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Abstract

We investigate extensions of temporal logic by finite
automata on infinite words. There are three different
types of acceptance conditions (finite, looping and repeat-
ing) that one can give for these finite automata. This
gives rise to three different logics. It turns out, however,
that these logics have the same expressive power but
differ in the complexity of their decision problem. We
also investigate the addition of alternation and show that
it does not increasc the complexity of the decision prob-

lem.

1. Introduction

For many years, logics of programs were tools for
reasoning about the input/output hehavior of programs.
When dealing with concurrent or non-terminating
processes (like operating systems) there is, however, a
need to reason about infintte computation paths. These
are the sequences of states that the computation goes
through. In the propositional case they can be viewed as

infinite sequences of propositional (ruth assignments. In
[Pn77], temporal logic was proposed to reason about such

sequences. Later it was incorporated into the process
logics of [Ni80] and [HKP80].
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For reasoning about propositional truth assign-
ments, propositional logic is a descriptively complete
language, i.e., it can specify any set of propositional truth
assignments. However, for reasoning about computation
paths there is no a priori robust notion of descriptive
completeness. In [GPSS80] propositional temporal logic
(PTL) was shown to be expressively equivalent to the
monadic first-order theory of (N <), the natural numbers
with the less-than relation. This was taken as an indica-
tion that PTL is “descriptively complete”, and that so
are the process logics based on it [Ni80,HKI’$0].

The above claim is based on the assumption that
first-order notions are ail we need to reason about com-
putation paths. But, the very fundamental notion of reg-
ular sequences of events is not first-order. And, it turns
out that regular sequences are a natural way of describ-
ing concurrent processes {Sh79, Mi80]. Moreover, even a
simple property like “the proposition p holds at least in
every other state on a path” is not expressible in PTL
[Wogl]

In view of the need to extend the expressive power
The

mathematician would probably choose to add some non-
first-order construct, like least-fixpoint or second-order

quantification. The computer scientist, on the other
hand, would probably choose to add a mechanism to
specify regular events as was done in {Wo81]. There,
PTL is extended with a temporal conhective correspond-
ing to every nondeterministic finite automaton. For

of PTL, different approaches can be taken.



example, if £={a,b} and A4 is the automaton accepting
all words over Z having a in every other position, then
A is also a binary temporal connective, and the formula
A(p,true) is satisfied by the paths where p holds in at
least every other state. Note that automata connectives
can be nested within each other.

An important point that was not considered in
[Wo8l1] is that, while the notion of regularity for finite
paths is quite robust, this is not the case for infinite
paths. One can think of three ways of defining accep-
tance of an infinite word by a nondeterministic finite
automaton. We can say that the automaton accepts the
word if (1) it accepts some prefix of it by the standard
notion of acceptance for finite words, (2) if it has some
infinite run over the word (this is the notion used in
[Wo81)), or (3) it has some infinite run over the word
where the set of states that repeat infinitely often in this
run satisfies some additional constraint, e.g., it contains
some specific state. We call these notions of acceptance
finite acceptance, looping acceptance, and repeating accep-
tance, respectively. Repeating acceptance is the notion
used in Biichi automata [Bu62]. The languages defined
by Blichi automata are the same as those definable by
w-regular expressions [McN66]. The two other notions of
acceptance are incomparable and define strictlly smaller
classes of languages. (For example, the sequence (ab*)®
can be defined by repeating acceptance but not by finite
or looping acceptance.) Thus, depending on which accep-
tance conditions one chooses, different logics can be
defined and we could expect them to have different
expressive powers.

The main result of the paper is that all these logics
are expressively equivalent. They all have the expressive
power of w-regular expressions, which by [Bu62] and
[McN66] is the same as that of the monadic second-order

theory of (N ). denoted S1S. The complexity of the
decision problem for these logics ranges from polynomial

space to exponential space, whereas S1S is non-
elementary [Me75). The principal technique is the maxi-
mal model technique [Pr79] viewed in a new light.
While it was previously seen as a model building tech-
nique, we use it as a technique to synthesize automata
that recognize models. We see this as yet another indica-
tion to the relevance of automata theory to the logic of
programs (see for example [St81]).
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Furthermore, our results have an interesting
interpretation from a purely automata-theoretic point of
view. The ability to have an automata operator nested
within another automata operator is essentially equivalent
to the ability of an automaton to consult an oracle. That
is, when the automaton reaches certain states it asks the
oracle whether it accepts the rest of the word, and its
next move depends on the answer. Consider now the
following hierarchy. Let 4, be the class of nondeter-
ministic finite automata, let 4; be the class of nondeter-
ministic finite automata with oracles from A4;_;, and let

A be | J4,. If C is a class of automata, then C denotes
>0

the class of languages defined by automata in C.

Now we have three hierarchies 4/, 4/, and 47,
depending whether we use finite, looping, or repeating
acceplance, respectively. Our results show that not only
do these hierarchies collapse but that they are also
F:ZT:F:/T{:E:A_{,. However,
since each complementation causes at least an exponen-
tial blow-up, we might have expected the complexity of
the emptiness problem for automata in 47, 4/, and A4’
to be non-elementary. Our results show that the problem
is in PSPACE for A/ and A’ and is in EXPSPACE for
A" (compare this with the non-elementariness of the
emptiness problem for regular expressions with comple-
ment [MS73]). From an automata-theoretic point of view,

equivalent:

our main technique, the maximal technique, is a con-
struction that unifies the classical subset construction for
determinizing finite automata and the flag construction of
[Ch74] for running several automata in parallel under
central control.

Finally, to explore the fuil power of our technique,
we introduce alternating finite automata connectives.
These can be exponentially more succinct than nondeter-
ministic automata connectives, and one may expect their
introduction to push the complexity of the logic up.
Surprisingly, this is not the case. In fact, we view alter-
nating automata as capturing the quintessence of the
maximal model technique.

Though we have chosen temporal logic as the
framework for this investigation, our results can also be
stated in the framework of propositional dynamic logic
[FL79]. We discuss this in the concluding section of the
paper.



2. Temporal Logic with Automata Connectives

We consider propositional temporal logic where
the temporal operators are defined by finite automata,
similarly to the extended temporal logic (ETL) of
[Wo81]. More precisely, we consider formulas built from
a sei P of atomic propositions by means of:

. Boolean connectives

. Automata connectives. That is, every nondeter-
ministic finite automaton 4 =(2,S,R .50, F), where
2 is the input alphabet {a;,...,q,}, S is the set
of states, R:2XS—2% is the transition relation,
50€ES is the initial state, and FCS is a set of
accepting states (or a set of repeating states, see
below), is considered as an #-ary temporal connec-
tive. That is, if f, ..
is A(fl, . .,f,,).

A structure for our logic is an infinite sequence of

., fn are formulas, then so

truth assignments, i.e., a function 7:N —27 that assigns
truth values to the atomic propositions in cach state. We
ith “tail” of o, ie,
w'(k)=w(k +i). We now define salisfaction of formulas
and runs of formulas A(fy, ..., f,) over sequences by

use 7' to denote the

mutual induction. Satisfaction of a formula f by a struc-
ture o is denoted wl=f'.

o for an atomic proposition p, = p if p €w(0).

o awkfi/\ frifwEf1and 7S,

. aE"f ifnot w=f.

. aEA(fy ..., f), where. A=(Z,5,R,5F), if
there is an accepting run s=sgs, -+ of
A(fy, ..., fa) over m.

e A mrun of a formula A(fy...,f,), where
A=(Z,S,R,s50.F), over a structure « is a sequence
s=sg,51, -+ - of states from S where for all i,
0<i<|s|, there is some q;€Z such that ' | f;
and s;,.1€R (a;,5,).

Depending on how we define accepting runs, we
get three different versions of the logic:

. ETL;: A run s is accepting iff some state s€F
occurs in s.

. ETL,: A run s is accepting iff it is infinite.

e  ETL,: A run s is accepting iff some state s€F
occurs infinitely often in s (Biichi acceptance).
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Every formula defines a set of sequences, the set of
sequences that satisfies it. Qur yardstick for measuring
the expressive power of all these logics is their ability to
define sets of sequences.

Example: Consider the automaton
Ay={s0,51}.50.{50Xa —>s1,51Xb —>5,}.9)

defined over the alphabet =={a,b}. If we consider

looping acceptance, it only accepts one word:
w = ababababab - - - . It thus defines an ETL,; connective
such that 4,(f1,f2) is true of a sequence iff £ is true in
every even state and f is true in every odd state of that

sequence.

3. Translations to Automata and Decision Procedure.

Sequences of truth assignments to the proposi-
tional variables in P can be viewed as infinite words over
the alphabet 27, Tt is not hard to show that our logics
are translatable into S1S, and hence, by [Bu62] and
[McN66), they define w-regular sets of words. That is,
there is a translation from each of the logics ETLy,
ETL;, and ETL, to Biichi automata. However, since
negation in front of automata connectives causes an
exponential blow-up, we might have expected the com-
plexity of the translation to be non-elementary, as is the
translation from S18S to Biichi automata {Bu62]. Not so.

Theorem 3.1: Given an ETL; or an ETL; formula f of
length [, one can construct a Biichi automaton of size
exp(l) that accepts exactly those sequences that satisfy f.

Sketch of Proof: We will give the proof for ETL;. The
proof for ETL; is similar. Given an ETL, formula f, the
construction of the Biichi automaton proceeds in three
steps. First, we construct the local automaton for the for-
mula. This automaton checks for “local inconsistencies™
in the model, ie., it checks for inconsistencies between
consecutive states. For a formula A(fy,...,f,) to be
satisfied, the automaton A has to reach an accepting
state. This condition, which we call an eventuality, is not
checked by the local automaton. Thus we construct a
second automaton, the eventuality automaton whose pur-
pose is to impose these eventuality conditions. Finally,
the construction combines the local and eventuality auto-
mata.

Before giving the construction, we need to define



the notion of the closure of an ETL; formula f, denoted
cl(f). 1t is similar in nature to the closure defined for
PDL in [FL79]. Given an automaton A =(Z,S,R ,s0,F),
for each s€S we define 4, to be the automaton
(2,5,R,s,F). The closure is then defined as follows:

o [fE()

o SUNECS) = frf2€cl(f)

o €)= f1€cl(f)

e f1Ecl(f) not of the form —1f;, = —f1€cl(f)

o AUy oo, fE() = fo oo, [REC(S)

L4 A(fb e ’fn)ed(f) - A:(fl’ LR :fn)GCIU)»
for all s€S.

If we define the size of an automata connective to
be equal to the number of states of the automaton, then
for an ETL, formula f, the size of c/(f) can easily be
seen to be at most 2/ where / is the length of f.

Constructing.the Local Automaton

The local automaton is L =Q% N, p; ,N;,NL).
The state set N, will be the set of all sets X of formulas
in c/(f) that do not have any propositional inconsistency.
Namely they must satisfy the following conditions (we
identify a formula g with ——g):

o gEXiff TgéX.
(] g1 /\ g2€X iﬁ”g1€X and g2€X.

For the transition relation p,, we have that
Y€p,(a,X)iff a=X and:

. forall A(fy, ..., f,)EX, where 4 =(2,S,R,s,F),
either s€F or there are an f; and an s’ such that

fi€X, s'€R(a;,s), and AASy, . . ., fo)EY.

. for all Ay ..., f2)EX, where
A=(2,8.R,s,F), s€F, and for all f; such that
fi€X, if s'€R(a;,5) then AAS,, .. ., f,)EY.

Finally, the set of starting states Ny consists of all
sets X such that f€X. The local automaton does not
impose any acceptance conditions. However, the infinite
sequences that correspond to paths through the local
automaton satisfy the formula f except possibly for
eventualities. That is, if we have a formula of the form
A(fy, ..., fa), nothing requires that an accepting state
of the automaton A will ever be reached. We now build
the eventuality automaton that will ensure that the even-
tuality formulas are indeed satisfied.
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The Eventuality Automaton

Given an ETL; formula f, we defined the set
e(f) of its eventualities as the subset of c/(f) that con-
tains all formulas of the form A(fy, ..., f,). The even-
tuality automaton is E =(29)2¢0), o, (&} {B}), where
for the transition relation pg, we have that Y €pg(a,X)
iff:
o X=@ and for all A(f,...,f,)€a, where
- A=(Z,S.R s F), either sEF or there are an f;
and an s’ such that f;€a, s'€R(g;s), and
AAfy ..., [R)EY.

o X#@ and for all A(fy...,f.)€EX, where
A=(2,8,R s,F), either s€F or there are an f
and an s’ such that f;€a, s'€R(q;,s), and
AAfr ... fA)EY.

Intuitively, the eventuality automaton tries to
satisfies the eventualities in the model. When the current
state is @, it looks at the model to see which eventuali-
ties have to be satisfied. Then, the current state says
which eventualities have yet to be satisfied. Observe that
E does not try to satisfy the eventualities of each state of
the model.
suffices to satisfy the eventualities infinitely often. Note
that as opposed to what happens in PTL, the satisfaction

Since, however, the model is infinite, it

of eventualities can not be imposed by requiring the
appearance of certains states, but rather sequences of
states have (o be considered.

Combining the Automata

To ensure that paths through the local automaton
are actual models of the ETL, formula, we combine it
with the eventuality automaton to get the model automa-
ton. The model automaton M =2, Ny;,pp, Niso,Far) is
obtained by taking the cross product of L and E. Its
sets of states is Ny =NpX2¢U). The transition relation
py is defined as follows: (Y,Z)Epy(a (W, X)) iff
Y€p,(a,W) and Z€pg(a,X). The set of starting states
is Nyo=N;X{@}, and the set of repeating states is
Fy =N X{3}.

The automaton M is a Biichi automaton. That is,
it is an automaton on infinite strings and the strings
accepted are those for which the intersection between the
states visited infinitely often and F), is nonempty.

The automaton we have constructed, accepts
strings over 290, However, the models of f are defined



by strings over 2°. So, the last step of our construction
is to take the projection of our automaton on 2*. This is
done by mapping each element 5 €29V into all elements
a€2F such that 5MNPCa.

The size of both the local and eventuality auto-
mata is at most 290, Thus for a formula of length /, the
size of the model automaton constructed is at most 2%. &

The construction described above simultaneously
takes care of running automata in parallel, when we have
an automata connective nested within another automata
connective, and complementing automata, when we have

a complemented automata connective. Thus the con-
struction can be viewed as combining the classical subset

construction and Choueka's “flag construction™ in [Ch74].
It is interesting the compare this technique to Pratt’s
model construction technique [Pr79]. There one starts by
building a maximal model, and then one eliminates states
whose eventualities are not satisfied. Our local automata
correspond to those maximal models. However, instead
of eliminating states, we combine the local automata with
eventuality automata that check for satisfaction of even-
tualities. This construction always yields automata whose
size is exponential in the size of the formula. We could
also construct our automata using the tableau technique
of [Pr80].
efficient than the maximal model technique.

Theorem 3.2: Given an ETL, formula f of length /, one
can construct a Biichi automaton of size exp*(/) that

This technique can sometimes be more

accepts exactly those sequences that satisfy f.

Idea of Proof: The maximal technique is not applicable
here, because the subset construction is not applicable to
Biichi automata. Instead, we use McNaughton’s con-
struction [McN66]} for complementing Biichi automata
and the flag construction [Ch74] to combine all the auto-
mata that occur in f. W.

The constructions of Theorems 3.1-3.2 also give us
decision procedures for the various logics, since to check
whether a formula f is satisfiable it suffices to check that
the synthesized automaton accepts some word (the so
called emptiness problem). This will cost exponential
time for ETL; and ETL; and triply exponential time for
ETL,.. We can, however, do betler by realizing that it i
not. necessary to synthesize the Blichi automaton given b,
the theorems. Rather, it suffices to non-deterministically
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guess a path through the automaton and check whether
this path leads to acceptance. This is quite simple for
ETL; and ETL;, but doing it for ETL, requires a
thorough understanding of McNaughton’s construction.
Combining it with the fact that PTL is PSPACE-hard
[SC82], we get:

Theorem 3.3: The satisfiability problem for ETL, and

ETL, is logspace complete in PSPACE!, and the
satisfiability problem for ETL, is in EXPSPACE. ®

The applicability of the maximal model method to
ETL, and ETL; also enables us to get a sound and com-
plete axiomatization for these logics.

4. Translations Among the logics

The results of the previous section show that ETL,
has the same expressive power as Blichi automata. Since
the notions of finite and looping acceptance are weaker
than the notions of repeating acceptance, it would have
been conceivable for ETL; and ETL, to be less expres-
sive than ETL,. We show, however, that they have the
same expressive power.

Theorem 4.1: Given an ETL, formula f of length /, one
can construct an ETL, formula f* and an ETL, formula
", both of length O(exp*(/)), that are satisfied by
exactly the same sequences as f.

Proof: We give the proof for ETL;, the proof for ETL,
is similar. The proof will show how an ETL, formula
A(f,....fn) can be translated into ETL;. The main
difficulty is to express in ETL; the condition imposed by
the repetition set of the nondeterministic Biichi automa-
ton. This can be done by using a deterministic version of
the formula.

Determinizing the Formula

We want to express A(fy, ..., f,) in terms of
automata connectives that are deterministic in the sense
that, given a structure, there will be at most one run of
the formula over that structure. The nondeterminism we
have to deal with is double. First, one can have several
transitions labeled by the same letter coming from the
same state. Secondly, a given state in a given structure
may satisfy more than one f;.

¥ Satsiability of ETL, wes originally shown to be PSPACE-
complete by a different technique in [Wo82] and, though with a
flaw in the proof, in [SC82].



To overcome the second type of nondeterminism,
we replace 4 =(Z,S,R,s,F) by an automaton over 22,

the automaton is 4'=(Z,S,R"s,F), where the transi-

tion relation R’ is defined as follows: 5€R'(X,s;) iff
5€R(a,s;) for some a€X. Now, A(fy,...,f,) is

equivalent to A'(gy...,g,,), where the formula g

corresponding to a set X;CZ is (/\f,) /\ (/\"1f,).
aJEXi ~aj€1‘

Clearly, in a given state exactly one g; is satisfied.

We now have to deal with the nondeterminism of
the first kind. Unlike finite automata over finite words,
nondeterministic Biichi automata are more powerful than
deterministic Biichi automata. In order to be able to
determinize our automata, we need the more general
notion of acceptance of infinite words due to Muller
[Mu63]. This acceptance condition is specified by a col-
lection F of subsets of S. An automaton whose accep-
tance condition is specified by F accepts an infinite word
w if it has a run over w where the set of states that
repeat infinitely often belongs to F. It is shown in
[McN66] that every n-state Biichi automaton is
equivalent 10 a Of(expXn))-state deterministic Muller
automaton. We can extend the definition of ETL, in the
obvious way to include Muller automata connectives.
Furthermore, if F={F,,...,F,} and 4; is the Muller
automaton (Z,5,R,s,{F;}), then

Agu....e0)=\/4lgs ... en)

So, we only need to show how a formula A(gy, . . ., gn),
where A is a Muller automaton (Z,5,R,s,{F}) can be
translated into ETL,;. The automaton A(gy,...,gm)
has exactly one infinite run over any given structure.

Expressing Repetition

Let s’ be any state in F. The formula
A(gy, . .., gn) is satisfied by a given structure, if the run
over the structure reaches the state s', and from that
point, A(gy, ..
and going only through states from F. This last property
is expressed by the ETL; formula ¢p="14 QL. 8m)
where A'=(Z,S,R,s',S~F). Thus A(gy...,g) is
satisfied if the run reaches s’ and at that point @ is

. » &) has an infinite run starting with s’
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satisfied. To express this we add to S a new accepting

state e, we add to ¥ a new letter a, and we extend the
transition relation by R(a,s)=e. Let the extended auto-

maton be B=(ZU{a},SU{e},RU(a,s'e)s.{e}).
Now, the ETL, formula B(gy, .. ., gx.9) is satisfied by
a structure iff the formula A(gy, ..., g.) is satisfied by
the structure.

Complexity of the translation

The deterministic automaton is of size two
exponentials in the size of the Biichi automaton. But,
the set F of sets of repeating states in the deterministic
version can contain a number of elements exponential in
the size of that automaton. The whole translation is thus
three exponentials. |

Theorems 3.1 and 4.1 together provide a transla-
tion between ETL; and ETL,. That translation, how-
ever, is quadruply exponential. We can do much better.

Theorem 4.2: There is a one exponential translation
between ETL; and ETL,.

Idea of Proof: For an automaton A4, let A4’ be the auto-
maton constructed from A by the subset construction.
The key idea is that looping rejection of an infinite word
by A means that A" reaches @ on this word, and finite
rejection means that 4’ loops on sets that do not contain
accepting states. Thus, looping and finite acceptance are
in some sense dual notions. The translation between the
logics proceeds by applying the subset construction to the
automata connectives and then complementing them. B

It is also interesting to note that our logics are
expressively equivalent to a quantified version of tem-
poral logic. However quantified temporal logic is, like
S1S, of non-clementary complexity (the number of
exponentials depends on the alternation of quantifiers).

5. Alternating Temporal Logic

The results of the preceding sections show that the
maximal model technique is applicable to automata con-
nectives and to the negation of automata connectives.
This suggests that this technique can also deal with alter-
nation.

Given a set S of stales, let us denote by B the set
of all Boolean formulas that use the states in S as vari-

ables. Members of By can be viewed as Boolean-valued
functions on 25. Let @€Bs and S'CS. Then ¢(S’) is



the Boolean value of ¢ when the states in §' are
assigned 1 and the states in S —S' are assigned 0. An
alternating finite automata [BL80,CKS81] (abbr. afa) 4 is
a quintuple 4=(Z,5,8,qp.F), where Z is the input
alphabet, S is the set of states {sy...,5m}
g:ZXS—Bs is the transition function that associates
with each state and letter a Boolean formula in Bs,
@EBs is the start formula, and FCS is the set of
accepting states. We can extend g to 2XBs: g(a,p) is
obtained by substituting g(a,s;) in ¢ for each g,
1<j<m. The run of A on a word w=a,, ..., q is the
sequence g ...,Q; of formulas from Bg, where
‘Pi=8(ai,q)i—1)- A accepts w if‘PI(F)=1-

Afa’s define regular sets. Nevertheless, it follows
from the results in [Le81,CKS81] that they can be
exponentially more succinct than nfa’s. That is, given
any n-state afa, one can construct an 2"-state nfa that
accepts the same language. Furthermore, for each n
there is an n-states afa 4, such that the language defined
by A is not definable by any nfa with less than 2” states.

For simplicity we deal here only with the alternat-
ing analog of ETLs. ATL; is defined analogously to
ETL;, with afa connectives replacing nfa connectives.
We require, however, that the start formulas of the afa
connectives be either states or negation of states. For an
afa 4=(Z,5.g..F) and a formula p€Bs, we define
A, to be the afa (2,5,g,¢,F). The semantics of ATL,
are defined as follows:

. for an atomic proposition p, 7l p iff p €m(0).

o w1/ frif wEfand v fo.

e kT iffnot wkf. '

For an automata connective 4 =(Z.,5,g,q0,F) we have:

. alEA(fy....fx) if and only if @y(F)=1 or
there are an f; and a set S'CS such that i =, f},
gla,poXS)=1, for all s€ES' we have
M EA(fy ..., f») and for all s€S —S' we have
'”1'=A”ls(fl: o -fn)-

In §2 satisfaction is defined via some accepting run

of the formulas over the structure. This kind of
definition here would not correspond to our intuitive

notion of automata running in parallel over the structure
u, while the above definition does. Clearly, ATL; is at
least as expressive as ETL,. Indeed, if we restrict the
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formulas in Bs to be positive disjunctions then ATL
reduces to ETL,. Also, there is an exponential transla-
tion from ATL,; to ETL;. (Note that the translation
must involve more than translating afa to nfa, since the
seinantics of ATL, is not analogous to that of ETL;.)
The interest in this logic is twofold. First, since the
translation from ATL, to ETL, causes a one exponential
blow-up, one may expect ATL, to be of higher complex-
ity then ETL,. Surprisingly, it has the same complexity.
Furthermore, ATL, is the natural “homeland” of the
maximal technique, and it is theoretically interesting to
pursue the technique to its limit.

Theorem 5.1:
1. Given an ATL, formula f of length I/, one can

construct a Biichi automaton of size exp(/) that
accepts exactly those sequences that satisfy f.

2. The satisfiability problem for ATL, is complete in
PSPACE.
Sketch of Proof: We prove here the first claim, and the
second claim follows as in §2. The proof parallels the
proof of Theorem 3.1. We are given a formula f, and
we construct a model automaton, which is the cross pro-
duct of the local automaton and the eventuality automa-
ton. The notion of closure is similar to that in Theorem
3.1. For an ATL; formula f, c/(f) is defined as follows:

o fE(f)

o fINLES) = fuf2€cd(f)

o Ti€l(f) = f1€cl(f)

o fi€cl(f) not of the form —f, = —f ,Ecl(f)
o AUy .. L f)ECAS) = 1L, S €d(f)

o A(fu ..., [AEI() > Afy ..., [REC(),
for all sES.

L4 A(fb . 'xfn)et"l(.f)_)A_'S(fl" . -’fn)ECI(f),
for all s€S.

Constructing the Local Automaton

The local automaton is L =Q%\, N, p; Ny, Np).
The state set N, will be the set of all sets X of formulas
in ¢/(f) that do not have any propositional inconsistency
as in Theorem 3.1. For the transition relation p;, we
have that Y €p;(a,X) iff a=X and:

e  For all A(fy ... [EX, where



A=(2,5,2,90.F), either g(F)=1 or there are an
f; and a set of states S'CS such that f,€X,
gla,pXS)=1, for all s€S’ we have
Ay ..., [2)EY, and for all sES—S' we have
A~(fy, ..., [R)EY.

. For all Ay ..., [)EX, where
A=(Z,5,8,90,F), we have @y(F)=0 and for all
f; such that f;€X and all sets S'CS such that
gla;, poXS)=1 either for some s€S’ we have
A (f1 ..., 2)EY or for some sES—-S' we
have —4,(f1 ..., [R)EY.

Finally, the set of starting states N, consists of all
sets X such that fEX.

The Eventuality Automaton

Given an ETL, formula f, we defined the set
e(f) of its eventualities as the subset of ¢/(f) that con-
tains all formulas of the form A(f, ..., f,). The even-
tuality automaton is E =920, p; {3},{D}), where
for the transition relation pg, we have that Y €pg(a.X)
iff;
e X=@ and for all A(fy...,f.)€a, where
A=(Z.5,8,90,F), either p(F)=1 or there are an
f; and a set of states S'CS such that f;€X,
gla;,pXS)=1, for all €S’ we have
A(fy ..., [2)EY, and for all sES~S' we have
A~(fy ... [)EY

. X#@ and for all A(fy...,f.)EX, where
A=(Z.8,g,9,F), cither g(F)=1 or there are an
fi and a set of states S'CS such that f;€X,
gla;,pXS)=1, for all sES’ we have
A(fu ..., f2)EY, for all sES—S' we have
A(fy ... fI)EY

Combining the Automata

The mode! automaton is taken to be the cross pro-
duct of the local automaton and the eventuality automa-
ton. The model automaton is of size at most 2%,
Finally, we project the model automaton on 2°. m

6. Concluding Remarks

Another approach to extend PTL was taken in
[HP82]. They chose to extend the language by regular
operators corresponding to concatenation and the Kieene

star. This, however, pushes the decision problem for
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their language to non-elementary complexity. Further-
more, it does not show the fine interplay between the
different acceptance conditions that we have considered.
These conditions can also be presented within the frame-
work of propositional dynamic logic (PDL) [FL79]. Since
we are reasoning here about computation paths, we con-
sider PDL with one deterministic atomic program
(1DPDL), where the structures are infinite sequences. In
this framework, the acceptance  condition
corresponds to the diamond construct [FL79], the looping
acceptance condition corresponds to the Joop construct
[HP79], and the repeating acceptance condition
corresponds the the repeat construct [HP79]. It follows
that adding to 1DPDL looping, repealing, fixpoint, and
even quantification over propositions does not change the

finite

expressive power of the language'and does not render it
undccidable. This in sharp contrast with what happens
for propositional dynamic logic in general. It is known
that PDL is less expressive from PDL +loop (Pratt),
which is less expressive than PDL + repeat [HS83], which
is less expressive than PDL + fixpoint [Ko82], which can
be  shown be than
PDL + quantification. Also, the last language can even
be shown to be highly undecidable (I} —complete).

to less  expressive

The maximal model technique that we are using is
also applicable to propositional dynamic logic, extending
the results in {Pr81] for flowchart — PDL. Consider the
logic LPDL,,, which is PDL augmented by the loop
construct and with programs described by alternating
finite automata. We can decide satisfiability for this logic
by translating it into PDL + repeat and using the deci-
sion procedure of [St81], but that would take quintuply
exponential time. By using the maximal model tech-
nique, we can not only give an exponential decision pro-
cedure, but also give a sound and complete axiomatiza-
tion.

Another consequence concerns the relative expres-
sive power of S1S, and WSIS (WSIS is S1S where
quantification is only over finite sets). From the fact that
we can simulate automata with repeating acceptance by
automata with finite acceptance, it follows that
quantification over arbitrary sets can be simulated by
quantification over finite sets. That means that SIS and
WSIS have exactly the same expressive power. This
observation generalizes results appearing in [Bu62].
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