
New Lower Bounds for Parallel Computation 

MING LI AND YAACOV YESHA 

The Ohio State University, Columbus, Ohio 

Abstract. Lower bounds are proven on the parallel-time complexity of several basic functions on the 
most powerful concurrent-read concurrent-write PRAM with unlimited shared memory and unlimited 
power of individual processors (denoted by PRIORITY(m)): 

(1) It is proved that with a number of processors polynomial in n, fi(log n) time is needed for addition, 
multiplication or bitwise OR of n numbers, when each number has II’ bits. Hence even the bit 
complexity (i.e., the time complexity as a function of the total number of bits in the input) is 
logarithmic in this case. This improves a beautiful result of Meyer auf der Heide and Wigderson 
[22]. They proved a log n lower bound using Ramsey-type techniques. Using Ramsey theory, it is 
possible to get an upper bound on the number of bits in the inputs used. However, for the case of 
polynomially many processors, this upper bound is more than a polynomial in n. 

(2) An R(log n) lower bound is given for PRIORITY(m) with no”’ processors on a function with inputs 
from (0, 11, namely for the functionf(xl, . ,x.) = C:‘=, x,a’ where a is fixed and x, E (0, 1). 

(3) Finally, by a new efficient simulation of PRIORITY(m) by unbounded fan-in circuits, that with less 
than exponential number of processors, it is proven a PRIORITY(m) cannot compute PARITY in 
constant time, and with nO”’ processors Q(G) time is needed. The simulation technique is of 
independent interest since it can serve as a general tool to translate circuit lower bounds into PRAM 
lower bounds. 

Further, the lower bounds in (1) and (2) remain valid for probabilistic or nondeterministic concurrent- 
read concurrent-write PRAMS. 
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1. Introduction 

M. LI AND Y. YESHA 

A parallel random access machine (PRAM) consists of processors P(i), i = 
1, 2: . ..) and shared memory cells C(i), i = 1, 2 . . . . Each step of the 
parallel computation consists of three phases as follows: Each processor (1) reads 
from some shared memory cell, (2) may attempt writing into some shared mem- 
ory cell, and (3) changes state. The state of each processor before step t is a func- 
tion of its state before step t - 1, and the value read from the shared memory at 
step t - 1. The actions of each processor at step t - 1 are functions of its state be- 
fore step t - 1. 

The input (x,, . . . , x,) is initially placed in the shared memory. The value xi is 
placed in the location C(i). for i = 1, . . . , n. We say that the PRAM computes the 
function f if the following is true: Whenever f(x,, . . . , x,) = (a,, . . . , a,,), the 
computation terminates with a, in the ith shared memory cell C(i). 

The various variants of the PRAM differ in the way they handle read or write 
conflicts: 

(I) ERE W (Exclusive Read Exclusive Write). Read or write conflicts cannot occur. 
(2) CREW (Concurrent Read Exclusive Write). Write conflicts cannot occur. 
(3) COMMON. All the processors simultaneously writing into the same cell write 

the same value. 
(4) ARBITRARY. An arbitrary processor succeeds in writing. 
(5) PRIORITY. The processor with the minimum index succeeds in writing. 

For N any of the above models, let N(m) be the model with m shared memory 
cells. The time of the PRAM is the number of parallel steps used. 

The PRIORITY model is the strongest one out of the above models. The 
PRIORITY(a) (i.e., PRIORITY with unlimited shared memory) is the strongest 
known PRAM. The lower bounds we prove in this paper for PRIORITY(m) 
PRAMS also apply to all other models. 

All the above models are widely used for implementing parallel algorithms. For 
example, Hirschberg et al [ 151 and Preparata [26] used CREW (actually Preparata 
[26] also used an even weaker model, EREW, in which concurrent read is not 
allowed), Shiloach and Vishkin [28] and Galil [ 121 used COMMON, Shiloach 
and Vishkin [30] used ARBITRARY, and Awerbuch and Shiloach [2] used 
ARBITRARY and PRIORITY. 

The purpose of this paper is to gain better understanding of the power of 
concurrent read and concurrent write PRAMS. Although many practical algorithms 
have been developed based on the various PRAM models, the limitation of what 
a PRAM can do and what a PRAM cannot do is still not clear. Several authors 
have obtained significant results in this direction, including [7]-[lo], [21], [22], 
and [32]. (See also [19] and a survey paper by Reischuk [28].) In this paper we 
continue this research and obtain several nontrivial lower bounds on several very 
basic functions like addition of n integers and parity of n Boolean bits. We also 
develop two basic new methods for obtaining lower bounds for PRAMS. 

2. Q(log n) Lower Bound on the Bit Complexity of ADDITION and Related 
Functions 

Recently, Fich et al [9] and Meyer auf der Heide and Wigderson [22] proved 
several important lower bounds on PRIORITY(w), including MAX, SORTING, 
ADDITION, MULTIPLICATION, using Ramsey theorems. (The lower bound on 
addition was also independently obtained by A. Israeli and S. Moran (private 
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communication) and Parberry [23]). But all these lower bounds depend on inputs 
from infinite (or very large) domains. In practice, we are often interested in small 
inputs. For example, using a technique due to Reif [27], addition of n n”‘Og’Og” bit 
numbers can be done in U(log n/log log n) time with no(‘) processors which is less 
than the R(log n) lower bound of [22]. This is not a contradiction, since the lower 
bound in [22] is for a PRAM, which is capable of adding arbitrarily large numbers. 
We improve the result of A. Israeli and S. Moran (private communication) and 
[22] and [23] to numbers of polynomial size (i.e., polynomial number of bits) by a 
new concept known as Kolmogorov complexity. We successfully use the remark- 
able notion of Kolmogorov complexity to obtain parallel lower bounds (and trade- 
offs) for a large class of functions with arguments in small domains (even with 
binary bit inputs) on PRIORITY(co). Kolmogorov complexity has been fruitfully 
used to study sequential complexity [ 13, 17, 20, 24, 251, particularly in restricted 
Turing machine lower bounds. In this section we demonstrate how to use Kol- 
mogorov complexity in obtaining general and optimal parallel lower bounds. 

For the purpose of this paper, we fix an enumeration of oracle Turing machines. 
The Kolmogorov complexity of a string X relative to an oracle A, K” (X), is the 
size of smallest oracle Turing machine with oracle A which prints X.X is random 
relative to A if K”(X) 2 ] X 1. A simple and well-known counting argument shows 
that for any oracle A and every large enough n, there exist strings of length n that 
are random relative to A. A function j&x,, . . . , x,) is invertible if x, (for all i) can 
be computed from (j-(x,, . . . , xn), x1, . . . , xjeI, x,+ I, . . . , x,). 

For each string w, the string CQ is obtained by doubling each letter in w. For 
integer i, bin(i) is the binary representation of i. Let w’ = bin( ] w ])O 1 w. The string 
w’ is called the self-delimiting version of w. So “ 1100 110 10 10 11” is the self- 
delimiting version of “01011.” The self-delimiting binary version of a positive 
integer n requires log n + 2 log log n + 2 bits and the self-delimiting version of a 
binary string w requires ] w ] + 2 log] w ] + 2 bits. All logarithms are base 2 unless 
otherwise noted. 

The following theorem improves (and simplifies) results in [2 I] and [22]. Meyer 
auf der Heide and Reischuk [21] proved an Q(log n) lower bound for addition on 
a restricted PRIORITY(o3): A PRIORITY(w) with a particular instruction set. Our 
results, however, do not depend on a particular instruction set, and allow each 
processor to have arbitrary power. Meyer auf der Heide and Wigderson [22] prove 
an D(log n) lower bound for addition on the model we use. However, their result 
does not imply a polynomial upper bound on the size of the integers needed to 
achieve the lower bound. 

THEOREM 2.1. It requires Q(min[log(b(n)/logq), logn]) time to compute an 
invertible function f(x,, . . . , x,,), where I x, I 5 b(n) for all i and log n = o(b(n)), on 
a PRIORITY(m) with q processors. 

PROOF. Suppose that a PRIORITY(w) M with q processors computes f(x, , . . . , 
x,,) in o(min[log (b(n)/log q), log n]) steps for infinitely many n’s. We are actually 
talking about an infinite family of functions%, one for each n, and we assume that 
for eachf, we have a different PRIORITY( 1) with a number of processors q, which 
is a function of n. However, for simplicity of notation we write, for instance 
f(-c,-.-, x,,) instead off;l(x,, . . . , x,,). To prove the theorem it suffices to assume 
that log (b(n)/log q) 5 log n. The programs (maybe infinite) of M can be encoded 
into an oracle A. The oracle, when queried about (i, I), returns the initial section 
of length 1 of the program for P(i). Fix a string X E 10, 1 In”(“) such that KA(X) L 
] XI. Equally divide X into n parts xl, x2, . . . , x,,. Then consider the (fixed) 
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computation of A4 on input (x,, . . . , x,). We inductively define (with respect to 
X) a processor to be alive at step t in this computation if 

(1) it writes the output; or 
(2) it succeeds in writing something at some step t’ 2 t which is read at some step 

t” > t ’ by a processor who is alive at step t”. 

An input component is useful if it is read at some step t by a processor alive at 
step t. (Note that this is similar to the “communication pattern” used in [22].) It is 
easily seen, by induction on the step number, that for a computation that consists 
of T steps the number of useful input components and the number of processors 
ever alive are both 0(2 ‘). 

It is not difficult to see that, given all the useful input components and the set 
ALIVE = {(P(i), ti) ] P(i) was alive until step ti > 01, we can simulate A4 to uniquely 
reconstruct the outputf(x,, . . . , x,). 

Since T = o(log (b(n)/log q)) and log (b(n)/log q) I log ~1, we know 2 T = o(n). 
Hence, there is an input component Xi,, which is not useful. We need 0(2Tlog q) 
= o(b(n)) bits to represent ALIVE. To represent (x,, . . . , x;,-~, x;~+~, . . . , x,) we 
need (n - l)b(n) + log II bits, where log n bits are needed to indicate the index i0 
of the missing input component. The total number of bits needed is then 

J = rib(n)) - b(n) + log n + o(b(n)) C n&n). 

(Since log n = o(b(n)).) But from these J bits we can find f(x,, . . . , x,) by 
simulating A4 using the oracle A, and then reconstruct Xi0 from f(xr , . . . , x,) and 
(Xl, . . . ,&,-I, &“+I, * * * , x,). This contradicts the randomness of X. 0 

An immediate application of the above theorem is to provide a lower bound for 
addition of small numbers. Note that addition is an invertible function. 

COROLLARY 1. For a PRIORITY(W) with no”’ processors, it requires 

(a) Q(log n/log log n) time to add n O(n ‘l’fa”an)-bit numbers 
(b) O(log n) time to add n O(n’)-bit numbers 
(c) Q(log log n) time to add n O(log’n)-bit numbers, for k > 1. 

The result (b) has been independently obtained by Beame [3] using a different 
method that does not depend on Kolmogorov complexity. The result (c) is weaker 
than the results contained in Section 3. 

We note that when the input size is small, the Q(log n) lower bound does not 
always hold. For example, for numbers up to size nl”og’ogn, using a method of Reif 
[27], the following can be shown: 

THEOREM 2.2. Addition of n numbers of O(n “‘w ‘W “) bits can be done in O(log n/ 
log log n) time by a PRAM with no”’ processors.’ 

We next present an D(log n) lower bound for a function with input components 
from {O, 1). We actually prove a much more general result. We say that a func- 
tion f(x,, . . . . x,) is almost l-l if for every y I(Xlf(x3 = y)( 5 2”(@. All l-l 
functions are almost 1-l functions. 

THEOREM 2.3. It requires n(logn - loglogq) time to compute an almost l-l 
function f(x,, . . . , x,) on a PRIORITY(w) with q processors. 

’ Reif [27] showed that adding n O(log n)-bit numbers can be done in O(log n/log log n) time. 
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PROOF. Suppose that a PRIORITY(m) M with q processors computes f(x, , . . . , 
x,,) in o(log N - log log q) steps for infinitely many n’s. The oracle A stores the 
programs of M as before. Fix a string X E (0, 1) ‘I such that KA(X) 2 ] X 1. Let x, = 
ith bit of X. Then consider the (fixed) computation of M on input (x,, . . . , x,). 
We use all the definitions and facts from Theorem 2.1. Let USEFUL = (x, I xi is 
useful). 

Using ALIVE, USEFUL, we can simulate A4 to uniquely reconstruct the output 
f(x,, .--, x,,). Since T = o(log (n/log q)), we know that 2Tlog q = o(n). Therefore 
1 USEFUL 1, I ALIVE ] < n/C for any constant C for n large enough. Now, to 
represent the elements in USEFUL we need to describe the index of each 
x, E USEFUL. This information can be represented by 

m, 4, 4, . . . , d,,,, 

where m = I USEFUL ] < n/C, and if i = C:\=, dj for 1 I k I m, then 
x, E USEFUL. The values of the parameters m and the d[s are coded self- 
delimiting. Also note that Cj’L, d, I n. Then by the convexity of the logarithm 
function, as long as we choose large enough C, the total number of bits needed to 
represent USEFUL is no more than 

( log n 
mi-3m- 

+ 210g log y1 
m m ) 

+ O(log n) 5 ;, 

where the first term (and @log n)) is for all the x,‘s (in self-delimiting coding), and 
the middle term is for representing the indices and m. 

To represent ALIVE, since 2Tlog q = o(n), we need at most n/C bits for any 
fixed C. Now from ALIVE and USEFUL we compute f(x,, . . . , x,,) using oracle 
A. Then, since f is almost I- 1, we reconstruct the entire input from f with an extra 
o(n), say n/4, bits. Hence we can conclude that K(X) < ) X 1, contradicting the 
randomness of X. 0 

COROLLARY 2. Let f(x,, x2, . . . , x,?) = C:=,x,a’, wherex, E (0, 1) and a > 1 is 
fixed. Computing f on a PRIORITY(m) with no(‘) processors requires R(log n) time. 

PROOF. Because fis l-l. 0 

Remark. All the results in this section are true for nondeterministic, and hence 
probabilistic PRIORITY(w) as well. For the nondeterministic model, we have to 
supply for each pair (P(i), t) a bit that determines which of the two nondeterministic 
choices available did processor P(i) choose at step t. We can define ALIVE as the 
collection of all triples (P(i), t, b) such that processor P(i) is alive at step t and b is 
its nondeterministic choice at this step. We select b’s according to a fixed successful 
computation on the fixed input (xi, . . . , x,,). USEFUL is defined as before. Note 
that the size of ALIVE is still o(b(n)). The rest of the proof is the same as the proof 
of the deterministic case. 

3. Time-Processor Trade-Offfor PARITY on PRIORITY(m) 
Since Cook and Dwork [7] proved an Q(log n) lower bound for Boolean OR on 
concurrent-read exclusive-write PRAM (see also [8]), the following question re- 
mained open: Show for a natural Boolean function (with y2 l-bit input and one 
l-bit output, e.g., PARITY) that it requires nonconstant time on the most general 
and powerful concurrent-read concurrent-write PRAMS with subexponential num- 
ber of processors, each having arbitrary computation power. A related problem for 
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unbounded fan-in circuits was solved by Furst et al. [ 111 and Ajtai [ 1 J. Yao [33] 
and Hastad [ 141 improved the results of [ 1 I] and [ 11. For restricted PRAMS (where 
each processor is restricted to have only certain instructions), the problem was 
solved by Chandra et al. [6] and Stockmeyer and Vishkin [31]. Fich et al. [9] 
proved a lower bound for computing the maximum of n integers on a PRIOR- 
ITY(m) with y1 processors. However, until the results of the present paper, and the 
results independently obtained by Beame [3], no nontrivial lower bound was 
obtained for the PRIORITY(co) for any Boolean function. 

We resolve the above open question. We prove that indeed a PRIORITY(a) 
(the most powerful and general PRAM) that computes PARITY of yt bits requires 
more than constant time with a subexponential number of processors, and 
n(G) time with polynomial many processors. More generally, we obtain a 
trade-off between time, number of processors and input size from which the above 
lower bounds follow. 

Our result is based on an efficient general simulation of a PRAM by circuits. 
Unlike the simulation of [6] and [31] (which assumes restrictions on the power of 
individual processors), our simulation does not assume any such restrictions. 

THEOREM 3.1. There exists a constant c such that if a Boolean function 
“f&l, a**, x,,) is computed on PRIORITY(m) with q processors in time T, then f 
can be computed by an unbounded fan-in Boolean circuit of size qoc2“) and 
depth O(T). 

PROOF. Without loss of generality, we may consider the COMMON(m) 
models. Kucera [ 161 proved that COMMON(m) with q* processors can simulate 
PRIORITY(w) with q processors with only a constant slow down. Lemma 1 
below applies to the PRIORITY model as well. However, the description of 
the circuit is simpler if the COMMON model is used. Hence, it is enough to con- 
sider COMMON(w). Consider the computation of a Boolean function by a 
COMMON(w) with q processors. As before, K”(x) denotes the Kolmogorov com- 
plexity of x relative to the oracle A that describes the COMMON(w) program. 

By definition of the PRAM, there exists a program Q with the following 
properties: 

(I) With oracle A, the program Q can compute and- output the state of a processor 
before step t, given as input: (a) the state of the processor before step t - 1 and 
(b) the contents before step t - 1 of the shared memory cell from which the 
processor read at step t - 1. 

(2) With oracle A, the program Q can compute and output the contents of a shared 
memory cell before step t, given as input: (a) the contents of that cell before 
step t - 1, (b) the state before step t - 1 of some processor that wrote into that 
cell at step t - 1 (if such a processor exists), and (c) one more bit which is 0 if 
no processor wrote into this cell at step t - 1, and 1 if some processor wrote 
into this cell at step t - 1. 

Let S(t) be the maximum over all processors of the Kolmogorov complexity 
(relative to A) of the state of a processor before step t, and let M(t) be the maximum 
over all shared memory cells of the Kolmogorov complexity, relative to A, of the 
contents of a shared memory cell before step t. We prove 

LEMMA 1. At step t, S(t) cr (2’+’ - l)(logq + v) and M(t) 5 (2’+’ - l)(fogq + 
v), where v is a constant. 
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PROOF. By induction on t. It is easy to see that the Lemma is true for t = 0. 
Now suppose that it is true for all steps up to t - 1. Then, by (1) above, S(t) 5 
S(t - 1) + M(t - 1). By (2) above, M(t) I S(t - 1) + M(t - 1) + 1. Hence, the 
lemma is true for step t. 0 

Now, note that the address accessed by some processor depends only on its state. 
Hence, the Kolmogorov complexity (relative to A) of any address that is accessed 
by step t is at most (2’+’ - l)(log q + v). Hence, (2’+’ - l)(log q + v) bits are needed 
to represent any relevant state, address, and memory cell contents. 

By Lemma 1, at most G = 2 ‘+‘(log q + v) bits are required in order to represent 
each state, address, and contents of any shared memory cell which is ever accessed 
by step T. Hence, at most U = 2” distinct shared memory cells are accessed by 
step T. We may rename the shared memory addresses: If an address is represented 
by the binary string z( 1 z 1 I G), which is the binary representation of the number 
j, then we call it address j. 

The circuit consists of layers. Each layer is divided into levels. The first level in 
layer t includes the binary representations of all the states and contents of shared 
memory cells 0 through U before step t. The purpose of the other levels is to 
compute the states and the contents of the shared memory before step t + 1. We 
now describe the operation of layer t. It includes the following components: 

(1) Selection of Reading Addresses. For each processor P(l) (I = 1, . . . , q), a 
binary vector r/, , . . . , r/o is computed as a function of the state s of the 
processor. r,, = 1 if, being in state s, P(f) reads from addressj. r, = 0, otherwise. 
Each state is represented by at most G bits. Using disjunctive normal form, we 
construct an unbounded fan-in circuit to compute each r!,. The circuit has 
depth 2 and size 2O((‘), which is q Oc2’) Hence, the circuit which computes . 
all the r/j’s has depth 2 and size qoc2”). 

(2) Selection of Writing Addresses. For each processor P(l), a binary vector w/~, 
. . . ) wu is computed as a function of the state s of the processor. W/j = 1 if, 
being at state s, processor P(l) writes into address j. W/j = 0, otherwise. ,This 
circuit is similar to the circuit in (1) above, and has depth 2 and size qa(*‘). 

(3) Computing the Value z/ Read by Processor P(l), for 1= 1, . . . , q. This can be 
easily done in constant depth and polynomial size, as a function of the contents 
of the shared memory cell, and the vector rl,. 

(4) Computing the Value vl Written by P(l), for 1 = 1, . . . , q. This value is a 
function of the state of the processor. Using disjunctive normal form, this can 
be done in depth 2 and size q ‘Q’) The analysis is similar to the analysis in (1) . 
above. 

(5) Computing the State of Processor P(1) before Step t + 1, for I= I, . . . , q. This 
next state depends on the state of P(1) before step t, and on z/. Again, 
using disjunctive normal form, this can be done in depth 2 and size qO(“‘). 

(6) Computing the Contents of Shared Memory Cell j before Step t + 1, for 
j= l,..., U. Let d, = V:=, w/,. Clearly d, = 1 if no processor writes into cell 
j at step t. Otherwise, d, = 0. Also let hj = V!=, w,,,v;. (The bitwise OR of binary 
strings is used.) Then, since we have the COMMON conflict resolution scheme, 
the contents of address j before step t + 1 is 4, Vd,s,, where Sj is the contents of 
cell j before step t. This value can clearly be computed in constant depth and 
polynomial size. 

Since the whole circuit consists of T layers, its depth is O(T) and its size is 
2OU). 0 
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Hastad [ 131 has proved the following result: 

LEMMA 2. There exists an absolute constant no such that there are no depth k 
PARITY circuits of size 2(“‘0’““h-“n”‘h-” for n > nt. 

Combining our simulation with the above depth-size trade-off, we obtain the 
following: 

THEOREM 3.2. There exists an absolute constant b such that ifa PRIORITY(m) 
with q > b processors computes PARITY of n > b7‘ bits in time T, then bT(bT -!- 
log Iog q) > log n. 

PROOF. Suppose that a PRIORITY(m) with q processors computes PARITY of 
n bits in time T steps. Using Theorem 3.1, there is an unbounded fan-in circuit of 
depth CT and size qC2T which computes PARITY of n bits. By Lemma 2, there is 
a constant no such that for all n > r$, 

Hence 

Hence 

For T, q large enough 2”T”‘log q > 1 + 2”Tlog q, hence 

2”r++110g q > & 
0 

C~T/(C’P I ) 
n 1 /(c,T- I ) 

Hence, 1 + CT + log log q + cT/(cT - 1)log 10 > log n/(cT - 1). For T large 
enough, CT > 1 + (cT/(cT - 1))Iog 10 and 2cT > CT - 1. Hence 

2cT + log log q > log n/2cT. 

Without loss of generality, we may assume that both T and q are increasing 
functions of n. Let nl be such that for all n > nl, T and q are large enough as 
required above. Let b = max(2c, nl;, nl). 0 

Theorem 3.2 has many corollaries: 

COROLLARY 1. PRIORITY(m) with a number of processors that is subexponen- 
tial in n cannot compute PARITY of n bits in constant time. 

COROLLARY 2. A PRIORITY(m) with n O(” processors requires Q( 6) time 
to compute PARITY of n bits. 

COROLLARY 3. Unboundedfan-in circuits ofpolynomial size and constant depth 
compute the same Boolean functions as a PRIORITY(m) with polynomially many 
processors and constant time. 

Corollaries 1 and 2 have also been obtained independently by Paul Beame [3] 
using a different method. Theorem 3.1 and Corollary 3 are of independent interest 
and serve as a general tool to translate circuit lower bounds into PRAM lower 
bounds. 

Remark 1. From the reducibilities mentioned in [6] and [3 l] and our theorem 
it then follows that the same time-processor trade-off applies to SORTING (even 
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of binary bit inputs), MAJORITY, CONNECTIVITY and many other functions 
(see [6] and [31]). Furthermore, our proof is much shorter in comparison with 
the S(G) lower bound obtained for SORTING in [22]. 

Remark 2. After the results in this paper were reported in [ 181 and this paper 
was submitted for publication, a recent paper by Beame and Hastad [4] improves 
the lower bound for PARITY by providing an optimal Q(log n/log log n) lower 
bound on the time needed by a PRIORITY(m), with a number of processors 
polynomial in n, to compute PARITY of y1 bits. Hence this improved our Corollx-y 
l(a), (c) in Section 2 and Corollary 2 in Section 3. 
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