
New Lower Bounds for Parallel Computation

MING LI AND YAACOV YESHA

The Ohio State University, Columbus, Ohio

Abstract. Lower bounds are proven on the parallel-time complexity of several basic functions on the
most powerful concurrent-read concurrent-write PRAM with unlimited shared memory and unlimited
power of individual processors (denoted by PRIORITY(m)):

(1) It is proved that with a number of processors polynomial in n, fi(log n) time is needed for addition,
multiplication or bitwise OR of n numbers, when each number has II’ bits. Hence even the bit
complexity (i.e., the time complexity as a function of the total number of bits in the input) is
logarithmic in this case. This improves a beautiful result of Meyer auf der Heide and Wigderson
[22]. They proved a log n lower bound using Ramsey-type techniques. Using Ramsey theory, it is
possible to get an upper bound on the number of bits in the inputs used. However, for the case of
polynomially many processors, this upper bound is more than a polynomial in n.

(2) An R(log n) lower bound is given for PRIORITY(m) with no”’ processors on a function with inputs
from (0, 11, namely for the functionf(xl, . ,x.) = C:‘=, x,a’ where a is fixed and x, E (0, 1).

(3) Finally, by a new efficient simulation of PRIORITY(m) by unbounded fan-in circuits, that with less
than exponential number of processors, it is proven a PRIORITY(m) cannot compute PARITY in
constant time, and with nO”’ processors Q(G) time is needed. The simulation technique is of
independent interest since it can serve as a general tool to translate circuit lower bounds into PRAM
lower bounds.

Further, the lower bounds in (1) and (2) remain valid for probabilistic or nondeterministic concurrent-
read concurrent-write PRAMS.

Categories and Subject Descriptors: C. 1.2 [Processors Architectures]: Multiple Data Stream Architec-
tures-parallel processors; F. 1.2 [Computation by Abstract Devices]: Modes of Computation-paruN
ism; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Prob-
lems-computation on discrete structures

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Addition, computational complexity, lower bounds, parallel random
access machine, parity

Most of the results of this paper appeared in their preliminary forms in LI, M., AND YESHA, Y. New

lower bounds for parallel computation. In Proceedings of the 18th ACM Annual Symposium on Theory
of Computing(Berkeley, Calif., May 28-30). ACM, New York, 1986, pp. 177-187.
Results (l)-(3) listed in the abstract were also obtained independently, via totally different proofs, by
Paul Beame [3, 41. Beame also published his findings in the Proceedings of the 18th ACM Symposium
on Theory of Computing.
This work was supported in part by the National Science Foundation under grant DCR 86-06366.
M. Li was also supported in part by Office of Naval Research grant N00014-85-K-0445, AR0 grant
DAAL03-86-K-0171 at Harvard University, and NSERC operating grant OGP 0036747 at York
University.
Authors’ present addresses: M. Li, Department of Computer Science, York University at North York,
Ontario M3J lP3, Canada; Y. Yesha, Department of Computer and Information Science, The Ohio
State University, Columbus, OH 432 10.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1989 ACM 0004-541 l/89/0400-0671 $01.50

Journal ofthe Association for Computing Machinery, Vol. 36. No. 3. July 1989. pp. 67 I-680.

672

1. Introduction

M. LI AND Y. YESHA

A parallel random access machine (PRAM) consists of processors P(i), i =
1, 2: . ..) and shared memory cells C(i), i = 1, 2 Each step of the
parallel computation consists of three phases as follows: Each processor (1) reads
from some shared memory cell, (2) may attempt writing into some shared mem-
ory cell, and (3) changes state. The state of each processor before step t is a func-
tion of its state before step t - 1, and the value read from the shared memory at
step t - 1. The actions of each processor at step t - 1 are functions of its state be-
fore step t - 1.

The input (x,, . . . , x,) is initially placed in the shared memory. The value xi is
placed in the location C(i). for i = 1, . . . , n. We say that the PRAM computes the
function f if the following is true: Whenever f(x,, . . . , x,) = (a,, . . . , a,,), the
computation terminates with a, in the ith shared memory cell C(i).

The various variants of the PRAM differ in the way they handle read or write
conflicts:

(I) ERE W (Exclusive Read Exclusive Write). Read or write conflicts cannot occur.
(2) CREW (Concurrent Read Exclusive Write). Write conflicts cannot occur.
(3) COMMON. All the processors simultaneously writing into the same cell write

the same value.
(4) ARBITRARY. An arbitrary processor succeeds in writing.
(5) PRIORITY. The processor with the minimum index succeeds in writing.

For N any of the above models, let N(m) be the model with m shared memory
cells. The time of the PRAM is the number of parallel steps used.

The PRIORITY model is the strongest one out of the above models. The
PRIORITY(a) (i.e., PRIORITY with unlimited shared memory) is the strongest
known PRAM. The lower bounds we prove in this paper for PRIORITY(m)
PRAMS also apply to all other models.

All the above models are widely used for implementing parallel algorithms. For
example, Hirschberg et al [151 and Preparata [26] used CREW (actually Preparata
[26] also used an even weaker model, EREW, in which concurrent read is not
allowed), Shiloach and Vishkin [28] and Galil [121 used COMMON, Shiloach
and Vishkin [30] used ARBITRARY, and Awerbuch and Shiloach [2] used
ARBITRARY and PRIORITY.

The purpose of this paper is to gain better understanding of the power of
concurrent read and concurrent write PRAMS. Although many practical algorithms
have been developed based on the various PRAM models, the limitation of what
a PRAM can do and what a PRAM cannot do is still not clear. Several authors
have obtained significant results in this direction, including [7]-[lo], [21], [22],
and [32]. (See also [19] and a survey paper by Reischuk [28].) In this paper we
continue this research and obtain several nontrivial lower bounds on several very
basic functions like addition of n integers and parity of n Boolean bits. We also
develop two basic new methods for obtaining lower bounds for PRAMS.

2. Q(log n) Lower Bound on the Bit Complexity of ADDITION and Related
Functions

Recently, Fich et al [9] and Meyer auf der Heide and Wigderson [22] proved
several important lower bounds on PRIORITY(w), including MAX, SORTING,
ADDITION, MULTIPLICATION, using Ramsey theorems. (The lower bound on
addition was also independently obtained by A. Israeli and S. Moran (private

New Lower Bounds for Parallel Computation 673

communication) and Parberry [23]). But all these lower bounds depend on inputs
from infinite (or very large) domains. In practice, we are often interested in small
inputs. For example, using a technique due to Reif [27], addition of n n”‘Og’Og” bit
numbers can be done in U(log n/log log n) time with no(‘) processors which is less
than the R(log n) lower bound of [22]. This is not a contradiction, since the lower
bound in [22] is for a PRAM, which is capable of adding arbitrarily large numbers.
We improve the result of A. Israeli and S. Moran (private communication) and
[22] and [23] to numbers of polynomial size (i.e., polynomial number of bits) by a
new concept known as Kolmogorov complexity. We successfully use the remark-
able notion of Kolmogorov complexity to obtain parallel lower bounds (and trade-
offs) for a large class of functions with arguments in small domains (even with
binary bit inputs) on PRIORITY(co). Kolmogorov complexity has been fruitfully
used to study sequential complexity [13, 17, 20, 24, 251, particularly in restricted
Turing machine lower bounds. In this section we demonstrate how to use Kol-
mogorov complexity in obtaining general and optimal parallel lower bounds.

For the purpose of this paper, we fix an enumeration of oracle Turing machines.
The Kolmogorov complexity of a string X relative to an oracle A, K” (X), is the
size of smallest oracle Turing machine with oracle A which prints X.X is random
relative to A if K”(X) 2] X 1. A simple and well-known counting argument shows
that for any oracle A and every large enough n, there exist strings of length n that
are random relative to A. A function j&x,, . . . , x,) is invertible if x, (for all i) can
be computed from (j-(x,, . . . , xn), x1, . . . , xjeI, x,+ I, . . . , x,).

For each string w, the string CQ is obtained by doubling each letter in w. For
integer i, bin(i) is the binary representation of i. Let w’ = bin(] w])O 1 w. The string
w’ is called the self-delimiting version of w. So “ 1100 110 10 10 11” is the self-
delimiting version of “01011.” The self-delimiting binary version of a positive
integer n requires log n + 2 log log n + 2 bits and the self-delimiting version of a
binary string w requires] w] + 2 log] w] + 2 bits. All logarithms are base 2 unless
otherwise noted.

The following theorem improves (and simplifies) results in [2 I] and [22]. Meyer
auf der Heide and Reischuk [21] proved an Q(log n) lower bound for addition on
a restricted PRIORITY(o3): A PRIORITY(w) with a particular instruction set. Our
results, however, do not depend on a particular instruction set, and allow each
processor to have arbitrary power. Meyer auf der Heide and Wigderson [22] prove
an D(log n) lower bound for addition on the model we use. However, their result
does not imply a polynomial upper bound on the size of the integers needed to
achieve the lower bound.

THEOREM 2.1. It requires Q(min[log(b(n)/logq), logn]) time to compute an
invertible function f(x,, . . . , x,,), where I x, I 5 b(n) for all i and log n = o(b(n)), on
a PRIORITY(m) with q processors.

PROOF. Suppose that a PRIORITY(w) M with q processors computes f(x, , . . . ,
x,,) in o(min[log (b(n)/log q), log n]) steps for infinitely many n’s. We are actually
talking about an infinite family of functions%, one for each n, and we assume that
for eachf, we have a different PRIORITY(1) with a number of processors q, which
is a function of n. However, for simplicity of notation we write, for instance
f(-c,-.-, x,,) instead off;l(x,, . . . , x,,). To prove the theorem it suffices to assume
that log (b(n)/log q) 5 log n. The programs (maybe infinite) of M can be encoded
into an oracle A. The oracle, when queried about (i, I), returns the initial section
of length 1 of the program for P(i). Fix a string X E 10, 1 In”(“) such that KA(X) L
] XI. Equally divide X into n parts xl, x2, . . . , x,,. Then consider the (fixed)

674 M. LI AND Y. YESHA

computation of A4 on input (x,, . . . , x,). We inductively define (with respect to
X) a processor to be alive at step t in this computation if

(1) it writes the output; or
(2) it succeeds in writing something at some step t’ 2 t which is read at some step

t” > t ’ by a processor who is alive at step t”.

An input component is useful if it is read at some step t by a processor alive at
step t. (Note that this is similar to the “communication pattern” used in [22].) It is
easily seen, by induction on the step number, that for a computation that consists
of T steps the number of useful input components and the number of processors
ever alive are both 0(2 ‘).

It is not difficult to see that, given all the useful input components and the set
ALIVE = {(P(i), ti)] P(i) was alive until step ti > 01, we can simulate A4 to uniquely
reconstruct the outputf(x,, . . . , x,).

Since T = o(log (b(n)/log q)) and log (b(n)/log q) I log ~1, we know 2 T = o(n).
Hence, there is an input component Xi,, which is not useful. We need 0(2Tlog q)
= o(b(n)) bits to represent ALIVE. To represent (x,, . . . , x;,-~, x;~+~, . . . , x,) we
need (n - l)b(n) + log II bits, where log n bits are needed to indicate the index i0
of the missing input component. The total number of bits needed is then

J = rib(n)) - b(n) + log n + o(b(n)) C n&n).

(Since log n = o(b(n)).) But from these J bits we can find f(x,, . . . , x,) by
simulating A4 using the oracle A, and then reconstruct Xi0 from f(xr , . . . , x,) and
(Xl, . . . ,&,-I, &“+I, * * * , x,). This contradicts the randomness of X. 0

An immediate application of the above theorem is to provide a lower bound for
addition of small numbers. Note that addition is an invertible function.

COROLLARY 1. For a PRIORITY(W) with no”’ processors, it requires

(a) Q(log n/log log n) time to add n O(n ‘l’fa”an)-bit numbers
(b) O(log n) time to add n O(n’)-bit numbers
(c) Q(log log n) time to add n O(log’n)-bit numbers, for k > 1.

The result (b) has been independently obtained by Beame [3] using a different
method that does not depend on Kolmogorov complexity. The result (c) is weaker
than the results contained in Section 3.

We note that when the input size is small, the Q(log n) lower bound does not
always hold. For example, for numbers up to size nl”og’ogn, using a method of Reif
[27], the following can be shown:

THEOREM 2.2. Addition of n numbers of O(n “‘w ‘W “) bits can be done in O(log n/
log log n) time by a PRAM with no”’ processors.’

We next present an D(log n) lower bound for a function with input components
from {O, 1). We actually prove a much more general result. We say that a func-
tion f(x,, x,) is almost l-l if for every y I(Xlf(x3 = y)(5 2”(@. All l-l
functions are almost 1-l functions.

THEOREM 2.3. It requires n(logn - loglogq) time to compute an almost l-l
function f(x,, . . . , x,) on a PRIORITY(w) with q processors.

’ Reif [27] showed that adding n O(log n)-bit numbers can be done in O(log n/log log n) time.

New Lower Bounds for Parallel Computation 675

PROOF. Suppose that a PRIORITY(m) M with q processors computes f(x, , . . . ,
x,,) in o(log N - log log q) steps for infinitely many n’s. The oracle A stores the
programs of M as before. Fix a string X E (0, 1) ‘I such that KA(X) 2] X 1. Let x, =
ith bit of X. Then consider the (fixed) computation of M on input (x,, . . . , x,).
We use all the definitions and facts from Theorem 2.1. Let USEFUL = (x, I xi is
useful).

Using ALIVE, USEFUL, we can simulate A4 to uniquely reconstruct the output
f(x,, .--, x,,). Since T = o(log (n/log q)), we know that 2Tlog q = o(n). Therefore
1 USEFUL 1, I ALIVE] < n/C for any constant C for n large enough. Now, to
represent the elements in USEFUL we need to describe the index of each
x, E USEFUL. This information can be represented by

m, 4, 4, . . . , d,,,,

where m = I USEFUL] < n/C, and if i = C:\=, dj for 1 I k I m, then
x, E USEFUL. The values of the parameters m and the d[s are coded self-
delimiting. Also note that Cj’L, d, I n. Then by the convexity of the logarithm
function, as long as we choose large enough C, the total number of bits needed to
represent USEFUL is no more than

(log n
mi-3m-

+ 210g log y1
m m)

+ O(log n) 5 ;,

where the first term (and @log n)) is for all the x,‘s (in self-delimiting coding), and
the middle term is for representing the indices and m.

To represent ALIVE, since 2Tlog q = o(n), we need at most n/C bits for any
fixed C. Now from ALIVE and USEFUL we compute f(x,, . . . , x,,) using oracle
A. Then, since f is almost I- 1, we reconstruct the entire input from f with an extra
o(n), say n/4, bits. Hence we can conclude that K(X) <) X 1, contradicting the
randomness of X. 0

COROLLARY 2. Let f(x,, x2, . . . , x,?) = C:=,x,a’, wherex, E (0, 1) and a > 1 is
fixed. Computing f on a PRIORITY(m) with no(‘) processors requires R(log n) time.

PROOF. Because fis l-l. 0

Remark. All the results in this section are true for nondeterministic, and hence
probabilistic PRIORITY(w) as well. For the nondeterministic model, we have to
supply for each pair (P(i), t) a bit that determines which of the two nondeterministic
choices available did processor P(i) choose at step t. We can define ALIVE as the
collection of all triples (P(i), t, b) such that processor P(i) is alive at step t and b is
its nondeterministic choice at this step. We select b’s according to a fixed successful
computation on the fixed input (xi, . . . , x,,). USEFUL is defined as before. Note
that the size of ALIVE is still o(b(n)). The rest of the proof is the same as the proof
of the deterministic case.

3. Time-Processor Trade-Offfor PARITY on PRIORITY(m)
Since Cook and Dwork [7] proved an Q(log n) lower bound for Boolean OR on
concurrent-read exclusive-write PRAM (see also [8]), the following question re-
mained open: Show for a natural Boolean function (with y2 l-bit input and one
l-bit output, e.g., PARITY) that it requires nonconstant time on the most general
and powerful concurrent-read concurrent-write PRAMS with subexponential num-
ber of processors, each having arbitrary computation power. A related problem for

676 M. LI AND Y. YESHA

unbounded fan-in circuits was solved by Furst et al. [111 and Ajtai [1 J. Yao [33]
and Hastad [141 improved the results of [1 I] and [11. For restricted PRAMS (where
each processor is restricted to have only certain instructions), the problem was
solved by Chandra et al. [6] and Stockmeyer and Vishkin [31]. Fich et al. [9]
proved a lower bound for computing the maximum of n integers on a PRIOR-
ITY(m) with y1 processors. However, until the results of the present paper, and the
results independently obtained by Beame [3], no nontrivial lower bound was
obtained for the PRIORITY(co) for any Boolean function.

We resolve the above open question. We prove that indeed a PRIORITY(a)
(the most powerful and general PRAM) that computes PARITY of yt bits requires
more than constant time with a subexponential number of processors, and
n(G) time with polynomial many processors. More generally, we obtain a
trade-off between time, number of processors and input size from which the above
lower bounds follow.

Our result is based on an efficient general simulation of a PRAM by circuits.
Unlike the simulation of [6] and [31] (which assumes restrictions on the power of
individual processors), our simulation does not assume any such restrictions.

THEOREM 3.1. There exists a constant c such that if a Boolean function
“f&l, a**, x,,) is computed on PRIORITY(m) with q processors in time T, then f
can be computed by an unbounded fan-in Boolean circuit of size qoc2“) and
depth O(T).

PROOF. Without loss of generality, we may consider the COMMON(m)
models. Kucera [161 proved that COMMON(m) with q* processors can simulate
PRIORITY(w) with q processors with only a constant slow down. Lemma 1
below applies to the PRIORITY model as well. However, the description of
the circuit is simpler if the COMMON model is used. Hence, it is enough to con-
sider COMMON(w). Consider the computation of a Boolean function by a
COMMON(w) with q processors. As before, K”(x) denotes the Kolmogorov com-
plexity of x relative to the oracle A that describes the COMMON(w) program.

By definition of the PRAM, there exists a program Q with the following
properties:

(I) With oracle A, the program Q can compute and- output the state of a processor
before step t, given as input: (a) the state of the processor before step t - 1 and
(b) the contents before step t - 1 of the shared memory cell from which the
processor read at step t - 1.

(2) With oracle A, the program Q can compute and output the contents of a shared
memory cell before step t, given as input: (a) the contents of that cell before
step t - 1, (b) the state before step t - 1 of some processor that wrote into that
cell at step t - 1 (if such a processor exists), and (c) one more bit which is 0 if
no processor wrote into this cell at step t - 1, and 1 if some processor wrote
into this cell at step t - 1.

Let S(t) be the maximum over all processors of the Kolmogorov complexity
(relative to A) of the state of a processor before step t, and let M(t) be the maximum
over all shared memory cells of the Kolmogorov complexity, relative to A, of the
contents of a shared memory cell before step t. We prove

LEMMA 1. At step t, S(t) cr (2’+’ - l)(logq + v) and M(t) 5 (2’+’ - l)(fogq +
v), where v is a constant.

New Lower Bounds for Parallel Computation 677

PROOF. By induction on t. It is easy to see that the Lemma is true for t = 0.
Now suppose that it is true for all steps up to t - 1. Then, by (1) above, S(t) 5
S(t - 1) + M(t - 1). By (2) above, M(t) I S(t - 1) + M(t - 1) + 1. Hence, the
lemma is true for step t. 0

Now, note that the address accessed by some processor depends only on its state.
Hence, the Kolmogorov complexity (relative to A) of any address that is accessed
by step t is at most (2’+’ - l)(log q + v). Hence, (2’+’ - l)(log q + v) bits are needed
to represent any relevant state, address, and memory cell contents.

By Lemma 1, at most G = 2 ‘+‘(log q + v) bits are required in order to represent
each state, address, and contents of any shared memory cell which is ever accessed
by step T. Hence, at most U = 2” distinct shared memory cells are accessed by
step T. We may rename the shared memory addresses: If an address is represented
by the binary string z(1 z 1 I G), which is the binary representation of the number
j, then we call it address j.

The circuit consists of layers. Each layer is divided into levels. The first level in
layer t includes the binary representations of all the states and contents of shared
memory cells 0 through U before step t. The purpose of the other levels is to
compute the states and the contents of the shared memory before step t + 1. We
now describe the operation of layer t. It includes the following components:

(1) Selection of Reading Addresses. For each processor P(l) (I = 1, . . . , q), a
binary vector r/, , . . . , r/o is computed as a function of the state s of the
processor. r,, = 1 if, being in state s, P(f) reads from addressj. r, = 0, otherwise.
Each state is represented by at most G bits. Using disjunctive normal form, we
construct an unbounded fan-in circuit to compute each r!,. The circuit has
depth 2 and size 2O((‘), which is q Oc2’) Hence, the circuit which computes .
all the r/j’s has depth 2 and size qoc2”).

(2) Selection of Writing Addresses. For each processor P(l), a binary vector w/~,
. . .) wu is computed as a function of the state s of the processor. W/j = 1 if,
being at state s, processor P(l) writes into address j. W/j = 0, otherwise. ,This
circuit is similar to the circuit in (1) above, and has depth 2 and size qa(*‘).

(3) Computing the Value z/ Read by Processor P(l), for 1= 1, . . . , q. This can be
easily done in constant depth and polynomial size, as a function of the contents
of the shared memory cell, and the vector rl,.

(4) Computing the Value vl Written by P(l), for 1 = 1, . . . , q. This value is a
function of the state of the processor. Using disjunctive normal form, this can
be done in depth 2 and size q ‘Q’) The analysis is similar to the analysis in (1) .
above.

(5) Computing the State of Processor P(1) before Step t + 1, for I= I, . . . , q. This
next state depends on the state of P(1) before step t, and on z/. Again,
using disjunctive normal form, this can be done in depth 2 and size qO(“‘).

(6) Computing the Contents of Shared Memory Cell j before Step t + 1, for
j= l,..., U. Let d, = V:=, w/,. Clearly d, = 1 if no processor writes into cell
j at step t. Otherwise, d, = 0. Also let hj = V!=, w,,,v;. (The bitwise OR of binary
strings is used.) Then, since we have the COMMON conflict resolution scheme,
the contents of address j before step t + 1 is 4, Vd,s,, where Sj is the contents of
cell j before step t. This value can clearly be computed in constant depth and
polynomial size.

Since the whole circuit consists of T layers, its depth is O(T) and its size is
2OU). 0

678 M.LIANDY.YESHA

Hastad [131 has proved the following result:

LEMMA 2. There exists an absolute constant no such that there are no depth k
PARITY circuits of size 2(“‘0’““h-“n”‘h-” for n > nt.

Combining our simulation with the above depth-size trade-off, we obtain the
following:

THEOREM 3.2. There exists an absolute constant b such that ifa PRIORITY(m)
with q > b processors computes PARITY of n > b7‘ bits in time T, then bT(bT -!-
log Iog q) > log n.

PROOF. Suppose that a PRIORITY(m) with q processors computes PARITY of
n bits in time T steps. Using Theorem 3.1, there is an unbounded fan-in circuit of
depth CT and size qC2T which computes PARITY of n bits. By Lemma 2, there is
a constant no such that for all n > r$,

Hence

Hence

For T, q large enough 2”T”‘log q > 1 + 2”Tlog q, hence

2”r++110g q > &
0

C~T/(C’P I)
n 1 /(c,T- I)

Hence, 1 + CT + log log q + cT/(cT - 1)log 10 > log n/(cT - 1). For T large
enough, CT > 1 + (cT/(cT - 1))Iog 10 and 2cT > CT - 1. Hence

2cT + log log q > log n/2cT.

Without loss of generality, we may assume that both T and q are increasing
functions of n. Let nl be such that for all n > nl, T and q are large enough as
required above. Let b = max(2c, nl;, nl). 0

Theorem 3.2 has many corollaries:

COROLLARY 1. PRIORITY(m) with a number of processors that is subexponen-
tial in n cannot compute PARITY of n bits in constant time.

COROLLARY 2. A PRIORITY(m) with n O(” processors requires Q(6) time
to compute PARITY of n bits.

COROLLARY 3. Unboundedfan-in circuits ofpolynomial size and constant depth
compute the same Boolean functions as a PRIORITY(m) with polynomially many
processors and constant time.

Corollaries 1 and 2 have also been obtained independently by Paul Beame [3]
using a different method. Theorem 3.1 and Corollary 3 are of independent interest
and serve as a general tool to translate circuit lower bounds into PRAM lower
bounds.

Remark 1. From the reducibilities mentioned in [6] and [3 l] and our theorem
it then follows that the same time-processor trade-off applies to SORTING (even

New Lower Bounds for Parallel Computation 679

of binary bit inputs), MAJORITY, CONNECTIVITY and many other functions
(see [6] and [31]). Furthermore, our proof is much shorter in comparison with
the S(G) lower bound obtained for SORTING in [22].

Remark 2. After the results in this paper were reported in [181 and this paper
was submitted for publication, a recent paper by Beame and Hastad [4] improves
the lower bound for PARITY by providing an optimal Q(log n/log log n) lower
bound on the time needed by a PRIORITY(m), with a number of processors
polynomial in n, to compute PARITY of y1 bits. Hence this improved our Corollx-y
l(a), (c) in Section 2 and Corollary 2 in Section 3.

ACKNOWLEDGMENTS. We thank Eitan Gurari, Xin He, and Tim Long for their
generous help, and the anonymous referees for very helpful suggestions.

REFERENCES

1. AJTAI, M. I;-formulae on finite structures. Ann. Pure Appl. Logic 24 (1983), l-48.
2. AWERBUCH, B., AND SHILOACH, Y. New connectivity and MSF algorithms for ultracomputers

and PRAM. In Proceedings ofthe IEEE Conference on Parallel Processing. IEEE, New York, 1983
pp. 175-179.

3. BEAME, P. Limits on the power of concurrent-write parallel machines. In Proceedings ofthe 18th
ACM Symposium on Theory of Computing (Berkeley, Calif., May 28-30). ACM, New York 1986,
pp. 169-176.

4. BEAME, P. Lower bounds in parallel machine computation. Ph.D. dissertation. Univ. of Tc ronto,
Toronto, Ont., Canada, 1986.

5. BEAME, P., AND HASTAD, J. Optimal bounds for decision problems on the CRCW PRAM. In
Proceedings of the 19th ACM Symposium on Theory of Computing (New York, N.Y., May 25-27).
ACM, New York, 1987, pp. 83-93.

6. CHANDRA, A., STOCKMEYER, L., AND VISHKIN, U. Constant depth reducibility. SIAM J. Comput.
I3 (1984), 324-429.

7. COOK, S. A., AND DWORK, C. Bounds on the time for parallel RAM’s to compute simple functions.
In Proceedings of the 14th ACM Symposium on Theory of Computing. ACM, New York, 1982,
pp. 23 I-233.

8. COOK, S. A., DWORK, C., AND REISCHUK, R. Upper and lower time bounds for parallel random
access machines without simultaneous writes. SIAM J. Comput. 15, 1 (1986), 87-97.

9. FICH, F., MEYER AUF DER HEIDE, F., RAGDE, P., AND WIGDERSON, A. One, two three, ,
infinity: Lower bounds for parallel computation. In Proceedings of the 24th ACM Symposium on
Theory of Computing (Providence, R.I., May 6-S). ACM, New York, 1985, pp. 48-58.

10. FICH, F., RAGDE, P., AND WIGDERSON, A. Relations between concurrent-write models of parallel
computation. In Proceedings of the 3rd ACM Symposium on Principles of Distributed Computing
(Vancouver, B.C., Canada, Aug. 27-29). ACM, New Yrok, 1984, pp. 179- 184.

11. FURS-~, M., SAXE, J., AND SIPSER, M. Parity, circuits, and the polynomial-time hierarchy. Math.
Syst. Theor. 17, 1 (1984), 13-28.

12. GALIL, Z. Optimal parallel algorithms for string matching. In Proceedings of the 16th ACM
Symposium on Theory of Computing (Washington, D.C., Apr. 30-May 2). ACM, New York, 1984,
pp. 240-248.

13. HARTMANIS, J. Generalized Kolmogorov-complexity and the structure of feasible computations.
In Proceedings of the 24th IEEE Symposium on Foundations of Computer Science. IEEE, New
York, 1983, pp. 439-445.

14. HASTAD, J. Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th
ACM Symposium on Theory ofcomputing (Berkeley, Calif., May 28-30). ACM, New York, 1986,
pp. 6-20.

15. HIRSCHBERG, D., CHANDRA, A., AND SARWATE, D. Computing connected components on parallel
computers. Commun. ACM 22, 8 (Aug. 1979), 46 l-464.

16. KUCERA, L. Parallel computation and conflicts in memory access. If: Proc. Lett. 14, 2 (1982),
93-96.

17. LI, M., AND VITANYI, P. B. M. Tape versus queue and stacks: The lower bounds. Inf: Comput.
78, 1 (July 1988), 56-85.

680 M. LI AND Y. YESHA

18. LI, M., AND YESHA, Y. New lower bounds for parallel computation. In Proceedings ofthe 18th
ACM Ammu/ Symposium on Theory of Computing (Berkeley, Calif., May 28-30). ACM, New
York, 1986, pp. 177-187.

19. LI, M., AND YESHA, Y. Separation and lower bounds for ROM and nondeterministic models of
parallel computation. Inx Comput. 73, 2 (May 1987), 102-128.

20. MAASS, W. Quadratic lower bounds for deterministic and nondeterministic one-tape Turing
machines. Trans. AMS 292, 2 (Dec. 1985), 675-693.

2 1. MEYER AUF DER HEIDE, F., AND REISCHUK. R. On limits to speed up parallel machines by large
hardware and unbounded communication. In Proceedings of the 25th IEEE Symposium on
Foundation of Computer Science. IEEE, New York, 1984, pp. 56-64.

22. MEYER AUF DER HEIDE, F., AND WIGDERSON. A. The complexity ofparallel sorting. In Proceedings
of the 26th IEEE Annual Symposium on Theory of Computing. IEEE, New York, 1985, pp.
532-540.

23. PARBERRY, I. On the time required to sum n semi group elements on a parallel machine with
simultaneous write. In Proceedings ofAegean Workshop on Computation. 1986.

24. PAUL, W. Kolmogorov complexity and lower bounds. In Proceedings of the 2nd International
Conference on Fundamentals of Computation Theory. 1979.

25. PAUL, W., SEIFERAS, J., AND SIMON J. An information-theoretic approach to time bounds for on-
line computations. J. Comput. Syst. Sci. 23 (198 l), 108-126.

26. PREPARATA, F. P. New parallel-sorting schemes. IEEE Trans. Comput. C-27, 669.
27. REIF, J. An optimal algorithm for integer sorting. In Proceedings of the 26th IEEE Symposium

on Foundation of Computer Science. IEEE, New York, 1985, pp. 494-504.
28. REISCHUK, R. Parallel machines and their communication theoretical limits. In Lecture Notes in

Computer Science, vol. 210. Springer;Verlag, New York, pp. 359-368.
29. SHILOACH, Y., AND VISHKIN, U. Finding the maximum, merging and sorting on parallel models

of computation. J. AIgorithms 2 (198 l), 88-102.
30. SHILOACH, Y., AND VISHKIN, U. An @log n) parallel connectivity algorithm. J. Algorithms 3

(1982), 57-67.
31. STOCKMEYER, L., AND VISHKIN, U. Simulation of random access machines by circuits. SIAM J.

Comput. 13 (1984), 409-422.
32. VISHKIN, U., AND WIGDERSON, A. Trade-offs between depth and width in parallel computation.

SIAM J. Comput. 14,2 (May 1985), 303-3 14.
33. YAO, A. C.-C. Separating the polynomial-time hierarchy by oracles. In Proceedings of the IEEE

26th Symposium on Foundations of Computer Science (Portland, Ore.). IEEE, New York, 1985,
pp. l-10.

RECEIVED AUGUST 1986; REVISED DECEMBER 1987 AND OCTOBER 1988; ACCEPTED NOVEMBER 1988

Journal of the Association for Computing Machinery. Vol. 36. No. 3. July 1989.

