
Parallel Recognition of Series-Parallel Graphs

David Eppstein
Department of Information and Computer Science

University of California, Irvine, CA 92717

October 4, 1990

Abstract

Recently, He and Yesha gave an algorithm for recognizing directed
series parallel graphs, in time O(log2 n) with linearly many EREW
processors. We give a new algorithm for this problem, based on a
structural characterization of series parallel graphs in terms of their
ear decompositions. Our algorithm can recognize undirected as well as
directed series parallel graphs. It can be implemented in the CRCW
model of parallel computation to take time O(log n). In the EREW
model the time is O(log2 n) but the number of processors required
improves the bounds of the previous algorithm.

1 Introduction

A directed graph G is two-terminal series parallel, with terminals s and t,
if it can be produced by a sequence of the following operations:

1. Create a new graph, consisting of a single edge directed from s to t.

2. Given two two-terminal series parallel graphs X and Y , with terminals
sX , tX , sY , and tY , form a new graph G = P (X,Y ) by identifying s =
sX = sY and t = tX = tY . This is known as the parallel composition
of X and Y .

3. Given two two-terminal series parallel graphs X and Y , with terminals
sX , tX , sY , and tY , form a new graph G = S(X,Y ) by identifying
s = sX , tX = sY , and t = tY . This is known as the series composition
of X and Y .

1



An undirected graph is two terminal series parallel with terminals s and
t if for some orientation of its edges it forms a directed two terminal series
parallel graph with those terminals. A directed or undirected graph is series
parallel if for some two vertices s and t it is two terminal series parallel with
those terminals.

Recognition of series parallel graphs is one of the classical problems in
the design of algorithms, and it is well known that this can be performed
in linear time [14]. Further, given a decomposition of a series parallel graph
according to the above operations, one can perform many other compu-
tations on the graph in linear time; these computations include problems
such as maximum matchings, maximum independent sets, minimum domi-
nating sets, and other problems including many that for general graphs are
NP-complete [3, 9, 12]. Such a decomposition can be constructed in linear
time.

Recently, a parallel algorithm was given by He and Yesha for recog-
nizing directed series parallel graphs and providing a decomposition into
the series parallel composition operations [7]. This algorithm takes time
O(log2 n), and uses O(n+m) shared-memory parallel processors. Two pro-
cessors never attempt to access the same memory cell at the same time;
this model of parallel computation is known as EREW (for Exclusive Read
Exclusive Write).

In this paper we present a new algorithm for both directed and undi-
rected series parallel graph recognition and decomposition, which takes time
O(log n) with C(m,n) processors; here C(m,n) is the number of proces-
sors required to compute connected components of a graph in logarithmic
time. The best bound known for this is C(m,n) = O(mα(m,n)/ log n) [5].
We use the stronger concurrent read concurrent write (CRCW) model of
parallelism; however any CRCW algorithm can be executed on an EREW
machine with a logarithmic loss of time and efficiency. In our case this re-
sults in time bounds of O(log2 n), matching the previous result; however
the number of processors we require, C(n,m), is an improvement over the
previous O(m+ n).

Our algorithm is based on the concept of an open ear decomposition of a
graph. In the next section we define this concept, and show that undirected
two terminal series parallel graphs may be characterized by a nesting prop-
erty of their ear decompositions. Next we show how to reduce the problem
of directed series parallel graph recognition and the cases in which terminals
have not been specified to the undirected two terminal case. In the follow-
ing section we describe how to test the nesting property in parallel, and in

2



the final section we describe how to combine all these steps to give a series
parallel graph recognition algorithm.

2 Nested Ear Decompositions

An ear decomposition of an undirected graph G is defined to be a partition
of the edges of G into a sequence of ears E1, E2, . . . En. Each ear is a path
in the graph with the following properties:

1. If two vertices in the path are the same, they must be the two endpoints
of the path.

2. The two endpoints of each ear Ei, i > 1, appear in previous ears Ej
and E′j , with j < i and j′ < i.

3. No interior point of Ei is in Ej for any j < i.

Typically there are further restrictions on the first ear E1; for instance
E1 may be required to be a single vertex or edge.

An open ear decomposition is one in which even the two endpoints of
each ear must be distinct; i.e., each path must be simple. We say that an
ear decomposition or open ear decomposition starts from a certain path P
if E1 = P .

Ear decompositions have a number of uses, in particular in computing
the connectivity of a graph. For instance, the following theorem is well
known.

Lemma 1 (Whitney [15]) An undirected graph is biconnected (2-vertex-
connected) if and only if it has an open ear decomposition starting from
a single edge. 2

Given a graph G and an open ear decomposition ED = {E1, E2, . . . Ek}
of G, we define function eED(v) to be Ei if v appears as an interior vertex
in ear Ei. If v is an endpoint of the initial ear E1, then let eED(v) = E1

for completeness. By property 3 of the ear decomposition, eED(v) is well
defined.

Given a graph G and an open ear decomposition ED = {E1, E2, . . . Ek}
of G, we say that Ei is nested in Ej if j < i and the endpoints of Ei both
appear in Ej . For such i and j, let the nest interval of Ei in Ej be the path
in Ej between the two endpoints of Ei.

We say that ED is nested if the following conditions hold:

3



1. For each i > 1 there is some j < i such that Ei is nested in Ej .

2. If two ears Ei and Ei′ are both nested in the same ear Ej , then either
the nest interval of Ei contains that of Ei′ , or vice versa, or the two
nest intervals are disjoint; i.e., no two nest intervals in each ear Ej
cross each other.

Khuller [8] proposed a class of tree ear decompositions, which corresponds
to only the first condition above. The class of nested ear decompositions is
much more restrictive, and in fact we shall see that it is equivalent to the
series parallel property.

Lemma 2 If ED is nested, the nest intervals in any given ear Ei form a
tree, in which I is a child of J if I is a maximal subinterval of J , and I
is an adjacent sibling to J if they share a parent and there is no interval
between them.

Proof: Obvious from the definition of a nested decomposition. 2

Lemma 3 If ear decomposition ED is nested, then for each ear Ei, with
i > 1 and endpoints x and y, Ei is nested in the greater of the two ears
eED(x) and eED(y).

Proof: By induction on i. We assume that the lemma holds for all i′ < i.
Then by the definition of nesting there must be some j with Ei nested in
Ej . If j = eED(x) or j = eED(y), we are done, because since j contains
both endpoints it must, by the second property in the definition of ear
decompositions, be the greater of eED(x) and eED(y). Otherwise, x and
y must also be the endpoints of j; but then the lemma follows from the
induction hypothesis. 2

Thus we can extend function eED from vertices to ears: if Ei has end-
points x and y, define eED(Ei) to be the the greater of the two ears eED(x)
and eED(y); then lemma 3 implies that Ei is nested in eED(Ei).

We say that Ei is properly nested in Ej if Ej = eED(Ei), and that Ei
is contained in Ej when there is a sequence of ears Ei, Ek, . . . Ej such that
each ear is properly nested in the next; that is, containment is the transitive
closure of the proper nesting relation. The following lemma demonstrates
that only proper nesting need be considered in testing whether an ear de-
composition is nested.

4



Lemma 4 Let graph G have an open ear decomposition ED, such that:

1. ED starts from a single edge.

2. For each i > 1 there is some j < i such that Ei is nested in Ej.

3. If two ears Ei and Ei′ are both properly nested in the same ear Ej,
either the nest interval of Ei contains that of Ei′, or vice versa, or the
two nest intervals are disjoint.

Then ED is nested.

Proof: If Ei is nested, but not properly nested, in Ej , then the nest
interval of Ei is all of Ej , which clearly cannot cross any other nest interval
in Ej . 2

Conversely, any nested ear decomposition clearly satisfies conditions
2 and 3. This shows that verification of nestedness for ear decompositions
starting from a single edge can be performed as two simple steps. First, we
check property 2 above, that every ear is nested in some other ear. Next, we
check property 3, by collecting the set of ears properly nested in each ear,
and checking that there is no pair that cross.

Lemma 5 Let ED be a nested ear decomposition, and let Ei be an ear with
endpoints x and y. Then x and y separate the subgraph induced by the set
of ears contained in ear Ei from the rest of the graph.

Proof: Let Ej be an ear that touches an ear Ek which is contained in Ei.
Clearly it must do so only at its endpoints, and therefore it is nested in Ek.
If it is properly nested in Ek, it is contained in Ei, and cannot furnish a
counterexample to the lemma.

Otherwise, let Ej have the same endpoints as Ek. If k 6= i, Ej is again
contained in Ei, because it is properly nested in the same ear as Ek. Oth-
erwise, Ej touches the collection of contained ears only at vertices x and y,
and is therefore separated from them by those two vertices. 2

Lemma 6 If undirected graph G has a nested open ear decomposition start-
ing from a path from s to t, then G is two terminal series parallel with
terminals s and t.

5



Proof: If G has only a single edge, then clearly it is series parallel. Oth-
erwise there are two cases.

In the first case, there is some ear Ej , j > 1, having the same endpoints s
and t as E1. Then let Y be the graph induced by Ej and the ears contained
in it, and let X be the graph induced by the remaining edges. By lemma 5,
X and Y are connected only at s and t. The ears in Y form a nested ear
decomposition starting with the path Ej , and the remaining ears in X form
a nested ear decomposition starting from path E1. By induction, X and Y
are series parallel, and G = P (X,Y ).

In the second case, no such ear exists. Let Ej be an ear properly nested
in E1, such that the nest interval of Ej is not contained in any other nest
interval. Then Ej has an endpoint x which is neither s nor t, since otherwise
Ej would satisfy the conditions of the first case. Let X be the subpath of E1

from s to x, together with all ears Ei contained in this subpath. Similarly
let Y be the subpath of E1 from x to t, together with all ears Ei contained
in this subpath. By the nesting property and the maximality of Ej no ear
nested in E1 crosses Ej ; thus all ears properly nested in E1 are part of either
X or Y . By induction we see that each ear Ei is part of one of the subgraphs,
and no ear connects the two subgraphs, for each ear Ei must be nested in
some previous ear, which in turn cannot connect the subgraphs. Further, X
and Y have nested open ear decompositions starting from their respective
subpaths of E1. Thus G = S(X,Y ). 2

Lemma 7 If ED = {E1, E2, . . . Ek} is an open ear decomposition of a two
terminal series parallel graph G with terminals s and t, and with E1 a path
from s to t, then ED is nested.

Proof: The proof is by induction on the number of series parallel compo-
sition operations making up G. If G consists of the single edge (s, t), then
ED must consist of a single ear E1 = {(s, t)}, which is clearly nested.

The next case is that G = P (X,Y ) for some X and Y . X and Y are con-
nected only through s and t, so E1 must be contained entirely within one or
the other component. Further, each successive ear must again be contained
in one or the other component, or else s or t would be an interior vertex
of the ear, contradicting the properties of an ear decomposition. Assume
without loss of generality that E1 is contained in X. The ears in X form
an open ear decomposition, and so by induction on the size of G they are
nested. Now let Ej be the first ear with an edge in Y . Then the endpoints
of Ej must be s and t, because those are the only vertices of Y that appear

6



in previous ears. Thus the ears in Y again form an open ear decomposition
starting from Ej , and again they are nested. No ear Ei from X can cross
an ear E′i in Y , because if they are both nested in the same ear, then their
endpoints must be s and t and so their nest intervals must both be equal to
the entire ear in which they are nested. Thus the entire ear decomposition
is nested.

Finally, assume G = S(X,Y ), with X and Y meeting at vertex x. Then
x disconnects G into two components, so E1 must go through x and no
other ear can contain edges in both X and Y . The path in E1 from s to
x together with the remaining ears in X forms an ear decomposition of X,
which is therefore nested, and the path in E1 from x to t together with the
remaining ears in Y again forms a nested ear decomposition. No ear in X
can cross one in Y , because if they are nested in any ear it must be ear E1,
and their nest intervals are contained in the disjoint subpaths from s to x
and from x to t. Thus again the entire ear decomposition is nested. 2

Let us summarize the results of this section:

Theorem 1 Any undirected two terminal series parallel graph has a nested
ear decomposition starting with a path between the terminals, and any undi-
rected graph with a nested ear decomposition is two terminal series parallel
with its terminals being the endpoints of the first ear. 2

3 Terminal Selection

Before we can use theorem 1 in an algorithm for recognizing series parallel
graphs, we must first relate them to lemma 1 so that we can be sure of finding
an open ear decomposition. Also, since our input graph will not have its
terminals specified, we must show how to select a pair of vertices s and t
such that, if G is series parallel, it is series parallel with those terminals.

Recall the well known fact that the set of biconnected components of a
graph (maximal subgraphs that remain connected after the deletion of any
vertex) forms a tree, having as its nodes the biconnected components and
separating vertices of the graph, and with two nodes connected by an edge
in the following two cases:

1. One node is a separating vertex, and the other is a biconnected com-
ponent containing that vertex.

7



2. Both nodes are separating vertices connected by a single edge in the
graph.

We now show some standard properties of series parallel graphs (e.g.
see [6]).

Lemma 8 If G is two terminal series parallel, with terminals s and t, then
the tree of biconnected components of G must be a path, such that s and t
are contained only in the components at the ends of the path (i.e. they can
not be separating vertices).

Proof: We show inductively that all the following facts hold:

1. The tree of biconnected components of G must be a path, with s and
t properly contained in the components at the ends of the path.

2. If G is formed by a parallel composition operation, it is biconnected.

3. If v is a vertex of G, there exist vertex disjoint paths in G from s to
v, and from v to t.

4. If v and w are vertices of G in different biconnected components then
there exist vertex disjoint paths P1, P2, and P3 connecting v to w and
the two vertices with the two terminals, either v to s and w to t, or v
to t and w to s.

The lemma clearly holds for a single edge.
Let G = S(X,Y ) meeting at point x. Then the biconnected components

of G are those of X and Y , connected by a pair of edges corresponding to
the cutpoint at x. Thus if the trees of components of X and Y are each
paths, then the tree of G is also a path, and fact (1) holds. Fact (2) holds
vacuously. To prove fact (3), without loss of generality assume that v is in
X. Then there are vertex-disjoint paths from v to s, and v to x. Compose
the latter path with any path from x to t to form a path from v to t that is
disjoint from that from v to s. Finally we must prove fact (4). If both v and
w are in the same subgraph, without loss of generality X, the paths of fact
(4) exist simply by using the induction hypothesis of fact (4), and extending
the path to vertex x by composing it with with any path from x to t in Y .
Otherwise, assume without loss of generality that v is in X and w is in Y .
By the induction hypothesis of fact (3), there are disjoint paths in X from
s to v, and from v to x. Similarly there are disjoint paths in Y from x to

8



w, and from w to t. Now simply compose the paths from v through x to
w, forming together with the remaining two paths the three disjoint paths
required by fact (4). So the lemma holds for series composition.

Finally let G = P (X,Y ). Fact (1) is implied by fact (2), because the
tree of biconnected components of a biconnected graph is trivially a path.
To show that G is biconnected we need to find two vertex-disjoint paths
between any two vertices v and w. If v and w are respectively in X and
Y , use the induction hypothesis of fact (3) to find disjoint paths from v to
s and v to t in X, and from w to s and w to t in Y . Compose the path
from v to s with that from w to s in Y to form one path from v to w; and
similarly compose the paths through t to form another path; these two paths
must be vertex-disjoint. Otherwise, assume both v and w are in X, and use
the induction hypothesis of fact (4) to find three disjoint paths, all in X,
without loss of generality from s to v, v to w, and w to t. Then compose the
paths from s to v and w to t with any path in Y from s to t, to produce a
second disjoint path from v to w. Thus again the two vertices are connected
by disjoint paths, and so the graph must be biconnected. To prove fact (3),
without loss of generality for v in X, simply use the induction hypothesis
of fact (3) for X. Fact (4) follows trivially from the biconnectedness of the
graph. Thus all four facts hold for parallel as well as series composition, and
so for all series parallel graphs. 2

Lemma 9 If G is a biconnected series parallel graph, and (s, t) is any edge
in G, then G is two terminal series parallel with s and t as terminals.

Proof: If G is a single edge, the lemma clearly holds. Otherwise, let G be
series parallel with terminals v and w. Since G is biconnected it must be
P (X,Y ) for some X and Y . Assume without loss of generality that (s, t)
is in X. We prove the theorem by induction on the size of X. If X is a
single edge, then again we are done. If X = S(A,B), assume without loss
of generality that (s, t) is in A. Then G = P (A,S(B, Y )), and A is smaller
than X, so by induction the lemma holds. If X = P (A,B), with (s, t) in A,
then G = P (A,P (B, Y )) and again the lemma holds. 2

Lemma 10 If series parallel graph G is not biconnected, Let X and Y be
the biconnected components at the endpoints of the path of biconnected com-
ponents, let x and y be the cutpoints between their respective components
and the remainder of the graph, and let s and t be any vertices in X and

9



Y adjacent to x and y respectively. Then G is two terminal series parallel
with terminals s and t.

Proof: By lemma 8, G must be the series composition of each of its bicon-
nected components. By lemma 9, the components can be decomposed with
terminals (s, x) and (y, t). Using these decompositions together with the
serial composition of the remaining components gives back G, decomposed
to have terminals s and t. 2

To summarize:

Theorem 2 Any series parallel graph G is two terminal series parallel with
terminals selected as in lemma 9 if G is biconnected, or as in lemma 10
otherwise. 2

4 Detecting Nesting

We describe here the solution to a key subproblem in the recognition of
series parallel graphs. In our recognition algorithm, we will have constructed
an ear decomposition, which if the graph is series parallel must be nested.
However we will need to verify this property in order to check whether the
graph is in fact series parallel. If we wish to find a decomposition into the
series and parallel composition operations, we further need to find the tree
corresponding to the nesting structure. In fact we wish to create a nesting
tree that also contains nodes for each of the edges in the outer ear, treated
as if they were ears themselves. Therefore we now show how this can be
done.

We can treat the collection of ears properly nested in a given ear inde-
pendently of those ears nested in other ears. Form the ear path graph Hi for
each ear Ei as follows: Hi contains a path composed of copies of the vertices
in ear Ei; further, for each ear Ej properly nested in Ei we add an edge in
Hi between the vertices that are copies of the endpoints of Ej . Note that
Hi may have multiple edges with the same pairs of endpoints; this will not
be a problem for our algorithms.

From now on in this section the words “edge” and “vertex” refer to edges
and vertices in Hi, and not in the original input graph. A path edge is an
edge of Hi corresponding to one of the edges in ear Ei. A non-path edge
is any other edge of Hi; that is, an edge corresponding to an ear properly
nested in Ei.

10



A subtle point in the construction of Hi is how to split the adjacency lists
of vertices in the original graph into adjacency lists in the various graphs
Hi. This can be solved by using the property that each vertex must be an
interior vertex of at most one ear. We first split the adjacency lists into two
sets: those edges corresponding to ears nested in the ear in which the vertex
is interior, and those nested in other ears. Thus, for each graph Hi, we can
compute the adjacency lists of all vertices except the copies of the endpoints
of ear Ei. But these two remaining adjacency lists can be constructed in a
prefix computation [1, 5, 10] simply by scanning all ears properly nested in
Ei.

With these definitions, our problem becomes that of testing, for each Hi,
whether the non-path edges of Hi nest, and if so constructing a nesting tree.
We must take logarithmic time and a number of operations proportional to
the size of Hi.

Number the vertices in Hi in order from one end of the path to the other.
This can be done with a parallel list ranking algorithm [1, 5]. For each edge
e in Hi, let MIN(e) be the smaller of the two numbers of its endpoints, and
let MAX(e) be the larger of the two numbers.

For each vertex, split its list of adjacent edges into two lists: the edges
going backwards (to a vertex with a lower number) and the edges going
forwards (to a vertex with a higher number). We assume that the path
edges are listed first in each case. Concatenate all the lists of backwards
edges, from lower numbered endpoints to higher numbered ones. This gives
a list of all edges in Hi, sorted in order by their values of MAX(e). For a
given value of MAX(e), the path edge having that value comes before the
other edges with the same value.

For each edge e in this list, let NEST(e) be the nearest edge f appearing
before e in the list with MIN(f) ≤ MIN(e); this can be computed with the
“All Nearest Smaller Values” algorithm of Berkman et al. [2]. We now show
that NEST(e) captures the nesting order of the edges of Hi.

First we must define a unique nesting order. The only ambiguous case
is when for two edges e and f of Hi, MIN(e) = MIN(f) and MAX(e) =
MAX(f). Then if f appears earlier in the list of edges than e, we say that
f is nested in e. This unambiguously and consistently resolves any possible
ambiguity. By this criterion, all path edges are nested within any edges
sharing the same pairs of endpoints, and all non-path edges have at least a
path edge nested within them; this is the reason we listed path edges before
other edges with the same values of MAX(e).

We say that an edge g is nested directly within edge e if g is nested in e,

11



but there is no edge f with g nested in f and f nested in e.

Lemma 11 Let the graph Hi be nested. Then for each non-path edge e,
MIN(e) = MIN(NEST(e)), and NEST(e) is the unique edge nested directly
within e and sharing the same value of MIN.

Proof: First assume that, MIN(NEST(e)) < MIN(e). Then let f be the
path edge with MIN(f) = MIN(e). If MIN(NEST(e)) < MIN(e), then by
the assumption that Hi is nested, MAX(NEST(e)) ≤ MIN(e) < MAX(f),
and so NEST(e) occurs before f in the list of edges. But, since f was not
chosen as NEST(e), it must not occur before e in the list, and the only way
this can happen is that e = f .

So if e is a non-path edge, MIN(e) = MIN(NEST(e)). It follows that
NEST(e) is nested in e.

The nearest edge in the list having the same value of MIN will be one
with the largest value of MAX. If two such edges exist, the later one in the
list will be chosen. Therefore, by our disambiguating rule, it follows that
NEST(e) is directly nested in e. 2

Theorem 3 Given an ear decomposition of a graph, we can test whether
the decomposition is nested, and if so construct the tree corresponding to
the nesting structure within each ear, in time O(log n) with O(n) parallel
operations.

Proof: In fact we compute the nesting trees and then use them to verify
that the decomposition is nested. Therefore we now construct a nesting tree,
with nodes corresponding to the edges of Hi, and links corresponding to the
nesting of those edges. We will later verify that our construction actually
gives us a nesting tree.

We first create a node for each edge of Hi, with one extra root node.
Our tree will be specified by listing, for each node, its first child and its next
sibling. All other information can be recovered from these two links.

Lemma 11 lets us determine the first child of each parent node. The non-
parent nodes are exactly those corresponding to the path edges. It remains
to find the next sibling of each node.

First note that the node corresponding to edge e has a next sibling if
and only if e is not nested within another ear f with MAX(e) = MAX(f).
Symmetrically, e has a previous sibling if and only if it is not nested within
another ear f with MIN(e) = MIN(f).

12



Therefore for each vertex v interior to path Hi, there is exactly one pair
of edges e and f such that MAX(e) = MIN(f) = v, and such that f is
the next sibling of e. The edge f can be found by searching the adjacency
list of v for the edge appearing last in the sorted list of edges. The edge e
can be found symmetrically; for this we need to construct a different sorted
list of all edges by concatenating the adjacency lists of the path vertices in
reversed order.

The root of the nesting tree must be added as a new node, with first
child the edge e with MIN(e) the first vertex in the path, and of all such
edges the one appearing last in the sorted list.

All these steps can be performed for any decomposition, nested or not,
yielding a first child and next sibling for some of the nodes in the tree. If
Hi is nested, each edge in Hi must occur exactly once either as a first child
or as a next sibling; this can be tested as follows. We allocate an array of
memory cells corresponding to the nodes in the tree. Each node first clears
its own cell. Then each node concurrently writes its name in the cell for its
first child, and for its next sibling, if it has either of those two links. Third,
each node verifies that no other node concurrently wrote to those two cells.
Fourth, each node other than the root node verifies that some other node
wrote a name in its cell.

The chains of nodes found by following the next sibling links cannot be
cyclic. Therefore each first child of a parent can send its parent’s identity
along these chains, by a prefix computation. After this stage every node will
know its parent, and it can easily be verified that each node is nested in its
parent.

If all these conditions hold, we will have constructed a graph that is
acyclic (because of the nesting property) and with a number of edges one
fewer than the number of nodes (the specially constructed root node has no
incoming edges). Therefore this graph must be a tree, and the decomposition
must be nested. 2

5 The Algorithm

We now show how our results may be combined into a series parallel graph
recognition algorithm. We should note a related concept of series parallel
graphs, in which the terminals are not required to be disjoint; such graphs
can be formed by including an isolated vertex in the class of series parallel
graphs. It seems likely that our algorithms can be modified to recognize

13



such graphs by using arbitrary ear decompositions, instead of open ear de-
compositions; however it seems easier to simply verify that each biconnected
component of such a graph is series parallel in the usual sense.

Let C(m,n) be the number of processors required to compute the con-
nected components and spanning forest of a graph with m edges and n
vertices, in time O(log n). The best bound known for this problem is
C(m,n) = O(mα(m,n)/ log n) [5]. This differs from the best possible bound
by at most the inverse Ackermann function. It is not known whether linear
work can be achieved in logarithmic time.

To recognize an undirected series parallel graph, we perform the following
steps on the given graph G. We will achieve our desired time bound if each
step takes time O(log n), and a number of operations (time multiplied by
processors) no more than O(C(m,n) logn). Several of the steps assume
the graph is specified as lists of the edges incident to each vertex. If the
graph is specified instead as one list of all the edges, a sorting step can be
performed to transform it into the desired representation, but this will take
O(n) processors.

1. Find the tree of biconnected components of G using the algorithm of
Tarjan and Vishkin [13]. This takes time O(log n) and uses C(m,n)
processors on a CRCW machine.

2. If G is biconnected, let (s, t) be any edge in G. Otherwise, verify that
the tree of biconnected components is a path (i.e., G is connected and
each component is adjacent to at most two others). Let v and w be
the cutpoints of the end components in the path, and (s, v) and (t, w)
be edges in those components. Add edge (s, t) to the graph, so that
G is now biconnected. By the lemmas of the previous section, we will
now have a pair of adjacent vertices s and t such that, if G is series
parallel, s and t can be terminals of G. All these steps can be done in
constant time with linearly many processors.

3. Find an open ear decomposition ED of G starting from the ear con-
sisting of the single edge (s, t). This can be done by the algorithm
of Maon et al [11], which again takes logarithmic time and C(m,n)
processors. If G is series parallel, by lemma 7, ED will be nested; now
we must verify whether this is the case.

4. For each vertex v, compute eED(v), the ear in which v is interior. For
each ear Ei, compute eED(Ei), the ear properly containing Ei, as the

14



greater of the two values of eED applied to the endpoints of Ei. These
steps take constant time with linearly many processors.

5. Verify that the decomposition is nested, and form the nesting tree
for each ear as in theorem 3. This step takes time O(log n) with
O((n+m)/ log n) processors.

6. Form the decomposition into series parallel composition operations as
follows. Allocate place holders for the following symbols: W (Ei) for
each ear Ei; X(ej), Y (ej), and Z(ej) for each node ej in the nesting
tree for each ear Ei. If ej corresponds to ear Ej , let X(ej) = W (Ej);
otherwise ej corresponds to an edge in ear Ei, and we let X(ej) be
that edge. If ej has first child ek, let Y (ej) = P (X(ej), Z(ek)); if
ej has no child let Y (ej) = X(ej). If ej has next sibling ek let
Z(ej) = S(Y (ej), Z(ek)); otherwise let Z(ej) = Y (ej). Finally for
each ear Ei let W (Ei) = Z(x) where x is the root of the nesting tree
for Ei. All these steps can be performed in constant time with lin-
early many processors, and compressing the resulting decomposition
to yield only the composition operations and not the equivalences be-
tween placeholders can be done in time O(log n) with O((n+m)/ log n)
processors.

To recognize an undirected series parallel graph with specified terminals,
we simply omit the first two steps above. To recognize a directed series
parallel graph, we take the terminals to be the unique source and sink of
the graph, perform the steps above, and verify that each edge in the graph
is directed in the appropriate direction.

To reconcile the differences between times and numbers of processors
used by each step above, recall that any parallel algorithm can be slowed
down to any time no slower than the total amount of work without changing
the number of operations by more than a constant factor [4]. In our case the
work of each step is at least linear and the slowdown is at most logarithmic,
so there is no problem applying this result.

Putting the bounds for these steps together, we have

Theorem 4 If G is a series parallel graph, specified by lists of edges incident
to each vertex, that fact can be verified, and a series parallel decomposition
of G constructed, in time O(log n) with C(m,n) processors on a CRCW
machine. 2

15



Acknowledgements

This research was performed in part at Columbia University, supported in
part by NSF grants DCR-85-11713 and CCR-86-05353, and by DARPA
contract N00039-84-C-0165.

I would like to thank Baruch Schieber, for persuading me to publish
these results, and an anonymous referee, for suggestions leading to the im-
provement of the processor bounds for my algorithms.

References

[1] R.J. Anderson and G.L. Miller, Deterministic Parallel List Ranking,
3rd Aegean Workshop on Computing, Springer-Verlag LNCS 319 (1988)
91–100.

[2] O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin, Highly
Parallelizable Problems, Proc. 21st ACM Symp. Theory of Computing
(1989) 309–319.

[3] M.W. Bern, E.L. Lawler, and A.L. Wong, Linear-time Computation of
Optimal Subgraphs of Decomposable Graphs, J. Algorithms 8(2) (1987)
216–235; a preliminary version appeared as Why Certain Subgraph
Computations Require Only Linear Time, Proc. 26th IEEE Symp.
Foundations of Computer Science (1985) 117–125.

[4] R.P. Brent, The Parallel Evaluation of General Arithmetic Expressions,
J. ACM 21 (1974) 201–206.

[5] R. Cole and U. Vishkin, Approximate and Exact Parallel Scheduling
with Applications to Optimal Parallel List Ranking, Info. and Control
70 (1986) 32–53.

[6] R.J. Duffin, Topology of Series Parallel Networks, J. Math. and Appl.
10 (1965) 303–318.

[7] X. He and Y. Yesha, Parallel Recognition and Decomposition of Two
Terminal Series Parallel Graphs, Info. and Comput. 75 (1987) 15–38.

[8] Samir Khuller, Ear Decompositions, SIGACT News 20(1) (1989) 128.

16



[9] Tohru Kikuno, Noriyoshi Yoshida, and Yoshiaki Kakuda, A Linear Al-
gorithm for the Domination Number of a Series Parallel Graph, Disc.
Appl. Math. 5 (1983) 299–311.

[10] R.E. Ladner and M.J. Fischer, Parallel Prefix Computation, J. ACM
27 (1980) 831–838.

[11] Y. Maon, B. Schieber, and U. Vishkin, Parallel Ear Decomposition
Search (EDS) and ST-Numbering in Graphs, Theor. Comput. Sci. 47
(1986) 277–198, and VLSI Algorithms and Architectures, Springer-
Verlag LNCS 227 (1986) 34–45.

[12] K. Takamizawa, T. Nishizeki, and N. Saito, Linear-Time Computability
of Combinatorial Problems on Series-Parallel Graphs, J. ACM 29 (1982)
623–641.

[13] R.E. Tarjan and U. Vishkin, An Efficient Parallel Biconnectivity Algo-
rithm, SIAM J. Comput. 14(4) (1985) 862–874; a preliminary version
appeared as Finding Biconnected Components and Computing Tree
Functions in Logarithmic Parallel Time, Proc. 25th IEEE Symp. Foun-
dations of Computer Science (1984) 12–20.

[14] Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler, The Recogni-
tion of Series Parallel Digraphs, SIAM J. Comput. 11 (1982), 289–313,
and Proc. 11th ACM Symp. Theory of Computing (1979) 1–12.

[15] H. Whitney, Non-Separable and Planar Graphs, Trans. Amer. Math.
Soc. 34 (1932) 339–362.

17


