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Abstract The quality of multi-stage stochastic optimization models as they appear in asset

liability management, energy planning, transportation, supply chain management, and other

applications depends heavily on the quality of the underlying scenario model, describing the

uncertain processes influencing the profit/cost function, such as asset prices and liabilities,

the energy demand process, demand for transportation, and the like. A common approach

to generate scenarios is based on estimating an unknown distribution and matching its mo-

ments with moments of a discrete scenario model. This paper demonstrates that the problem

of finding valuable scenario approximations can be viewed as the problem of optimally ap-

proximating a given distribution with some distance function. We show that for Lipschitz

continuous cost/profit functions it is best to employ the Wasserstein distance. The resulting

optimization problem can be viewed as a multi-dimensional facility location problem, for

which at least good heuristic algorithms exist. For multi-stage problems, a scenario tree is

constructed as a nested facility location problem. Numerical convergence results for financial

mean-risk portfolio selection conclude the paper.

Keywords Stochastic programming . Multi-stage financial scenario generation

1 Introduction

A large class of decision problems involves decision stages and uncertainty. Examples are

multi-stage portfolio optimization or asset liability management problems, energy production

models, as well as models in telecommunication, transportation, supply chain management.

For a recent overview see Ruszczynski and Shapiro (2003) and Wallace and Ziemba (2005). A

common feature of these models is the fact that a stochastic process describing the uncertain

R. Hochreiter (�) · G. Ch. Pflug

Department of Statistics and Decision Support Systems, University of Vienna, Universitätsstraße 5/9,
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environment (asset prices, insurance claims, energy demand, communication load, . . . ) is

the most important part of the input data. Typically, these stochastic processes are estimated

from historical data and calibrated using some prior information. For subsequent decision

models, one needs a numerically tractable approximation, which is small enough to allow

for reasonable calculation times, but is large enough to capture the important features of the

problem.

The goal in modeling relevant stochastic processes by scenario trees is the following:

assume that a discrete-time continuous (or highly-dimensional discrete) space stochastic

process (ξt )t = 0,1,2,...,T is given, where ξ0 = x0 represents today’s value and is constant. The

distribution of this process may be the result of a parametric or non-parametric estimation

based on historical data. The state space may be univariate (IR1) or multivariate (IRk). We

look for a simple approximated stochastic process (ξ̃t ), which takes only finitely many values

and which is as close as possible to the original process (ξt ), and has a predetermined structure

as a tree at the same time. Denote the finite state space of ξ̃t by St , i.e. IP{ξ̃t ∈ St } = 1. Let

c(t) be the cardinality of St . We have that c(0) = 1. If x ∈ St , let b(x, t) be the branching

factor of x , i.e. b(x, t) = #{y : IP{ξ̃t+1 = y|ξ̃t = x} > 0}.
The process (ξ̃t )t = 0,...,T can be represented as a tree, where the root is (x0, 0) and the

node (x, t) and (y, t + 1) are connected by an arc, if IP{ξ̃t = x, ξ̃t+1 = y} > 0. The col-

lection of all branching factors b(x, t) determines the size of the tree. We may choose the

branching factors beforehand and independent of x . In this case, the structure of the tree

is determined by the vector B = (b0, b1, . . . , bT −1), where bt denotes the number of suc-

cessors per node in stage t . Let N = (n1, n2, . . . , nT ) be the vector of the total number of

nodes in each stage (n0 = 1). The approximation problem is an optimization problem of

one of the following types and is most often determined by the chosen scenario generation

method:

Given-structure problem. Which discrete process (ξ̃t ), t = 0, . . . , T with given branching

structure (b0, b1, . . . , bT −1) is closest to a given process (ξt ), t = 0, . . . , T ? The notion

of closeness has to be defined in an appropriate manner. The total number of scenarios

is
∏T −1

t=0 bt .

Stagewise fixed-structure problem. The total number of nodes per stage (n1, n2, . . . , nT )

is fixed, thus there will be nT scenarios.

Free-structure problem. The process (ξt ), t = 0, . . . , T has to be approximated by (ξ̃t ), t =
0, . . . , T , but its branching structure and number of nodes per stage (n1, . . . , nT −1)

is completely free except for the fact that the total number of nodes in the final stage

(= number of scenarios) nT is predetermined.

This paper is organized as follows: Section 2 presents an overview of scenario generation

techniques for stochastic optimization problems. Section 3 reviews different approximation

techniques for single-stage, uni-variate, continuous distributions—both from a theoretical

and numerical point of view. In Section 4, one specific methodology for calculating multi-

stage scenario trees based on the proposed distances is shown in detail. The quality of this

multi-stage scenario generator is substantiated by numerical convergence results applied to

financial portfolio management. Section 5 concludes the paper.

2 Scenario generation for stochastic programs

We refer to Dupačová et al. (2000) and the references therein for an overview of scenario

generation methods. In real-life (decision support) applications, the necessary input for a
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Fig. 1 Scenario generation

workflow: From data to decision

successful calculation of appropriate future scenarios consists of historical data, expert opin-

ion, and econometric models. The general workflow is depicted in Fig. 1. A good method uses

a combination of all three sources of information: theoretical considerations (econometric

models) reduce the class of acceptable tree models to parametric classes or classes with given

structure, historical data is the basis of the estimation process and expert knowledge can be

used e.g. to weigh historical data or to change implied trends according to the experts view

about future developments.

2.1 Approximations of stochastic optimization problems

We assume that the stochastic optimization problem is

min

{ ∫
h(x, ω) dG(ω) : x ∈ X

}
, (1)

where G is either a continuous or a discrete random variable with a huge number of mass

points on IRk . The scenario approximation problem is to find a simple distribution G̃ with

only few mass points such that the problem

min

{ ∫
h(x, ω) dG̃(ω) : x ∈ X

}
, (2)

approximates the original problem (1) well. It is difficult to obtain qualitative answers to the

question of how good an approximation is. From the optimization point of view, the goal of

the approximation would be such that the difference between the objective functions of the

two problems

sup

{∣∣∣ ∫ h(x, ω) dG(ω) −
∫

h(x, ω) dG̃(ω)

∣∣∣ : x ∈ X
}

(3)

is small. To put it differently, the problem is to find an appropriate distance d, such that

minimizing d(G, G̃) leads to a small value in (3).
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From the results of stability of stochastic programs (Rachev and Römisch, 2002) and

from certain approximation results (Pflug, 2001) it is known that optimal approximations of

stochastic programs in the sense of Eq. (3) can be achieved by minimizing some probability

metric (distance) with ζ -structure (as introduced by Zolotarev (1983)), which denotes uniform

distances of expectations of functions taken from a class H of measurable functions. These

distances of distributions are typically of the form

dH(G, G̃) = sup

{∣∣∣ ∫ h(ω) dG(ω) −
∫

h(ω) dG̃(ω)| : h ∈ H
}
. (4)

We call H separating, if dH(G, G̃) = 0 implies that G = G̃, in this case d is called a distance.

The family H defining the distance should be chosen in view of problem (1). If H contains

the functions {h(x, ·) : x ∈ X}, then obviously,

∣∣∣ ∫ h(x, ω) dG(ω) −
∫

h(x, ω) dG̃(ω)

∣∣∣ ≤ dH(G, G̃).

Important function classes for the approximation of stochastic programs are (a) Lipschitz

continuous functions (Section 2.2), and (b) piecewise constant functions with a given structure

of discontinuity sets (Section 2.3).

2.2 Lipschitz continuous functions

For p = 0 and p ≥ 1 and � ⊂ IRk introduce classesHp(�) of Lipschitz continuous functions

of order p:

H0(�) = H1(�) ∩ {
h ∈ Cb(�) : supω∈�|h(ω)| ≤ 1

}

Hp(�) = {h : � → IR : |h(ω) − h(ω̃)| ≤ max(1, ‖ω‖, ‖ω̃‖)p−1‖ω − ω̃‖ ∀ω, ω̃ ∈ �}

The corresponding distances, i.e.

d(G, G̃) = sup

{∣∣ ∫
�

h(ω)dG(ω) −
∫

�

h(ω)dG̃(ω)

∣∣∣ : h ∈ Hp(�)

}
(5)

are called

– p = 0: Bounded Lipschitz metric (dBL ),

– c p = 1: Wasserstein (Kantorovich) metric (dW ),

– 1 < p < ∞: Fortet-Mourier metric of order p (dF Mp ),

– p = ∞: Kolmogorov (Uniform) metric (dK ).

The Kolmogorov metric coincides with the uniform distance of distribution functions on IRk .

2.2.1 Wasserstein (Kantorovich) distance

The goal of the approximation is to find a simple model in such a way that its solution performs

well when used as a proxy for the solution of the more complex model. We illustrate this
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idea for a two stage stochastic program of the form

min c(x) +
∫

Q(x, ω) dG(ω) =
∫

h(x, ω) dG(ω),

where c(x) are the first stage costs, Q(x, ·) are the second stage costs and h(x, ω) = c(x) +
Q(x, ω). We assume that the family of functions u �→ h(x, ω) is uniformly Lipschitz, i.e.

that there is a constant L such that for all x : |h(x, ω) − h(x, ω̃)| ≤ L|ω − ω̃|. Then we have

the inequality

sup
x

∣∣∣ ∫ h(x, ω) dG(ω) −
∫

h(x, ω) dG̃(ω)

∣∣∣ ≤ LdW (G, G̃), (6)

where the Wasserstein distance dW is defined as in (5). Thus, choosing dW (G, G̃) as small as

possible, one gets that

sup
x

∣∣∣ ∫ h(x, ω) dG(ω) −
∫

h(x, ω) dG̃(ω)

∣∣∣
is also small. Suppose that x∗ is the minimizer of x �→ ∫

h(x, ω) dG(ω) and x̃∗ is the min-

imizer of x �→ ∫
h(x, ω) dG̃(ω). Then, using the solution x̃∗ as a proxy for the solution x

one gets that the error can be bounded by∫
h(x̃∗, ω) dG(ω) −

∫
h(x∗, ω) dG(ω) ≤ 2 sup

x

∣∣∣ ∫ h(x, ω) dG(ω) −
∫

h(x, ω) dG̃(ω)

∣∣∣.
Thus, making dW (G, G̃) small, then, by (6), the error is controlled. The Wasserstein distance

is related to the mass transportation problem (Monge, 1781), see also Rachev (1991), by the

following theorem.

Theorem 1 (Kantorovich-Rubinstein).

dW (G; G̃) = inf{IE(|X − X̃ |; where the joint distribution (X, X̃ )

is arbitrary, but the marginal distributions are fixed
such that X ∼ G; X̃ ∼ G̃}

(7)

For one-dimensional distributions, dW is defined as

dW (G, G̃) =
∫

�

|G(ω) − G̃(ω)| =
∫

�

|G−1(ω) − G̃−1(ω)|,

where G−1(ω) = sup{v : G(v) ≤ ω} (see Vallander (1973)). Among all one-dimensional G̃,

which sit on the mass points z1, z2, . . . zm , the one closest to G in dW -distance has masses

pi = G(
zi + zi+1

2
) − G(

zi + zi−1

2
),
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where z0 = −∞ and zm+1 = +∞. For this G̃,

dW (G, G̃) =
m∑

i=1

∫ zi +zi+1
2

zi−1+zi
2

|ω − zi | dG(ω),

the infimum in (7) is attained. The optimal joint distribution (X, X̃ ) describes, how the

mass with distribution G should be transported with minimal effort to yield the new mass

distribution G̃.

The Wasserstein distance is also defined for the multi-variate case, see Rachev and

Rüschendorf (1998).

2.2.2 Fortet-Mourier and Wasserstein distance

It is possible to relate the Fortet-Mourier distance to the Wasserstein distance. Let

χp(u) =
{

u |u| ≤ 1

|u|p sgn(u) |u| ≥ 1

Notice that χ−1
p (u) = χ1/p(u). It was shown in Pflug (2001) that the Lipschitz constants of

order p satisfy L p( f ◦ χp) ≤ p · L1( f ) and L1( f ◦ χ1/p) ≤ L p( f ), and therefore

1

p
dW (G ◦ χ1/p, G̃ ◦ χ1/p) ≤ dF Mp (G, G̃) ≤ dW (G ◦ χ1/p, G̃ ◦ χ1/p). (8)

G ◦ χ1/p is the distribution of |X |p sgn(X ), if X has distribution G. Based on relation (8), we

may replace the problem of approximating with respect to the Fortet-Mourier distance by the

easier problem of approximation with respect to the Wasserstein distance by the following

algorithm:

– Choose a power p depending on the underlying problem.

– Transform G by χ1/p to get G(1/p) = G ◦ χ1/p.

– Approximate G(1/p) by a distribution G̃(1/p) sitting on m points in such a way that the

Wasserstein distance dW (G(1/p), G̃(1/p)) is minimal.

– Transform back: G̃ = G̃(1/p) ◦ χp

Suppose that dW (G(1/p), G̃(1/p)) ≤ ε. Then, by (8), dF Mp (G, G̃) ≤ ε and | ∫ ωq dG(ω) −∫
ωq dG̃(ω)| ≤ pε, for 1 ≤ q ≤ p. In addition, for all Lipschitz functions h,

| ∫ h(ω) dG(ω) − ∫
h(ω) dG̃(ω)| ≤ L(h) ε. Thus, the difference of integrals for all Lipschitz

functions, as well as the difference of all moments of order at most p can be controlled.

2.3 Piecewise constant functions with a given structure of discontinuity sets

Let B denote a set of all Borel subsets of �. The B-discrepancy is the distance defined by

dD(G, G̃) = sup
B∈B

|G(B) − G̃(B)|. (9)

For different structures of � and B(�) there are various types of discrepancy distances. As a

special case, if� = IRk andB(�) = {(−∞, ω] : ω ∈ IRk} then one arrives at the Kolmogorov
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distance (see above). Low-discrepancy (quasi-random) sequences have been applied to the

approximation of stochastic programs by Pennanen and Koivu (2005) successfully. These

methodologies can be used to discretize a discrete-time, continuous-space stochastic process

into a (highly-dimensional) discrete-space process for easier numerical processing with the

methodologies presented below.

2.4 Applied scenario generation

In practical applications, such as financial investment management, theoretical considerations

of approximations are sometimes condemned. Simpler approaches are preferred, which are

easier to implement as well as simpler to communicate. However, this causes a loss of quality,

which often leads to a non-acceptability of multi-stage stochastic programming methods for

practical usage.

3 Single-stage approximations

If the depth of the tree is 1, we have the single-stage case. In this case, the problem reduces

to the problem of approximating a given probability distribution G by a discrete distribution

G̃ having a predetermined number of mass points.

3.1 Matching moments

In terms of probability metrics, if H is the class of all power functions on IR, then the moment
matching distance is obtained

dM M (G, G̃) = sup

{ ∫
ωp dG(ω) −

∫
ωp dG̃(ω) : 1 ≤ p ≤ M

}
Moment matching might not lead to a distance, even if all moments are considered (M = ∞).

A simple example of infinitely many different distributions, all having the same moments of

any order is due to Heyde (1963).

Matching statistical moments, especially matching the first four moments of a probabil-

ity distribution introduced by Høyland and Wallace (2001) is a commonly used method.

However, moment matching may lead to strange results as is illustrated in two examples

below.

First, consider the two densities g1 and g2, which are plotted in Fig. 2.

g1(x) = 0.39876 [ exp(−|x + 0.2297|3)I{x≤−1.2297}

+ exp(−|x + 0.2297|)I{−1.2297<x≤−0.2297}

+ exp(−0.4024 · (x + 0.2297))I{−0.2297<x≤2.2552}

+ 1.09848 · (0.4024x + 0.29245)−6I{2.2552<x}].

g2(x) = 0.5962I{|x |≤0.81628} + 0.005948I{0.81628<|x |≤3.05876}.

Both densities are unimodal and coincide in the first four moments, which are: m1 = 0,

m2 = 0.3275, m3 = 0, m4 = 0.72299. The fifth moments however could not differ more:

While g1 has infinite fifth moment, the fifth moment of g2 is zero. Density g1 is asymmetric,
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identical first four moments

has a sharp cusp at the point −0.2297 and unbounded support. In contrast, g2 is symmetric

around 0, has a flat density there, has finite support and possesses all moments. The quantiles

differ drastically: While for g1 the probability of the interval (−0,81628, 0.81628) is 43.56%,

the same interval has probability 97.33% for g2.

Furthermore, the following four distributions also coincide in all first four moments:

1. A uniform distribution in the interval [−2.44949, 2.44949].

2. The mixture of two normal distributions N (1.244666, 0.450806) and N (−1.244666,

0.450806) with equal weights 0.5.

3. The discrete distribution

Value −2.0395 −0.91557 0 0.91557 2.0395

Probability 0.2 0.2 0.2 0.2 0.2

4. The discrete distribution

Value −3.5 −1.4 0 1.4 3.5

Probability 0.013 0.429 0.1162 0.429 0.013

These distributions are shown in Fig. 3, i.e. distribution 1, 2, 4 (left), and 1, 2, 3 (right)

respectively. A visual inspection shows, that these distributions do not have much in common.

The comparison is even more striking, if we solve the same stochastic program with the four

different distributions. Let X be distributed according to G and let a be the solution of the

stochastic program

min{IE([X − a]+ + 1.3[X − a]−) : a ∈ IR}. (10)

Here [u]+ = max(u, 0) and [u]− = − min(u, 0). Problem (10) is the well-known news-

vendor problem. We solved the same problem for the four mentioned distributions of the

random demand variable X . The results are shown in Table 1, and are quite different.

Table 1 Solutions of

news-vendor problem Distribution 1 2 3 4

Solution −0.3194 −0.5040 0 −1.4
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Fig. 3 Four distributions with identical first four moments

Although moment matching may perform better than crude random sampling and ad-

justed random sampling for stochastic asset liability management problems as shown e.g. by

Kouwenberg (2001), it is obviously awkward to use this methodology in terms of reliability

and credibility of the approximations.

3.2 Kolmogorov-Smirnov (Uniform) distance

Besides the moment matching method, a common approach is to minimize the Kolmogorov-

Smirnov distance between the original distribution G and its approximation G̃, which coin-

cides with the uniform distance of distribution functions on IR. The optimal approximation

of a continuous distribution by a distribution sitting on n mass points z1, . . . , zn with proba-

bilities p1, . . . , pn with respect to the Kolmogorov-Smirnov distance is given by

zi = G−1(
2i − 1

2n
), pi = 1

n
(11)

for univariate distributions. Notice that every mass point zi has the same probability pi = 1
n

and therefore tails are not well represented. This is illustrated in Fig. 4.

3.3 Wasserstein distance and the facility location problem

Due to the Kantorovich-Rubinstein theorem (Section 2.2.1) the problem of minimizing the

Wasserstein distance between a distribution G and a distribution G̃ with n points can be viewed

as a facility location problem: Find the locations z1, . . . , zn of facilities in such a manner that

the mean travel distance to the nearest location
∫

mini |ω − zi | dG(ω) is minimized.

Suppose we want to approximate the t-Student distribution G with two degrees of freedom,

i.e. density (2 + x2)−3/2 by a discrete distribution sitting on 5 points. The optimal approxima-

tion with the Kolmogorov-Smirnov distance is G̃1 and shown in Table 2, while minimizing

the Wasserstein distance returns the approximated distribution G̃2, which is shown in Table 3.

These results are compared in Fig. 4, where one can see, that the minimization of the Wasser-

stein distance leads to a much better approximation of the tails. Minimizing the Wasserstein

distance minimizes the difference in expectation for all Lipschitz functions. However, it may

not lead to the best approximation for higher moments. If a further refined approximation of

higher moments is also required, the Fortet-Mourier distance may be used.
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Table 2 t-Student(2)

Approximation: KS distance G̃1
Value −1.8856 −0.6172 0 0.6172 1.8856

Probability 0.2 0.2 0.2 0.2 0.2

Table 3 t-Student(2)

Approximation: Wasserstein G̃2
Value −4.58 −1.56 0 1.56 4.58

Probability 0.0446 0.2601 0.3906 0.2601 0.0446

Table 4 Approximation:

Wasserstein with transformation Value −4.8216 −1.6416 0 1.6416 4.8216

Probability 0.0404 0.1615 0.4038 0.1615 0.0404
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Fig. 4 Approximation: Kolmogorov-Smirnov (left), Wasserstein (right)

Approximating tails and higher moments is useful for many applications, especially in

the area of financial management. Reconsider the example of approximating the t-Student

distribution with two degrees of freedom. Applying the stretching function χ2 to the t-
distribution, one gets the distribution with density{

(2 + x2)−3/2 if |x | ≤ 1,
1

2
√

x
(2 + |x |)−3/2 if |x | > 1.

This distribution has heavier tails than the original t-distribution. We approximate this

distribution w.r.t. the Wasserstein distance by a 5-point distribution and retransform the mass

points using the transformation χ1/2 one gets the result shown in Table 4. Compared to the

previous one, this approximation has an even better coverage of the tails.

4 Multi-stage approximations

4.1 Multi-stage approximations

There are basically two ways of constructing multi-stage scenario trees, if the complete

reference process is available. One can either build a tree starting from the root node (forward

process) or from the leaf nodes (backward process). Nearly all proposed methods use some

sort of forward scheme. One exception is the scenario tree reduction method suggested by
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Fig. 5 Scenario tree (left) and multi-dimensional facility location (right)

Heitsch and Römisch (2003) and Dupačová, Gröwe-Kuska, and Römisch (2003), which

is also based on a minimization of probability metrics. Forward-type scenario generators

calculate the tree recursively starting at the root node. At the root node, a discretization for

the first stage is calculated with the chosen discretization algorithm, while calculations at

successor nodes for subsequent stages are based on a set of data conditioned to predecessor

approximations. Suppose a chosen value for the first stage is x . A possibility is to condition

the reference process ξt to the set {ω : |ξ1 − x | ≤ ε}, where ε is selected in such a way that

enough trajectories are contained in this set. The successor nodes of x are then calculated as if

x were the root and the conditional process were the entire process. This approach facilitates

a solution to the given structure problem.

Without a given reference process, other modifications for subsequent stages can be

deployed—almost exclusively in a forward fashion. To build multi-stage given-structure trees

with moment matching approximations, Høyland and Wallace (2001) suggest to calculate

four target moments (and a worst-case factor) from a continuous density, which is estimated

from seven quantiles, which an expert predicted for future outcomes (e.g. future return of

different asset classes within financial management), and the correlation—calculated with a

set of corresponding historical data—for the root approximation. For approximations of suc-

cessor nodes, the first and the second moment are modified according to some pre-specified

rules.

The proposed method in this paper applies a backward recursive technique based on multi-

dimensional facility location problems with additional constraints (multi-stage constraints).

One draw-back is, that facility location problems are known to be NP-hard. Approximation

algorithms and heuristics have to be applied to calculate numerical solutions. Common

approaches are mainly based on meta-heuristics as well as linear programming relaxation

techniques.

The relation between a scenario tree and a facility location map is shown in Fig. 5. Each

stage of the tree equals one dimension of the corresponding facility location problem. Notice
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that this problem is not just a multi-variate extension of the facility location problem, because

in order to obtain a tree with given branching structure, the facilities have to be located in

such a manner that only b0 different first coordinates of the facilities may exist. If b0 streets

have to be selected, then b1 different second coordinates may be chosen conditionally on

these streets, and so on. The selected values in the last stage represent the facilities.

For numerical reasons, if the original distribution is continuous (e.g. estimated distribu-

tions), some method should be applied to generate a highly-dimensional discrete version of

the continuous space without quantitative losses. The methods presented by Pennanen and

Koivu (2005) and Koivu (2005) are ideally suited for this operation, because implementations

are readily available. The proofs for the quantity argument of these methods can be found in

(Pennanen, 2005).

In most cases, scenarios are already discrete, e.g. simulated scenario paths of some fitted

econometric time series model. In this discrete case, we have a finite set of (multi-variate)

scenario paths, where the vector of values is known for each stage from the root stage to the

terminal stage—for each path. It is feasible to use a set of paths, that already exhibit a tree

structure, or are combined in another way at intermediary stages between root and terminal

nodes. If the input is a tree, we speak about scenario (tree) reduction, if paths are used, then

we speak about scenario (tree) generation. Additionally, any already connected structure can

always be expanded to a set of paths.

If the process ξt takes values in IRk , then the same procedures can be used to estimate

multivariate trees, since the Wasserstein and Fortet-Morier distances are also well defined in

several dimensions—often as weighted version, where one can assign different weights to

each dimension. Thus we may construct multivariate, multi-stage trees.

Consider the following numerical example to visualize the connection between the sce-
nario tree view and the facility location view applied to real financial data. Daily data of the

Standard and Poors 500 Index from January 1, 1995 to January 1, 2005 have been used to

fit an ARMA(1,1)/GJR(1,1) time series model, from which 400 paths have been simulated

for a possible future development for the next 3 months. The estimation and simulation has

been calculated with the MatLab GARCH Toolbox. These paths are shown in the left part

(scenario tree view) of Fig. 6. The right part shows the facility location view of these 400

paths. To obtain a useful visualization, only two stages (T = 2) are considered, hence we

obtain a facility location problem in IR2. The two-dimensional view shows the value of each

simulated path on February 1, 2005 and April 1, 2005. Each facility corresponds to one path.

An implementable algorithm, which resembles the multi-dimensional facility location

problem as shown by Pflug (2001) in the aforementioned backward fashion, can be sum-

marized as follows: it mainly applies a backward distance minimization (nested clustering)

with dimension reduction, and builds the scenario tree from the root node, based on these

clusterings. Given a fixed structure of nt = [n1, . . . , nT ] nodes per stage t for all T stages,

and some chosen distance d(·):
1. (Initial Cluster) Cluster nT centers in IRT with distance d(·), set i := T − 1. Store asso-

ciation of data points and clusters.

2. (Intermediate Clustering) Cluster ni centers in IRi for stage i . Only use data from stage 1

to i . Again, store association of data points and clusters.

3. (Stopping criterion) If not at root stage (i > 1), reduce i by 1 and go to (2).

4. (Build predecessor list) For each stage i := 2 to T use the cluster/data point association

list to assign predecessors correctly.

This algorithm depends on some clustering algorithm as its basic building block, which

is executed T times. Unfortunately, the problem of partitioning (or clustering) n data points
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Fig. 6 Simulated scenario paths (left) in facility location setting (right)

into k disjoint subsets containing n j data points, by minimizing some distance criterion

is generally NP-complete, and polynomial time algorithms are generally not available,

as already mentioned above. Besides using the well-known k-means algorithm, which was

related to scenario generation in (Pflug, 2001) or some other randomized heuristic, a very good

choice is using a greedy clustering algorithm. The run-time of a primitive greedy algorithm

is O((n · (n − 1)/2) + (n − k) · (n · (n − 1)/2)) ≈ O(n3), hence polynomial. Basically, the

numerical problem besides calculating the distance matrix, i.e. the distance of each point in

the initial data matrix to the others, is caused by (n − k) times finding the minimum in the

distance matrix. Of course, this algorithm can be further refined, to gain speedups, especially

by using parallel computation techniques. A special advantage of the greedy algorithm is,

that there is no random action involved, such that experiments can easily be repeated. The

real advantage of this heuristic, which on one hand cannot guarantee a global optimum is,

that it inherently considers outliers (extreme events) at the very end of the clustering process.

This effect makes it most attractive for stochastic programming problems, as one of the main

objectives is to hedge against extreme events. Those events will receive a small probability,

but will be considered.

The algorithm was implemented in MatLab. The final scenario tree using the 400 simulated

paths described above and applying the Wasserstein distance is shown in Fig. 7. This tree has a

stagewise fixed structure with N = (12, 40), i.e. 40 scenarios. The probability distribution of

these 40 scenarios is depicted in Fig. 8. One clearly sees that extreme scenarios are included,

but with a lower probability. These 40 scenarios are drawn as circles in the facility location

view. Those n2 = 40 facilities are located on n1 = 12 streets.

4.2 Numerical convergence of multi-stage approximations

We consider a simple multi-stage stochastic asset management problem to verify numerical

properties of the proposed scenario generator. A discrete-time investment horizon T with

stages t = 0, . . . , T is considered. Let B be the initial budget invested at the root node.

Investments are only allowed until stage T − 1. The dynamics of holdings in each asset class

are described by xi,t = ξ t
i x t−1

i + bi,t − si,t for each asset i ∈ I, where ξi,t is the (stochastic)

return on investment i in period [t − 1, t], bi,t and si,t denote the purchases and sales of

investment i at stage t , and xi,t is the portfolio value of investment i in period [t − 1, t]. Budget

constraints guarantee that the total expenses do not exceed revenues. Portfolio constraints

give bounds for the allowed range of portfolio weights, i.e. let li and ui be relative lower and
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Fig. 7 Generated scenario tree (left) in facility location setting (right)
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upper investment limit on asset i . Furthermore, let ft be the (deterministic) cash in-flow at

stage t , and wt the total wealth at stage t .
For the objective function, the terminal mean-risk approach has been chosen, i.e. one

maximizes expected total wealth and considers the (terminal) Average Value at Risk (AVaR,

also called Conditional Value at Risk (CVaR)) of the total (terminal) wealth as the risk

functional. Let AVaRα be defined as the solution of the optimization problem

inf {a + 1

1 − α
IE[Y − a]+ : a ∈ IR},

where Y is a random cost variable. With a finite set of scenarios this optimization problem

can be reformulated as a linear program (see Rockafellar and Uryasev (2000)).

The resulting optimization problem in tree formulation is

maxx
∑

n∈N T pnwn + κ(γ − ∑
n∈N T

pn zn

1−α
)

subject to
∑

i∈I x1,i ≤ B = w1

xn,i ≤ ξn,i xP(n),i + bn,i − sn,i ∀n ∈ N t , ∀i ∈ I
liwn ≤ xn,i ≤ uiwn ∀n ∈ N t , ∀i ∈ I∑

i∈I bn,i ≤ ∑
i∈I sn,i ∀n ∈ N t

wn = ∑
i∈I xn,i + fS(n) ∀n ∈ N t

wn = (
∑

i∈I ξn,i x p(n),i ) + fS(n) ∀n ∈ N T

zn ≥ γ − wn ∀n ∈ N T

(12)
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Fig. 9 Numerical convergence of the objective value

where N T is the set of terminal nodes, and N t the set of nodes, at which trading occurs.

The function P(n) returns the predecessor node of node n. pn is the probability of the whole

scenario, that terminates at (terminal) node n. The function S(n) returns the stage of node

n. α is the AVaR quantile level, and κ the risk aversion parameter. zn and γ are auxiliary

variables for the linear programming reformulation of the AVaR problem. Transaction costs

are not considered in this tree model, but can be added easily.

The linear programs were modeled with AMPL Fourer, Gay, and Kernighan (2002) and

solved with the MOSEK interior-point method solver. The portfolio optimization framework

was implemented in MatLab.

To keep the model simple, two assets have been taken, of which one is stochastic and

the other one is deterministic. Fig. 9 shows the convergence of the objective function for a

stage-wise fixed tree with 5 stages (excluding the root stage) with structure [k, 2k, 3k, 4k, 5k]

for k = 20 to 200. 2000 scenario paths have been sampled from the S&P 500 model, that

has already been introduced at the beginning of the chapter. No deterministic cash inflow has

been used, and the lower limit l was set to 0, and the upper limit u to 1. One can see, that

even with a small set of scenarios, the value of the objective function is stable, which is one

of the most important properties from a numerical point of view.

5 Conclusions

We have demonstrated the relation between optimal scenario generation and multi-

dimensional facility location. Common approaches for generating scenario trees are matching

of statistical moments or minimizing the Kolmogorov-Smirnov distance (uniform distance

of distribution functions), together with some forward tree building method. While moment

matching may lead to strange approximations, the uniform distance does not take care of

tails and higher moments. The advantage of the proposed method is that it combines a good
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approximation of moments (if the appropriate distance is taken) with a good, controllable

approximation of the tails. The creation of non-equally weighted scenarios is especially im-

portant for multi-stage trees, as this approach ensures that extreme events are considered

even if the size of the approximated set is small. Numerical evidence for this effect has been

shown with a multi-stage stochastic mean-risk financial programming problem.

Whenever the objective of the approximation is to achieve a controlled matching of certain

moments and a controllable coverage of heavy tails, scenario generation based on multi-

dimensional facility location should be taken into consideration. Future research on this topic

includes unbiased numerical comparisons between different scenario generation methods

based on different multi-stage times-series and optimization models, as well as methods to

determine the optimal branching factor of scenario trees.
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