
A Fast Algorithm For Constructing Sparse Euclidean Spanners

(Extended Abstract)

Gautam Das ●t Giri Narasimhan~

Abstract

Let G = (V, 1?) be a n-vertex connected graph with

positive edge weights. A subgraph G’ is a t-spanner

if for all u, v c V, the distance between u and v

in the subgraph is at most t times the correspond-

ing distance in G. We design an O(n log2 n) time

algorithm which, given a set V of n points in k-

dimensional space, and any constant t > 1, pr-

duces a t-spanner of the complete Euclidean graph

of V. This algorithm retains the spirit of a recent

0(n3 log n)-time greedy algorithm which produces t-

spanners with a small number of edges and a small

total edge weight; we use graph clustering tech-

niques to achieve a more efficient implementation.

Our

ness

1

spanners have similar size and weight sparse-

aa those constructed by the greedy algorithm.

Introduction

Let G = (V, 1?) be a n-vertex connected graph with

positive edge weights. A subgraph Gt is a t-spanner

if for all u, v E V, the distance between u and v

in the subgraph is at most t times the correspond-

ing distance in G. The value of t is known as the

8tTetch factor of G1. Let V be a set of n points in

k-dimensional space. An Euclidean graph has V as

its vertices, and its edges are straight line segments

joining pairs of points, with edge weights being their

*Supported in part by NSF grsnt CCFL930-6822

t Math Sciences Dept., Memphis State University, Mem-

phis, TN 38152. e-mail: dsag/giriOnextl .msci.memst .edu

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

Euclidean distances. The complete Euclidean graph

contains all n(n – 1)/2 edges.

Although complete graphs represent ideal com-

munication networks, they are expensive to build

in practice, and sparse spanners represent low cost

alternatives. Sparseness of spanners is usually mea-

sured by various criteria such as few edges, small

weight, and small degree. Spanners for complete

Euclidean graphs as well as for arbitrary weighted

graphs find applications in robotics, network topol-

ogy design, distributed systems, design of parallel

machines, and have also been investigated by graph

theorists. Most of the recent literature on spanners

are referenced in [4, 9].

Let MST refer to a minimum spanning tree of

the complete graph. For complete Euclidean graphs

in 2-dimensions, an O(n log n)-time algorithm is de-

scribed in [7] which produces t-spanners with O(n)

edges and weight O(wt(MST)), which is optimal.

The problem gets more difficult in higher dimen-

sions. In k-dimensional space, there are several al-

gorithms that run in O(n log n) time [8, 10]. How-

ever they only guarantee that the number of span-

ner edges is O(n); the total weight could be arbi-

trarily large. In [4] an O(n log n) time algorithm is

described which generates spanners in k-dimensions

with weight O(log n). wt(MST). The nature of this

algorithm is such that the O(log n) factor cannot

be eliminated, so the algorithm always produces a

suboptimally weighted spanner.

In contrast, in [1,4, 5] a simple greedy algorithm is

presented which generates spanners with O(n) edges

and a weight which is likely to be asymptotically op

timal for all dimensions. In [4] it is shown that for

any dimension k the weight is O(log n) . wt(MST),

and in [5] it is shown that for k < 3 the weight
is O(wt(MST)). In [5] it is conjectured that the

weight is actually asymptotically optimal in any di-

mension and that the O(log n) factor can be elim-

10th Computational Geometry 94-6/94 Stony Brook, NY, USA
@ 1994 ACM 0-89791 -648-4/94/0006..$3.50

132

inated by a more careful analysis. The constants

implicit in the O-notation depend only on t and k.

The greedy algorithm has also been used to gener-

ate spanners of arbitrary weighted graphs, and there

again, it is superior to other algorithms in the sense

that it produces spanners with very small weight.

However, the greedy algorithm is handicapped by

a slow running time, mainly because it has to make

a large number of shortest path queries. In the Eu-

clidean case, the best-known implementation has a

running time of 0(ra3 log n). In this paper, we de-

sign an O(n log2 n)-time algorithm to construct t-

spanners, which retains the spirit of the greedy algo-

rithm. This new algorithm is faster because we use

graph clustering techniques to answer shortest path

queries only approximately. The spanners produced

by thh algorithm have the same asymptotic size

and weight bounds as the spanners produced by the

greedy algorithm. Furthermore, any improvements

in these bounds for the greedy algorithm spanners is

likely to lead to similar improvements in the bounds

for the spanners produced by thk algorithm. Graph

clustering is not new, and in fact there are several

algorithms which use a variety of clustering tech-

niques to generate spanners of Euclidean as well as

arbitrary weighted graphs [2, 3, 6, 8, 10]. What is

interesting is the way in which we exploit a simple

clustering technique in our implementation.

In the next section we introduce notation, summa-

rize previous relevant research, and give an overview

of our algorithm. Section 3 describes the clustering

technique used. Section 4 describes the algorithm.

We conclude with some open problems.

2 Preliminaries

Let G = (V, E) be a n-vertex connected graph with

positive edge weights. The weight of a single edge e

is wt(e), the weight of a set of edges E’ is un?(E’),

and the weight of the entire graph is w?(G). Let

9~G (u, v) be the weight of the shortest path in G

between u and u. Let d(u, v) refer to the Euclidean

distance between points u and v in Euclidean space.

In [1, 4], a greedy algorithm is developed for con-

structing t-spanners of arbitrary weighted graphs,

for any t >1. We reproduce the algorithm in Fig-

ure 1. Let us apply this algorithm to a complete

Euclidean graph in k-dimensional space and let the
output graph be G’ = (~ E’).

It is easy to see that the output is a t-spanner,
since for any (u, v) that is not an edge of G’,

sp@ (u, v) < t. d(u, v). In addition, for any (u,v)

Algorithm GREEDY(G = (V, E), t)

begin

order E by non-decreasing weights

E’ + 0, G’+ (V, E’)

for each edge e = (u, v) c E’ do

if ~p& (u, v) > t.wt(e) then

E’ -E’ U {e}, G’+- (V, E’)

output G’

end.

Figure 1: The greedy algorithm

that is an edge of G’, the weight of the second

shortest path between u and v in G’ is greater than

t od(u, v). The second property is crucial in showing

that the total weight of the spanner is small. In [4]

it is shown that G’ has O(n) edges and has a total

edge weight of O(log n) . wt(MSZ’), where MST is

a minimum spanning tree of V. In [5] it is shown

that for k < 3, the greedy algorithm outputs a t-

spanner of weight O(wt (MST)). In that paper it is

conjectured that thh result is true for k-dimensions.

In thb paper, our algorithm mimics the ,greedy al-

gorithm and constructs a t-spanner G’ with asymp

totically same size and weight sparseness. Apart

from the very short edges of the spanner,, all other

edges (u, v) satisfy the property that the weight of

the second shortest path between u and v in G’ is

greater than c. d(u, v), where c is a constant depen-

dent on t. Thus, techniques similar to those used

in [4, 5] can be used to prove the same sparseness

bounds. Details appear later.

The following concept will be useful in later sec-

tions. We define a certain kind of “partial” spanners

of complete Euclidean graphs. Let V be a set of n

points in k-dimensional space, t > 1 and W > 0.

A graph G’ is a (t,W)-spanner if for all. u, v E V

such that d(u, v) < W, ~pG#(u, v) < t . d(u, v). In

other words, G’ provides short paths between pairs

of points whose inter-distance is at most W. For

instance, at any stage of the greedy algorithm, if

the edge most recently examined has weight L, the

partially constructed spanner is a (t,L)-spanner.

2.1 Overview of the algorithm

We first run the O(n log n) time algorithm in [8] to

get a graph G = (V, E), which is a ~-spzmner of the

complete Euclidean graph. Although it may have a

large weight, it has O(n) edges. We shall then find a

133

@spanner G’ of G. Clearly, G’ will be a t-spanner

of the complete graph.

If we were to run the original greedy algorithm

on G to get G’, it will have to answer O(n) short-

est path queries on G’. Our algorithm does better

by speeding up the queries. We group the edges in

E into O(log n) groups, such that each group has

edges that are more or less of equal weight. Then

we examine the edges, going from one group to the

next in order of increasing weight, and at the same

time buildhg a partially constructed spanner, G’.

Immediately before processing a group of edges

(of weight approximately W), the algorithm cre-

ates a cluster-graph H aa follows. Roughly speak-

ing, the vertices of G1 are covered by a set of clus-

ters such that each cluster consists of vertices that

are within O(W) distance from each other in G’.

Each cluster is collapsed into a representative ver-

tex, namely its center, to forma single macro vertex

of H. These macro vertices are connected by edges

of weight @(W) only if the distance between their

centers in G’ is @(W). Notice that all edge weights

of i?f are more or less the same. Thus distances in G’

are approximated by distances in H. A crucial ob-

servation, as proved later, is that in the Euclidean

case the maximum degree of H turns out to be a

constant. Thus the shortest path query can be an-

swered in constant time as follows. Start with a

macro vertex whose corresponding cluster contains

u, and see whether v belongs to any of the clusters

that are within O(W) links from the start cluster.

Since the degree is constant, and t is a constant,

we need only explore a constant-sized portion of H.

Once we have examined all the edges in a group, we

create a cluster-graph again (but with a larger W),

and process the next group of edges.

The running time of of our algorithm is dominated

by the periodic clustering necessary.

3 Clustering a graph

In this section we first consider arbitrary weighted

graphs. Let G’ = (V, E’) be an any positive

weighted graph, and W > 0. A clwter C is a set
of vertices, with one vertex v its center, such that

for all u E V, spGl (u, v) ~ W implies that u 6 C.

W is the radiw of the cluster. A clwter-cover is a

set of clusters Cl, Ca, , . . . C’~, (with corresponding

centers vl, V2, Um) such that their union is V.

Clusters in a cluster-cover may overlap, however a

cluster center does not belong to any other cluster.

We describe an obvious ~gorithm to compute

a cluster-cover. First consider a procedure called

SINGLE-SOURCE(G’, u, W), which takes as in-

put any weighted graph G’, a start vertex v, and

W>o. It outputs all vertices u such that

sp& (u, u) ~ W. It can be implemented as Dijk-

stra’s single-source shortest path algorithm by us-

ing a heap and ensuring that the algorithm never

visits vertices further than W from v. We now de-

sign a procedure CLUSTER-COVER(G’, W) as fol-

lows. Select any vertex VI of G’, and run SINGLE

SOURCE(G’, VI, W). The output is a cluster Cl

with center VI. Then select any vertex V2 not yet

visited, and run SINGLE-SOURCE(G’, V2, W). The

output is C2 with center V2. Continue this process

until all vertices are visited. For each vertex, the

procedure also computes the clusters to which it be-

longs as well as its distance from their respective

centers.

Let G’ = (~ E’) be any weighted graph, W >0

and 0<i5 <l/2. Assume a cluster-cover has

been constructed with cluster radhs 6W. A clwter-

graph H is defined as follows. The vertex set is

V. The are two kinds of edges, intra-clwter edges

and inter- clwter edges. For all Ci, and for all

u E Ci, [u, vi] is an intra-cluster edge (we use square

brackets to distinguish cluster-graph edges from the

edges of G’). Inter-cluster edges are between clus-

ter centers. [vi, ~j] is an inter-cluster edge if, either

SpGI (vi, vj) < W, or there exists e = (u, v) c E’

such that u E Ci, u E Cj. Cluster-graph edges have

weights, and wt([u, v]) is defined as SpGI (u, v).

We now describe a procedure called CLUSTER-

GRAPH(G’, 6, W). It first calls CLUSTER-

COVER(G’, 6W). In fact, during this process all

intra-cluster edges (and their weights) will also be

computed. Recall that inter-cluster edges have to

satisfy one of two conditions. Inter-cluster edges

satisfying the first condition may be computed by

running SINGLE-SOURCE on G’ from each clus-

ter center vi and checking which other cluster cen-

ters are no further than W from vi. The remain-

ing inter-cluster edges may be computed as fol-

lows. For all e = (u, v) G E’ do the following.

For all cluster centers vi, Vj such that u belongs

to vi ‘S cluster and v belongs to vj ‘S cluster, add
the inter-cluster edge [~i$ Vj] with weight defined to

be wi!([vi, u])+ wt(e) + wt([v, tij]) (unless the inter-

cluster edge already existed with a smaller weight).

The motivation for the cluster-graph is that it is

a simpler structure than G’. Shortest path queries

in G’ can be translated into shortest path queries in

H, and the latter can be performed more efficiently.

The following two lemmas are obvious.

134

Lemma 3.1 Intra-clwter edges are no larger that

6W. Inter-clwter edges are larger than i5W, but

no larger than max{ W, D + 26 W}, where D is the

weight of the largest edge in G1.

Lemma 3.2 Let a path between u and v in H have

weight L. Then there is a path between u and v in

G’ with weight at mod L.

The next lemma is the converse, which is harder.

We first introduce some definitions. A vertex u is

defined to be sufficiently far from vertex v if, (1)

no single cluster contains both, and (2) SpGJ (u, v) >

W – 26W. Define a clwter-path in H to be a path

where the first and last edges are intra-cluster edges,

but all intermediate edges are inter-cluster edges.

Lemma 3.3 Let u be mficiently far from v. Let

L1 be the weight of a path between u and v in G’.

Then there ezists a cluster-path between u and v in

H with weight Lz mch that

L1 ~
()

1+66
— *L1
1–26

Proof : This lemma says that H approximates

paths in G’ only for pairs of vertices which are suf-

ficiently far apart. Secondly, notice that the quality

of the approximation depends on 6; smaller values

of 6 make paths in H closer in weight to paths in

G’, although H becomes denser.

Let the path from u to v having weight L1 in G’ be

P. We shall use the notation P(uJ, z) to denote the

vertices of P between vertices w and z, not includlng

w. We shall construct a cluster-path Q from u to

v in H with weight La as follows. follows. Let Co

be any cluster (with center Vo) containing u. The

first edge of Q is the intra-cluster edge [u, vO]. Next,

among all clusters with centers adjacent to V. in H,

let Cl (with center Vl) intersect the furthest vertex

along P(u, v), say wl. Add the inter-cluster edge

[VO,Vl] to Q. Next, among all clusters with centers

adjacent to vi in H, let CX (with center V2) intersect

the furthest vertex along P(wl, v), say wa. Add the

inter-cluster edge [vl, v-J to Q. This process may

be continued until we reach a cluster center, v~,

whose cluster contains v. At thb stage, complete

Q by adding the intra-cluster edge [v~, v]. Figure 2

illustrates some of this notions.

Case 1: m = 1. In this case there is only one inter-

cluster edge along Q. Since u is sufficiently far from
IJ, we know that

LI>W–26W

cluster with radhs 6W

\

6//’- ‘Vo

pa

e

Figure 2: Paths in G’ and H

NOW L2 = Wt([u, Vo]) + Wt([vo, VJ) + UJt([vl, v]).

But wt([u, Vo]) and wt([vl, v]) are each at most 6W,

while wt([vo, vi]) = SPGI (VO, VI) < SPCY(IJo, U) +

Sp& (U, V) + Sp& (V, Vl) ~ 2&W + L1 . Thus

We now have two inequahties relating Ll, La and

W. After eliminating W, we get

LZ <
()

1+26
— *L1
1–26

Case 2: m ~ 2 and is even. In thh case, sup

pose [v;, Vi+l] and [v~+l, v~+z] are any two consecu-

tive inter-cluster edges on Q. We observe that the

sum of their weights is greater than W. l[f thb were

not so, then the edge [vi, v~+z] (which exists by the

135

definition of the cluster-graph) would have instead

been added to Q by the above process.

We divide Q into portions Qo, Q2,. . .. where Qz~

is the portion between v2i and v2j+2. Similarly, we

divide P into portions Po, P2, where Pai is the

portion between the last vertex intersecting C2i and

the first vertex intersecting C’2i+2 (see Figure 2). We

shall first prove that for any even i, the weight of Q2i

is no more than a constant (which depends upon 6)

times the weight of P2i.

Let the weight of P2i be ~i and that of Q2i be q2i.

Since there cannot be an inter-cluster edge between

v2i and v2i+2, we have

Select r to be any vertex of P2i within the in-

termediate cluster C2i~1. The vertex r splits P2i

into two portions. Let pji (p~i) be the weight of

the initial (final) portions; thus ~i = pji + p~i.

SO ~t([v2ij v2i+1]) ~ pji + 26W, and similarly

wt([v2i+l, v2i+2]) s ti~i + 26W. Adding the two)

we get

q2i s pzi + 46W

We now have two inequalities relating pzi$ qzj and

W. After eliminating W, we get

()1+26

‘2i< 1–2(5 “p2i

Summing over all even values of i, and taking into

account the two intra-cluster edges at either ends of

Q, we get

L2 <
()

1+26
— .LI+26W
1–2L5

Since u is sufficiently far from v, we know that

L1 > W – 26W. That is, LI s26/(1 – 26) > 26W.

Substituting for 26W in the above inequality and

simplifying, we get

L2 <
()

1+46
— *L1
1–26

Case 3: m ~ 3 and is odd. In thh case, the analysis

will be exactly the same as in Case 2, except that we

have to account for the last inter-cluster edge along

Q and correspondingly the portion of P between

the last two clusters. Let qm_l be the weight of
[v~_l, v~], and let p~_l be the weight of the portion

of P between the last vertex intersecting C~_ 1 and

first vertex intersecting Cm. Clearly qm- 1 ~*- 1+

21SW. The inequality does not change if we rewrite

()~it as qm_l ~ _ . ~-1 + 26W. We then sum

up the p’s and q’s as in Case 2, and get

L2 <
()

1+26
— .L1+4bW
1–26

Since L1 > W – 26W, we get L1 o 46/(1 – 26) >

46W. Substituting for 46W in the above inequality

and simplifying, we get

L2 <
()

1+66
— *L1
1–26

The constant in Case 3 dominates, which proves

the lemma. •1

3.1 Clustering of partial Euclidean

spanners

Although described for arbitrary weighted graphs,

in our algorithm we will always be computing

cluster-graphs for partial spanners of complete Eu-

clidean graphs under the following conditions. Let

t>l, a>0,0<6< l/2,0 >0, and W> O. Fora

set V of n points in k-dimensional space, let G’ be

a (t, aW)-spanner such that all its edges are smaller

than OW. Run CLUSTER-GRAPH(G’, 6, W), and

let H be the computed cluster-graph. 1%has several

additional properties, which are used in analyzing

the running time of our algorithm.

Lemma 3.4 Let P >0 be any constant. Inside any

sphere of radiw flW there can be at most a constant

(which depends upon a, ~, 6, t, and k) number of

clwter centers.

Proof: We first provide a lower bound on the sps

tial separation between any pair of cluster centers.

Let vi, vj be two cluster centers, and let d(vij vj) =

L. There are two cases, either L > ~W or L ~ CYW.

If it is the latter case, then Spct (vi, vj) ~ tL. But

SpGl (vi, vj) > 6W (Lemma 3.1), hence L > 6W/t.

So in either case, L > min{aW, 6W/t}.

Given a sphere of radius /3W, we can pack at most

a constant (which depends upon a, ~, 6, t,and k)

number of points inside it, such that the spatial sep

aration between any pair of points is greater than

min{a W, 6W/t}. ❑

Lemma 3.5 A vertez belongs to at most a constant

(which depends upon a, 6, t, and k) number of clw-

ters.

136

Proof : Consider any vertex u. Let C be a clus-

ter containing u, with cluster center v. d(u, u) s

sp@ (u, v) ~ 6W. Consider a sphere of radius 6W

centered at u. The cluster centers of all clusters

containing u have to lie within the sphere. Invoking

Lemma 3.4 completes the proof. ❑

Lemma 3.6 The aubgraph of H induced by the

inter-cluster edges haa at mom’ a constant degree

(which depends CY, 6,6, t, and k).

Proof : Let [ui, Uj] be an inter-cluster edge. By

Lemma 3.1, d(Vi, IJj) < .?~G’l(~it IJj) ~ I’Ilax{w, 6wi-

26W}. Consider a sphere of radius max{W, OW +

26W} centered at vi. The cluster centers adjacent to

vi have to lie within the sphere. Invoking Lemma 3.4

completes the proof. •1

We introduce one more procedure to be used

by the algorithm. Let G’ be a (t, aW)-spanner
satisfying the conditions laid out earlier, and let

H be its cluster-graph. The procedure CHECK-
PATH(.H, u, v, L) returns ‘true” if there is a cluster-

path from u to v in H with weight at most L, and

‘false” otherwise.

Thh procedure is always called by our spanner

algorithm under fortunate circumstances. There is

a constant y > 0 such that, the input values of L

are always at most ~W. Because of this restriction,

the procedure can be made to run in constant time.

To see thh, consider initiating from u a brute-force

search for such a cluster-path. There are at most a

constant number of intra-cluster edges leadhg from

u to different cluster centers. The inter-cluster edges

have each weight at least N%’, thus if such a cluster-

path exists, it can have at most ~/6 inter-cluster

edges. We also know that the subgraph of H in-

duced by inter-cluster edges has a constant degree

(Lemma 3.6). We can conclude that the brute-force

search initiated from u will only have to examine a

constant sized subgraph of H, and verify whether v

belongs to this subgraph, and if so, whether there

exists a cluster-path from u to v of weight at most

L.

Thh procedure is used in lieu of the time con-

suming shortest path queries of the original greedy

algorithm.

4 The spanner algorithm

In this section we illustrate an O(n logs n) time al-
gorithm for constructing t-spanners of complete Eu-

Algorithm FAST-GREEDY(V, t)

begin

($-)~+; ‘t-1
t+3

use algorithm in [8], create a {&spanner G = (V, E)

order E by non-decreasing weight

let the largest edge in E have weight D

create the intervals

10 = (o, D/n],
Ii = (2ti-l)D/tz, 2iD/tI] for i = 1,2,.. .,logn

let Ei be the (sorted) edges of E with weights in Ii

E’ - Eo, G’ + (V, E’)

fori-ltologndo
W’ + 2(i-1)~/n

H + CLUSTER-GRAPH(G’, 6, Wi)

for each edge e c Ei do

EXAMINEEDGE(e)

output G’

end.

Figure 3: An O(n log2 n)-time algorithm

clidean graphs in k-dimensional space. ‘The algo-

rithm is shown in Figure 3, and one of its subrou-

tines is shown in Figure 4. As one can see, it retains

the spirit of the greedy algorithm, except for the

graph clusterings.

4.1 Analysis of the algorithm

We analyze three aspects of the FAST-GREEDY al-

gorithm. First, we prove that G’ is indeed t-spanner.

We then show that the spanner has a small weight.

Finally we show that a proper implementation runs

in O(n logz n) time.

Lemma 4.1 The graph G’ produced by the FAST-

GREEDY algorithm is a t-spanner of the complete

Euclidean graph.

Proof : To see that G’ is a t-spanner, consider

any edge e = (u, v) of E which is not added to

E’ in procedure EXAMINEEDGE. A cluster-path

(in fact, any path) from u to v in the cluster-graph

corresponds to an equivalent path in G’ with the

same weight (Lemma 3.2). Thus e is dnscarded if

sp& (u, v) ~ W. tf(u, v), which implies that G’ is

a @spanner of G, and is thus a t-spanner of the

complete graph. •1

Let us now estimate the weight of the spanner.
The E. edges do not contribute much because their

137

Algorithm EXAMINE-EDGE(e = (u, v))

begin

if not CHECK-PATH(ll, u, v, W. ci(u, v)) then

E’ t E’ U {e}, G’ - (V, E’)

for all cluster centers w,s such that

u is in w’s cluster and

v is in z’s cluster

do

add inter-cluster edge [w, Z] to 1?

wt([w, z]) t wt([w, u]) + d(u, V)+

Wt([v, z])

end.

Figure 4: Deciding whether an edge should be added

total weight is at most D, and D ~ wt(MST). We

shall estimate wt(ll’ \ Eo).

Lemma 4.2 Let e = (u, v) e E’ \ Eo. Then the

weight of the second shortest path between u and v

in G1 is greater than @. d(u, v).

Proof : Let C be the shortest simple cycle in G’

containing e. We have to estimate wt(C’) – d(u, v).

Let el = (ul, VI) be the largest edge on the cycle.

Then el c E \ Eo, and among the cycle edges it is

examined last by the algorithm. Let us consider the

scenario while the algorithm is examining el.

There is an alternate path in G’ from U1 to V1 of

weight wt (C) – d(ul, VI). But since the algorithm

eventually decides to add el to the spanner, at that

moment the weight of each cluster-path from U1 to

V1 is larger than fi.d(ul, VI). Notice that Wt(ul, v1)

is larger than Wi, where 6Wi is the current cluster

radius. This implies that U1 and VI are not con-

tained in any one cluster. Thus UI is sufficiently

far from VI. By Lemma 3.3 this implies that the

weight of each path in G1 from U1 to V1, in partic-

()
ular wt(C) – d(ul, Vi), is larger than ~. ~ .

d(ul, vi). Substituting the value of 6 selected by

the algorithm, this simplifies to ~. d(ul, Vi). Since
wt(c) — d(u, V) > wt(C) — d(ul, VI), the lemma is

proved. •1

Lemmas 4.1 and 4.2 are crucial in proving that

E’\ E. haa a small weight. Using techniques almost

identical to those in [4, 5], we can derive a bound on

the weight of E’ \ Eo, which is asymptotically the

same as the weight of the spanner produced by the

greedy algorithm. We omit details from this version

of the paper.

We now analyze the running time of the alg-

rithm.

Lemma 4.3 At any stage, if the mod recently ez-

amined edge has weight L, at that dage G’ ia a

(t, L/t) -spanner.

Proof : Consider in general any t-spanner G1 and

let u and u be any pair of vertices. Then $p@ (u, v) ~

t.d(u, v), which implies that any edge on this path

has weight at most tsd(u, v). Thus in our case, the

edges to be examined in the future (weights larger

than L) cannot contribute to short spanner paths

between points whose spatial separation is at most

L/t. •1

The above lemma implies that each cluster-graph

If generated by the CLUSTER-GRAPH procedure

(prior to the examination of edges in Ei) satisfies all

the properties and lemmas discussed in Section 3.1.

During the processing of Ei, new inter-cluster edges

may be added by the EXAMINE-EDGE procedure,

but H still satisfies those properties.

Lemma 4.4 FAST-GREEDY runs in O(n log2 n)

time.

Proof : The initial stages of the algorithm involve

a call to the spanner algorithm in [8], and sorting,

which together take O(n log n) time.

Consider EXAMINEEDGE. As seen earlier, a

call to CHECK-PATH takes constant time. Adding

the new inter-cluster edges takes constant time, be-

cause there are only a constant number of clusters

containing either of the end points of the processed

edge. Thus each call to EXAMINEEDGE takes

constant time. EXAMINEEDGE is itself called

0(7a) times.

Consider CLUSTER-GRAPH. This procedure

first calls CLUSTER-COVER. On partial spanners,

the latter can be made to run in O(n log n) time be-

cause there are O(n) edges and each vertex is visited

by the SINGLESOURCE procedure at most a con-

stant number of times (Lemma 3.5)$ thus there are

overall O(n) heap operations, each taking O(log n)

time. The CLUSTER-COVER procedure can simul-

taneously build the intr*cluster edges of the cluster-

graph. Inter-cluster edges are built in two stages. In

the first stage, the SINGLESOURCE procedure is

run from every cluster center, and in a manner sim-

ilar to the proof of Lemma 3.5, we can show that

each vertex is visited at most a constant number of

138

times. This stage therefore takes O(n log n) time. In

the second stage, each edge (u, v) of G’ is checked;

there are only a constant number of clusters con-

taininguor v, thus this stage can be processed in

linear time. Thus each call to CLUSTER-GRAPH

takes O(n log n) time. CLUSTER-GRAPH is itself

called log n times.

Hence the time complexity of FAST-GREEDY is

O(?Z log2 n). •1

5 Conclusions

In thh paper we show how a simple and natural

graph clustering technique can be effectively used in

speeding up an existing greedy algorithm for con-

structing Euclidean graph spanners. We conclude

by listing some open problems.

1.

2.

3.

4.

Is it possible to reduce the running time to

O(n log n)? This may require doing some sort

of clustering which ezploiti earlier clusterings.

One problem with such an approach is that

the error introduced in path length estimations

(Lemma 3.3) may multiply beyond a constant

factor.

The original greedy algorithm haa been success-

ful in producing small weight spanners for ar-

bitrary weighted graphs [4]. There exist other

spanner algorithms for general graphs which are

faster, but none produce spanners with smaller

weight. It would be interesting if we can effi-

ciently implement the greedy algorithm for ar-

bitrary weighted graphs. Of course, we would

not be able to exploit several nice properties

which arise in the geometric case, such as con-

stant degree cluster-graphs.

The conjecture in [5] that for any dimensions

the weight of the spanner produced by the

greedy algorithm is O(wt(ikfST)) needs to be

resolved. If proven true, it is likely to imply that

asymptotically optimally weighted spanners in

any dimensions can be computed in O(n log2 n)

time.

The clustering technique used in this paper is

simple and natural; it would interesting to see

whether it has other applications in problems

involving geometric graphs, especially in speed-

ing up existing algorithms.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

I. Alth6fer, G. Das, D.P. Dobkin, D, Joseph,

J. Soares: On Sparse Spanners of Weighted

Graphs: Discrete and Computational Geome-

try, 9, 1993, pp. 81-100.

B. Awerbuch, D. Peleg: Sparse Pa~rtitiona:

IEEE Foundations of Computer Science, 1993.

E. Cohen: Fast Algorithms for Constructing t-

Spanners and Paths with Stretch t:IEEE Foun-

dations of Computer Science, 1993.

B. Chandra, G. Das, G. Narasimhan, J. Soares:

New Sparseness Results on Graph Spanners: to

appear in International Journal of Computa-

tional Geometry and Applications.

G. Das, P. Heffernan, G, Narasimhan: Opti-

mally Sparse Spanners in 3-Dimensional Eu-

clidean Space: ACM Symposium on Compu-

tational Geometry, 1993, pp. 53-62.

G. Das, P. Heffernan: Constructing Degree-

3 Spanners with Other Sparseness Properties:

International Symposium on Algorithms and

Computations, 1993.

C. Levcopoulos, A. Lingas: There are Pla-

nar Graphs Almost as Good as the Com-

plete Graphs and as Short as the Minimum

Spanning Trees. Symposium on Optimal Algo-

rithms, LNCS, Springer-Verlag, 1989, pp. 9-13.

J.S. Salowe: Construction of Multidhnensional

Spanner Graphs with Applications to Minimum

Spanning Trees: ACM Symposium on Compu-

tational Geometry, 1991, pp. 256-261,

J. Soares: Graph Spanners: Ph.D Thesis, Univ.

of Chicago Technical Report CS 92-14, 1992.

P.M. Vaidya A Sparse Graph Almoslt as Good

as the Complete Graph on Points in K Dimen-

sions: Discrete and Computational Geometry,

6, 1991, pp. 369-381

139

