25k lines of SML; the graph alisation systemfa?inci with
thousands of users was developed by Frohlich anch&vgl994 see alsoRrohlich
1997, and cf.fig. 7) over a period of 5 years comprising about 35kdif a func-

12 Krieg-Bruckner

tional language developed at Bremen, plus aboutlib@k of C for interfacing; the
tool integration framework of theniForM Workbench, developed (see below), con-
tains about 50k lines of Haskell.

Integration of Toolsin the UniForM Workbench is described in detail in a compan-
ion paper Karlsen 1998asee alsal998h. Control and data integration is provided
by the Subsystem Interaction Manager; based on th&niForM Concurrency Toolkit,
tools interact like communicating concurrent agearid are, in general, loosely cou-
pled by intermittent adaptors (¢farlsen 1997a1997h. The Repository Manager is a
graphical interface (usingzvinci) to a public domain version of the industry staxda
Portable Common Tool Environment and provides wersind configuration control,
etc. (cf. PCTE 199), (H-PCTE 1998, and Karlsen and Westmeier 1997

The User Interaction Manager provides presentation integration, incorporating in
terfaces tafaVinci and its extensioforest, a WWW-browser, andicl/Tk for window
management. In particular the latter two becomehmuaore manageable and homo-
geneous by encapsulation into a typed, high-leuelface in Haskell.

Haskell is the internal integration language; tlwen higher-order objects and
processes can be transmitted as objects. Exterolal are wrapped into a Haskell in-
terface; however, we plan an adaptation of therfaate Definition Language of the
industry standardcORBA to Haskell that will then shortly open more poddibis to
integrate tools in, say, C, C++, or Java.

The Most Promising Architectures for Development Tools are those that avoid
self-containment and allow integration with otheffie possibility for control and
data integration of a tool as an "abstract data'typ the most important (and not ob-
vious since the tool may e.g. not allow remote rdnd insist on call-backs); inte-
gration of persistent data storage in a commongigpy is next (this may require ex-
port and import w.r.t. local storage); presentaiitiegration with the same user inter-
face is last - in fact it is most likely that theot has its own graphical user interface.
However, interactive Posix tools usually have &-amiented interface that can easily
be adaptedKarlsen 1997

This way, a graphical interface to HUGS was devetbjm a matter of weeka-
belle, Isawin andTAS have been integrated, and a Z-Workbench with vartools
has been instantiated from tbeiForM Workbench (LUth et al. 1998a1998H).

6 Conclusion

Formal methods are on the verge of becoming comngetin an industrial context,
they are even cost-effective now when we consideir tuse in automated testing or
deadlock detection for software that has been deeel in a conventional way.

We have presented the following theses:

» Combination of various methods is essential; masdresearch is needed here.

« Treatment of real-time and hybrid systems, in patér, is just emerging.

» Testing benefits greatly from the use of Formal hbels.

» Model checking and interactive verification of pesfies both are necessary.

UniForM Perspectives for Formal Methods 13

» Synthesis by transformation has great potentiat oweent-and-verify.

* Reuse of formal developments is much more poweénfuh reuse of products.

» Tools for process models should support tailorind generation of documents.
» The success of formal methods depends on the itgalfisupport tools.

» Development environments should integrate tooks limosely coupled way.

7 References

Amthor, P., Dick, S. (1997): Test eines Bordcommutiir ein dezentrales Zugsteuerungs-
system unter Verwendung des Werkzeuges VVT-RTKdlloquium Software-Entwicklung
Methoden, Werkzeuge, Erfahrungen: Méchtigkeit deitwsire und ihre Beherrschung,
Technische Akademie Esslingen.

Astesiano, E. and Cerioli, M. (1994): Multiparadig@pecification Languages: a First Attempt
at Foundations, In: C.M.D.J. Andrews and J.F. Gra@ds.), Semantics of Specification
Languages (SoSI'93), Workshops in Computing, p@-185. Springer.

Blank Purper, C., Westmeier, S. (1998): A Graphlgalelopment Process Assistant for For-
mal Methods. In: Proc. VISUAL'98 (short papers),at ETAPS'98, Lisbon.
http://ww.tzi.de/~unifornf gdpa

Buth, B., Kouvaras, M., Peleska, J., Shi, H. (19%@adlock Analysis for a Fault-Tolerant
System. In Johnson, M. (ed.): Algebraic Methodolognd Software Technology.
AMAST97.LNCS 1349 Springer, pp. 60-75.

Buth, B., Peleska, J., Shi, H. (1998): Combiningt\es for the Livelock Analysis of a Fault-
Tolerant System. (submitted to AMAST'98)

Cerioli, M., Haxthausen, A., Krieg-Brlickner, Moseriski, T. (1997): Permissive Order-
sorted Partial Logic in CASLAMAST97 LNCS 1349 Springer.

CoFl: The Common Framework Initiative for Algebraic Specification.
http://ww. brics. dk/ Proj ect s/ CoFl

Diaconescu, R. (1998): Extra Theory Morphisms fastitutions: logical semantics for multi-
paradigm languages. Applied Categorical Structurés appear).

Dierks, H. (1997): PLC-Automata: A New Class of lempentable Real-Time Automata. Proc.
ARTS'97.LNCS 1231pp. 111-125. Springer.

Fischer, C. (1997): CSP-OZ: A Combination of Objgcind CSP. InProc. Formal Methods
for Open Object-Based Distributed Systems (FMOQD¥ ’

Frohlich, M. (1997): Inkrementelles Graphlayout Visualisierungssysterda?ind. Disserta-
tion. Monographs of the Bremen Institute of Safe Systeachen, Shaker.

Frohlich, M., Werner, M. (1994): The interactiveadph-Visualization Systenuvinci — A User
Interface for Applications. Informatik Bericht N6/94, Universitat Bremen. updated docu-
mentationht t p: / / www. t zi . de/ ~daVi nci

H-PCTE (1996): The H-PCTE Crew: H-PCTE vs. PCTEsim 2.8, Universitat Siegen.

Haxthausen, A. E., Peleska, J. (1998): Formal gweent and Verification of a Distributed
Railway Control System. IfProc. 1st FMERail Worksho@Jtrecht, The Netherlands, (to
appear).

Hoffmann, B., Krieg-Briickner, B. (eds.) (1998)ROgram Development by Specification and
Transformation, The PROSPECTRA Methodology, Larglamily, and Systenb.NCS
680. Springerht t p: / / www. t zi . de/ ~prospectra

Karlsen, E. W. (1997a): The UniForM Concurrency [Rdband its Extensions to Concurrent
Haskell. In: O'Donnald, J. (ed.3FPW97, Glasgow Workshop on Functional Program-
ming 97, Ullapool.

Karlsen, E. W. (1997b): Integrating Interactive Toasing Concurrent Haskell and Synchro-
nous Events, II€laPF97, 2nd Latin-American Conference on FunciiioRrogramminglLa
Plata, Argentina.

14 Krieg-Bruckner

Karlsen, E. W. (1998a): The UniForM WorkBench - mlh¢r Order Tool Integration Frame-
work. In: International Workshop on Current Trends in Appliedrmal Methods LNCS.
Springer this volumé.

Karlsen, E. W. (1998b): Tool Integration in a Fumcal Setting. Dissertation. Universitét
Bremen. 364pp(to appear)

Karlsen, E. W., Westmeier, S. (1997): Using CorentrrHaskell to Develop User Interfaces
over an Active Repository. IFFL'97, Implementation of Functional Languages $t. An-
drew, Scotland, September 10-12, 1997. LNCS 14giinger.

Kolyang (1997): HOL-Z, An Integrated Formal SuppBrvironment for Z in Isabelle/HOL.
DissertationMonographs of the Bremen Institute of Safe Syste#achen, Shaker.

Kolyang, Luth, C., Meyer, T., Wolff, B. (1997): TA&d IsaWin: Generic Interfaces for Trans-
formational Program Development and Theorem ProvingBidoit, M. and Dauchet, M.
(eds.): Theory and Practice of Software Development 8RCS 1214. pp. 855-859.
Springer.

Kolyang, Santen, T., Wolff, B. (1996a): A Structi?eeserving Encoding of Z in Isabelle/HOL.
In Proc. Intl Conf. on Theorem Proving in Higher Ordeogic (Turku). LNCS 1125
Springerht t p: // www. t zi . de/ ~kol / HOL- Z

Kolyang, Santen, T., Wolff, B. (1996b): Correct ddser-Friendly Implementations of Trans-
formation Systems. In: Gaudel, M.-C., WoodcocKedls.):FME96: Industrial Benefit and
Advances in Formal MethodsNCS 1051, pp. 629-648. Springer.

Krieg-Bruckner, B. (1996): Seven Years of COMPASS Haveraaen, M., Owe, O., Dahl, O.-
J. (eds.)Recent Trends in Data Type SpecificatiBroc. 11th ADT/COMPASS Workshop
(Oslo 1995). LNCS 1130, pp. 1-13. Sprindert p: / / ww. t zi . de/ ~conpass

Krieg-Bruckner, B., Peleska, J., Olderog, E.-R.IzBg D., Baer, A. (1996)JniForM, Univer-
sal Formal Methods Workbench. in: Grote, U., W@, (eds.):Statusseminar des BMBF:
SoftwaretechnologieDeutsche Forschungsanstalt fir Luft- und Raumfdetlin 337-356.
See alsdt t p: / / www. t zi . de/ ~uni f orm

Lankenau, A., Meyer, O., Krieg-Brickner, B. (1998afety in Robotics: The Bremen
Autonomous Wheelchair. IiProc. AMC98, 5th Int. Workshop on Advanced Mot@on-
trol, Coimbra, Portugal 1998. ISBN 0-7803-4484-7, [##-529.

Lath, C. (1997): Transformational Program Developmia the UniForM Workbench. Se-
lected Papers from the 8th Nordic Workshop on Paogning TheoryOslo, Dec. 1996.
Oslo University Technical Report 248.

Lith, C. and Wolff, B. (1998): Functional Designdamplementation of Graphical User Inter-
faces for Theorem Provers. (to appeadonrnal of Functional Programming

Lith, C., Karlsen, E. W., Kolyang, Westmeier, S.olfly B. (1998a): Tool Integration in the
UniForM WorkBench. In Berghammer, B., Buth, B., Berghamni®r, Peleska, J. (eds.):
Tools for System Development and Verification. Wabtep, Bremen, July 199é4ono-
graphs of the Bremen Institute of Safe SysterAadhen, Shaker.

Lith, C., Karlsen, E. W., Kolyang, Westmeier, Solify B. (1998b): HOL-Z in thdJniForM
WorkBench - a Case Study in Tool Integration forRtoc. ZUM98, 11th International
Conference of Z UserENCS 1493, pp. 116-134. Springer.

Lath, C., Shi, H., Krieg-Briickner, B. (1999): Akattion in Transformational Developments.
(submitted for publication).

Lith, C., Westmeier, S., Wolff, B. (1996): sml_tkunctional Programming for Graphical User
Interfaces. Informatik Bericht Nr. 8/96, Univergita Bremen.
http://ww.tzi.de/~cxl/sm _tk

Mossakowski, T. (1996): Representations, Hieraschied Graphs of Institutions. Dissertation.
Monographs of the Bremen Institute of Safe SysPesachen, Shaker.

Mossakowski, T. (1998): Translating other spectfaalanguages to CASIRecent Trends in
Algebraic Development Techniqu&8ADT’98, Lisbon. LNCS. (to appear)

Mossakowski, T., Kolyang, Krieg-Briickner, B. (1898Static Semantic Analysis and Theo-
rem Proving for CASL. In Parisi-Pressice, F. (eRgcent Trends in Algebraic Development
TechniquesWADT’97, LNCS 1376, pp. 333-348. Springer.

UniForM Perspectives for Formal Methods 15

Mossakowski, T., Tarlecki, A., Pawlowski, W. (199Qombining and Representing Logical
Systems, In . Moggi, E. and Rosolini, G. (ed€3tegory Theory and Computer Science,
7th Int. Conf. LNCS 1290, pp. 177-196. Springer.

Mossakowski, T., Tarlecki, A., Pawlowski, W. (1998&ombining and Representing Logical
Systems Using Model-Theoretic Parchments. In RRrisssice, F. (ed.Recent Trends in
Algebraic Development Techniqu&8ADT'97, LNCS 1376, pp. 349-364. Springer.

Mosses, P. (1997): CoFl: The Common Frameworkatie for Algebraic Specification and
Development. In Bidoit, M. and Dauchet, M. (ed3heory and Practice of Software De-
velopment 97LNCS 1214, pp 115-137. Springer.

Paulson, L. (1995)sabelle: A generic theorem provéiNCS 828. Springer.

PCTE (1994): European Computer Manufacturers Aasioci: Portable Common Tool Envi-
ronment (PCTE), Abstract Specificati@rd edition, ECMA-149. Geneva.

Peleska, J. (1996): Formal Methods and the Devetoprof Dependable Systems. Bericht
1/96, Universitat Bremen, Fachbereich Mathematik d uninformatik, 72p
http://ww.tzi.del~jp/papers/depend. ps. gz

Peleska, J., Siegel, M. (1996): From Testing Theoryest Driver Implementation. in: M.-C.
Gaudel, J. Woodcock (edsBME96: Industrial Benefit and Advances in Formaetiiods
LNCS 1051. Springer, pp. 538-556.

Peleska, J., Siegel, M. (1997): Test Automatiosafety-Critical Reactive SystenfSouth Af-
rican Computer Jounal 1$p. 53-77.

Sernadas, A., Sernadas, C., Caleiro, C. (1998hjingi of logics as a categorial construction.
Journal of Logic and Computation8 (1@p. 1-31.

Sernadas, A., Sernadas, C., Caleiro, C., MossakpWsk1998b): Categorical Fibring of Lo-
gics with Terms and Binding Operators. In FrontiefSCombining Systems - FroCoS'98.
Kluwer Academic Publishers. To appear in AppliedjiccSeries.

Tapken, J. (1997): Interactive and Compilative Sation of PLC-Automata. In: Hahn, W. and
Lehmann, A. (eds.Bimulation in IndustryESS’97. SCS, pp. 552-556.

Tapken, J. (1998): MOBY/PLC — A Design Tool for Hiechical Real-Time Automata. Sys-
tem Demao. In: Astesiano, E. (edBroc. First Int'l Conf. on Fundamental Approaches t
Software Engineering, FASE’'98 ETAPS’98, Lisbon. LNCS. pp326-330. Springer.

Tarlecki, A. (1996): Moving between logical systertrs M. Haveraaen and O. Owe and O.-J.
Dahl (eds.):Recent Trends in Data Type Specificatiatith Workshop on Specification of
Abstract Data Typed.NCS 1130pp. 478-502. Springer.

Tej, Haykal (1999):HOL-CSP: Mechanised Formal Development of Concurrent PsmEses
DissertationMonographs of the Bremen Institute of Safe Systgarthcoming)

Tej, H. and Wolff, B. (1997): A Corrected FailurevBrgence Model for CSP in Isabelle /
HOL. Formal Methods Europe, Proc. FME'9@raz. LNCS 1313, pp. 318-337. Springer.
Urban, G., Kolinowitz, H.-J., Peleska, J. (1998)SArvivable Avionics System for Space Ap-
plications. inProc. FTCS-28, 28 Annual Symposium on Fault-Tolerant ComputiMy-

nich, Germany, 1998.

V-Model (1997):Development Standard for IT Systems of the Fedeeplublic of Germany.
General Directives 250: Process Lifecycle; 251:ids Allocation.

Zhou, C., Hoare, C.A.R., Ravn, A.P. (1992): A Chlswf Durationsinformation Processing
Letters 40(5)pp. 269-276.

16

Krieg-Bruckner

