
Page 1 24/06/99

Self-timed and speed independent latch circuits

A. Bystrov, D. Shang, F. Xia* and A. Yakovlev
Department of Computing Science, University of Newcastle

Indexing terms: Asynchronous systems, latches and flip-flops, speed independent
circuits, STGs, Petri nets.

1 Abstract

Several designs of self-timed (some of which speed independent) latch circuits are
presented. These are used in the speed independent (SI) implementation of two
consecutive binary assignment statements. Issues such as logic reduction, utili sation of
well known, simple components, and response speed improvement are dealt with in
detail . The techniques employed can be used in designing other asynchronous circuits
where regularity and modularity are important issues.

2 Problem

In studying asynchronous communication mechanisms (ACMs) [1], the problem of
implementing two consecutive binary assignment statements in a fully SI fashion was
encountered. This problem is stated below:

Two binary assignment statements,

x:=y;
y:=a.

where x, y, a ∈ {0, 1}, are to be implemented with SI hardware. The “start” signal
(request) for the first statement is received from the environment of the circuit. When
both statements are completed, a “done” signal (acknowledgement) is to be issued by
the circuit to the environment. This handshake is shown in Figure 1.

It should be noted that the sequence of assignment statements is important. In other
words, in the course of execution of these two statements, x is assigned the old value of
y and y is assigned the value of a.

* Contact: fei.xia@ncl.ac.uk

Page 2 24/06/99

environment self-timed circuit
start

done

Figure 1 Basic handshake protocol of circuit.

An obvious, non-speed-independent solution exists in the form of “shifting registers” as
shown in Figure 2.

start

y xa

master-slave latches

Figure 2 A simple implementation of two consecutive assignments.

If the latches in Figure 2 are of the master-slave (MS) type, the rising edge of the clock
pulse can be used to trigger the masters and the falli ng edge the slaves. This implements
the two statements in “parallel” logic.

In reality, of course, the parallelism does not speed up the response as it still requires
two sequential latch actions to implement each of the two statements.

In addition, this is not an SI solution and requires the environment to determine the
timing of both stages of the two statements. Specifically, the length of the clock pulse is
not directly dependent on the actual completion of the master part of the action and the
completion of the slave part of the action is not collected for future use.

3 Self-timed considerations

The requirement that the sequential nature of the two statements must be strictly
observed means that at least two separate layers of latch action must be used in the
implementation. These can be in the form of either master-slave pairs in a parallel
solution or single layer latches connected in series in a sequential solution. The interest
in simplicity implies that we only seek solutions with two layers of latch action.

Therefore, to further clarify what a self-timed solution must provide, we establish a set
of more detailed handshake protocols for the circuit. This is shown in Figure 3. It
implies that both layers of latches need to be connected to completion logic, or produce
their own completion signals, to serve as the required “done1” and “done2” signals.

Page 3 24/06/99

environment

self-timed circuit
start

done
action 1

done1

action 2
done2

Figure 3 Detailed specification of self-timed solutions.

4 Direct solution

A completely SI master-slave latch can be found in [2] and is used in [3]. This circuit
can be immediately adapted for use here by inserting it into the shifting register scheme
in Figure 2. A modified form of this latch is used here and is shown in Figure 4.

D, D̂
(dual
rail)

Q,Q̂
(dual
rail)

req done

MS

Figure 4 Self-timed master-slave latch circuit its symbol.

As can be seen in [3], this circuit is quite slow in the original form where the completion
logic is implemented with a single complex gate, providing speed independence. Here
we have used separate gates to increase performance, leaving the question of speed
independence open. If the layout is carried out in-house, assumptions can be made so
that this is not a problem to worry about. Simulations have shown that the not strictly SI
circuit adopted here provides a reasonable response time. However, the logic
expenditure is fairly large. As shown in Figure 5, the complete design using this
technique also includes a C-element to collect the done signals from the two latch pairs
and a D-element which manages the start-done handshake. Both of these are very quick
and simple implementations which do not impede the performance of the overall circuit
too much.

The handshake decoupling D-element is independently proposed in [2] and [4]. The
implementation adopted here is suggested in [2]. This implementation comprising four
two-input NOR gates and an inverter is shown in Figure 6. Being completely SI, this
circuit has the STG shown in Figure 7, which is an economic way of managing the four-
phase protocol for the overall start-done handshake.

Page 4 24/06/99

start

y xa

C

done

MS MS

doney donex

D

donexy

Figure 5 Self-timed shifting register solution.

a1

r1

a2

r2

r1 a1

D

r2 a2

Figure 6 Speed independent D-element circuit and its symbol.

r1+ a2+r2+ r2-

a2-a1+r1-a1-

Figure 7 STG of D-element.

5 Decomposition and synthesis

The direct attempt to modify the shift register solution to a self-timed solution is not
satisfactory. Further improvements are attempted by decomposing and refining the
problem while using automatic synthesis whenever possible. This technique is employed
to generated several solutions.

5.1 Simplified data path

The most obvious decomposition is to divide the data handling faciliti es from anything
else.

Since it has been established that any solution of the problem must have two layers of
latch action, the parallel solution does not provide any real benefits in response time,
especially when there is a need to trigger the second layer of latch action by the
completion of the first layer. If a single statement can be implemented with a single

Page 5 24/06/99

layer of latch action, a sequential solution would have the same response time as a
parallel one, all other things being equal.

The logical next step is to try and find single layer latches that produce their own done
signals and are simple in design, involving a minimal number of simple gates in the
forward path. One such latch can then be used to implement each of the statements,
providing a much simpli fied data path.

Such a basic latch with completion logic has been found in [2] and is shown in Figure 8.
The completion logic is also very simple, compared with that found in Figure 4.

D, D̂
(dual
rail)

Q,Q̂
(dual
rail)

req done

DL

Figure 8 Speed independent latch circuit and its symbol.

By using two such latches in series, the system can be decomposed into three parts as
shown in Figure 9. Here we adopt the conventional terminology of calli ng the input
latch the “master” and the output latch the “slave” and index the signals of these latches
with the letters m and s, respectively.

start

y xa

control logic

done

rs asamrm

DL DL

Figure 9 Two simple latches with control logic.

5.2 Sequential control logic design

The control logic is needed to maintain the protocols specified in Figure 3. A more
detailed specification in the form of STG, comprising four-phase handshake protocols,
is given in Figure 10.

The signal sm represents the state “done” of the slave latch and the “start” of the master
latch. In other words, it is where the transition of action from the slave to the master
happens. The entirely sequential nature of the STG specifies an SI design which is

Page 6 24/06/99

potentially delay insensitive, if the latches used are required to not issue
acknowledgement reset signals (as- and am-) before their data inputs have been cut off .
This is the case for the latch circuit in Figure 8.

start+ rs+ as+ rs- as- sm+ rm+ am+

rm-am-done+start-done- sm-

Figure 10 Specification STG of the control part of Figure 9.

start

y xa

done

rs asrm am

sm

DL DL

D D

Figure 11 Simple control logic using D-elements.

By observing the STGs in Figure 10 and Figure 7, it is clear that handshake decoupling
devices, such as the D-element, can be used to obtain a symmetrical design of the
control part. Such a solution with D-elements is shown in Figure 11.

This solution has the advantage of employing simple elements, all of which have a small
number of layers of simple gates with a minimum number of inputs in the forward path.
It is also completely SI and delay insensitive. The control logic is implemented with two
identical circuits (D-elements) which are connected by the intermediate signal sm.

The price paid to obtain delay insensitivity is to have a completely sequential STG
including the resetting phases. If assumptions can be made about the resetting
characteristics of the latches used, faster solutions may be obtained by adding
parallelism into the control logic STG.

5.3 Parallel solution with direct Petrify synthesis

From Figure 8, it is clear that the input of the latch is cut off when the signal r- (rm- or
rs-, depending on the latch) is received by it. This implies that the environment does not
need to wait for the signal a- (am- or as-, depending on the latch) to safely change the
data input. Assuming that r- affects the latch more quickly than it does the environment,
this signal can be safely used to generate the done signal for the environment. This
assumption is reasonable in the latch circuit we have chosen to use (Figure 8) and the

Page 7 24/06/99

likely environment in which it will be found. Specifically, we are proposing to
implement the control logic and the latches on the same chip and arrange them
adjacently in the layout. Therefore the wire delay for signal r from the control logic to
the latch will be negligible and it will t ake one gate delay for r- to shut the data input of
the latch off . The shortest time the environment will need to affect a change at the data
input of the latch is li kely to be many times that. If r- is used to generate done, the
function of signal a- then becomes purely the maintenance of the four-phase handshake
protocol.

Based on this assumption, a more eff icient STG of the control logic is given in Figure
12. The resetting phases for both acknowledgements are run in parallel with the main
path.

start+ rs+ as+ rs-

as-

rm+ am+ rm-

am-

done+start-done-

Figure 12 Parallel STG for the control logic in Figure 9.

The control logic can then be synthesised with Petrify based on this STG
specification. However, although the STG is clearly regular including two essentially
identical parts, the result from Petrify does not show any apparent regularity. This is
given below:

mrcscdone ⋅= 2 ;

()mmsm rarcscr +⋅⋅= 1 ;

()sss rcscstartacscr +⋅⋅⋅= 21 ;

() 211 cscaracsccsc mss ⋅++⋅= ;

startrcsccsc m +⋅= 22 .

This circuit uses four latches and is excessively complex. The benefits of the simpli fied
data path are negated by having the large control logic. Obviously, Petrify does not
provide solutions with regularity.

5.4 Faster speed independent solution based on modified D-elements

A comparison of the STGs in Figure 10 and Figure 12 indicates that a manual
decomposition of the control logic into two identical modified D-elements may provide
the answer for a faster solution. The STG for such an element would need to be
modified from the sequential one to the concurrent one shown in Figure 13.

Page 8 24/06/99

r1+ r2+ a2+ r2- a2-

a1+ r1-

a1-

Figure 13 Modified STG of the control element for the first latch.

Petrify was used to synthesise a circuit with this modified STG. After a small
manual optimisation, the modified D-element shown in Figure 14 is obtained.

Figure 14 Modified D-element with parallel resetting of a2.

Instead of the all -simple gate solution in Figure 6, this D-element contains a C-element.
However, the C-element can be implemented as a symmetrical circuit with pass
transistors, which is fast [5] and helps to realise the potential savings on time as
prescribed by the modified STG of Figure 13.

A faster SI solution is obtained by using this version of D-element to control both
latches in Figure 11.

5.5 Fast non speed independent solution

The performance of the circuit in Figure 11 can be further improved by modifying the
handshake decoupling elements so that events rs- and rm+ happen “almost”
simultaneously. “Almost” in this sense means that these are enabled at the same time
and “ fired” within a predictable small delay. Timing assumptions accepted in this
example result in a non-SI circuit.

An STG of the modified decoupling element, called a B-element, is shown in Figure 15.
Such a circuit provides the nesting of the setting handshake phases (r1+ → r2+ → a2+)
and the concurrent execution of the resetting phases (a1+ → r1- and r2- → a2-). The
dotted arc shows the actual causal relation in the circuit implementation.

The circuit implementation shown in Figure 16 is completely SI, though non persistent
and non semi-modular. It may happen that the transition s- caused by a1- becomes
interrupted by r1-, thus forming a glitch at s. However, this glitch does not result in a
hazard at the output r2, because signals arrive at the AND gate in the following order: s-
→ r1- → s+ → r1+, i.e. monotonously.

Page 9 24/06/99

r1+ r2+ a2+

r2- a2-

a1+ r1-

a1-

Figure 15 STG of B-element.

a1

r1

a2

r2

s

Figure 16 Circuit implementation of B-element.

If both D-elements in Figure 11 are replaced by B-elements, a possibilit y occurs that rs-
happens after rm+ has brought a new data item to the input of the slave latch (change of
y). This possibilit y is eliminated by careful consideration of gate delays. In the proposed
implementation, as+ causes a chain of events, which branches into two parallel paths at
a1 of the right-hand decoupling element. Starting from the bifurcation point, it takes 3
gate delays (the AND gate is represented by a NAND-NOT pair) to propagate the signal
to rs. The number of gate delays in the path which goes through the left-hand decoupling
element and the master latch to the data input of the slave latch is 4, which is suff icient
[6] to guarantee the order rs- → change of y.

6 Simulation results

All circuits presented here have been put through the VLSI design flow of Cadence,
using the AMS-0.6µm toolkit, with some of the figures taken directly from their
Cadence schematics. Analogue simulations using Cadence Spectre have been carried out
for all circuits based on identical assumptions about the technology and operating
environment. Overall response times (from start+ to done+) have been recorded for all
circuits. These are given in Table 1.

SI M/S shifting register (Section 4) 4.61ns
D-element control logic (Section 5.2) 4.15ns
Petrify synthesised control logic (Section 5.3) 5.41ns
Modified D-element control logic (Section 5.4) 3.33ns
B-element control logic (Section 5.5) 1.69ns

Table 1 Performance comparison of all solutions.

Page 10 24/06/99

The timing values are averages from multiple simulation runs in order to eliminate the
effects of such factors as data values and initial conditions. The results confirm the
intuitive notion that the majority of time is spent in the control logic, when fast data
paths are employed. It is also quite clear that using the result of Petrify directly
without having considered the optimum refinement and decomposition is not in general
a good idea. The improvement obtained by using B-elements is significant.

As expected, no logical function violations or hazards were observed during all
simulation sessions.

7 Conclusions and discussions

This work started out as the finding of ad hoc hardware solutions to the problem of two
consecutive binary assignment statements with a requirement of self-timing and speed
independence. The solutions themselves turned out to be elegant and systematic enough
to be shown in their own right.

By concentrating on well known and simple elements it is possible to achieve better
logic eff iciency and faster response. The general techniques of these solutions can be
applied to a much wider field where two latches need to be “strung up” sequentially in
an SI manner. For instance, it can be used to implement the circuits which assemble two
half bytes into a whole byte proposed in [7], or by extension, any similar circuits which
assemble two data items of the same size into a data item twice the size (two bytes into a
16-bit word, etc.).

These solutions can be applied to sequential statements numbering more than two, in
which case a modified shift register, with each master and slave pair connected using the
techniques shown here can be employed.

These techniques can also be used to develop general purpose master-slave pairs that are
SI internally.

The design methodology of decomposition/refinement combined with automatic
synthesis has again been shown to be effective. The current shortcoming of such
synthesis tools as Petrify in dealing with regular solutions has been demonstrated.

This work is supported by the EPSRC Comfort and HADES projects at Newcastle
University.

References

1 F. Xia, D. Shang, A. Yakovlev and A.M. Koelmans, “An asynchronous
communication mechanism using self-timed circuits” , elsewhere in this forum.

Page 11 24/06/99

2 V. Varshavsky et al, Self-Timed Control of Concurrent Processes, Kluwer
Academic Publishers, P.O. Box 17,3300 AA Dordrecht, The Netherlands, 1990
(Russian Edition: Nauka, Moscow,1986).

3 D.J. Kinniment, B. Gao, A. Yakovlev and F. Xia, “Towards asynchronous A-D
conversion” , Proc. 4th Int. Symp. on Advanced Research in Asynchronous Circuits
and Systems, San Diego, CA, pp. 206-215, IEEE Computer Society Press, 1998.

4 A. J. MARTIN, “Collected Papers on Asynchronous VLSI Design” , technical
report Caltech-CS-TR-90-09, p. 50, Dept. of Computer Science, Cali fornia Institute
of Technology, 1990.

5 Shams, M., Ebergen, J.C., Elmasry, M.I., "Modelli ng and comparing CMOS
implementations of the C-element", IEEE trans. on VLSI systems, vol. 6, No 4, pp.
563-567, December 1998.

6 Ch. Seitz, “System Timing” , ch. 7 in C. Mead & L. Conway “ Introduction to VLSI
Systems”, Addison Wesley, London, 1980.

7 A. Yakovlev, V. Varshavsky, V. Marakhovsky and A. Semenov, “Designing an
asynchronous pipeline token ring interface”, Proc. of 2nd Working Conference on
Asynchronous Design Methdologies, pp. 32-41, London, May 1995, IEEE Comp.
Society Press, N.Y., 1995.

