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Abstract

We investigate extensions of tenlporal logic by finite

automata on infinite words. There are three different

types of acceptance conditions (finite, looping and repeat­

ing) that one can give for these finite automata. This

gives rise to three different logics. It turns out, ho\vever.

that these logics have the same expressive po\ver but

differ in the complexity of their decision problem. V/e

also investigate the addition of alternation and sho\v that

it does not increase the complexity of the decision prob­

lem.

1. Introduction

For many years, logics of prograrns were tools for

reasoning about t.he input/output behavior of progralns.

When dealing \vith concurrent or. non-ternlinating

processes (like operating systenls) there is, however, a

need to reason about infinite computation paths. These

are the sequences of states that the computation goes

through. In the propositional case they can be viewed as

infinite sequences of propositional truth assignnlents. In
[Pn77], temporal logic was proposed to reason about such

sequences. Later it was incorporated into the process

logics of [Ni80] and (HKP80).
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For reasoning about -propositional truth assign­

ments, propositional logic is a descriptively complete

language, i.e., it can specif}' any set of propo5itionallruth

assignments. However, for reasoning about conlputation

paths there is no a priori robust notion of descriptive

colupleteness. In [GPSS80] propositional temporal logic

(PTL) was shown to be expressively equivalent to the

monadic first-order theory of (N ,<). the natural nunlbers

with the less-than relation. This \vas taken as an indica­

tion that PTL is Hdescriptively complete", and that so

are the process logics based on it [Ni80,HKP80).

The above claim is based on the assu rnption that

first-order notions are all we need to reason about com­

putation paths. But. the very fundamental notion of reg­

ular sequences of events is not first-order. And. it turns

out that regular sequences are a natural way of describ­

ing concurrent processes [Sh79, Mi80]. C\'1oreover, even a

simple property like "the proposition p hoJds at least in

every other state on a path" is not expressible in PTL

[Wo8I].

In view of the need to extend the expressive power

of PTIJ, different approaches can be ~1ken. The

nlathematician would probably choose to add some nol}.­
first-order construct, like least-fixpoint or second-order

quantification. The computer scientist, on the other

hand, would probably choose to add a mechanism to

specify regular events as was done ill [Wo8I]. 'fhere,

PTL is extended with a temporal connective cOlTespond­

ing to every nondeterministic finite automaton. For



example, if ~={a ,b} and A· is the automaton accepting

all words over ~ having a in every other position, then

A is also a binary temporal connective, and the fonnula

A(p ,true) is satisfied by the paths where p holds in at

least every other state. Note that automata connectives

can be nested within each other.

An important point that was not considered in

[WoSI] is that, while the notion of regularity for finite

paths is quite robust, this is not the case for infinite

paths. One can think of three ways of defining accep­

tance of an infinite word by a nondeterministic finite

automaton. We can say that the automaton accepts the

word if (1) it accepts some prefix of it by the. standard

notion of acceptance for finite words, (2) if it has sorne

infinite run over the word (this is the notion used in

[WaS1]), or (3) it has some infinite run over the word

where Ll-te set of states that repeat infinitely ofle~ in this

run satisfies some additional constraint, e.g., it contains

some specific state. We call these notions of acceptance

finite acceptance, looping acceptance, and repeating accep-

tance. respectively. Repeating acceptance is the notion

used in 'Biichi automata [Bu62]. The languages de-ftned

by Biichi aut-omata are the same as those definable by

w-regular expressions [McN66]. The two other notions of

acceptance are incomparable and define strictly smaller

classes of languages. (For example. the sequence (ab·)w

can be defined by repeating acceptance but 110t by finite

or looping acceptance.) Thus, depending on which accep­

tance conditions one chooses, different logics can be

defined and we could expect them to have different

expressive powers.

The main result of the paper is that aU these logics

are expressively equivalent. They all have the expressive.

po\ver of w-regular expressions, which by (Bu62] and

[McN66] is t.he same as that of the monadic second-order

theory of (N,<), denoted SIS. The complexity of the
decision problenl for these logics ranges from polynomial

space to exponential space, whereas SIS is non­

elementary [Me75]. The principal technique is the maxi­

mal model technique [Pr79] viewed in a ne\v light.

While it was previously seen as a model building tech­

nique t we use it as a technique to synthesize automata

that recognize models. We see this as yet another indica­

tion to the re·levance of automata theory to the logic of

programs (see for example [St81]).
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Furthermore, our results have an interesting

interpretation from a purely automata-theoretic point of

view. The ability to have an automata operator nested

within another automata operator is essentially equivalent

to the ability of an automaton to consult an oracle. That

is, when the automaton reaches certain states it asks the

oracle whether it accepts the rest of the word, and its

next move depends on the answer. Consider now the

following hierarchy. Let A 0 be the class of nondeter­

ministic finite automata, let Ai be the class of nondeter­

ministic finit.e automata with omcles from Ai _It and let

A be UAi . If C is a class of automata, then Edenotes
I~O

the class of languages defined by automata in C.

Now we have three hierarchies Alt AI, and A',

depending whether we use finite, looping, or repeating

acceptance, respectively. Our results sho\v that not only

do these hierarchies collapse but that they are also

equivalent: Af=AT=F=A{=A~=A6. fIowever,

since each complementation causes at least an exponen­

tial blo\v-up, we might have expected the complexity of

the emptiness problem for autolnata in AI, AI, and A'

to be non-elementary. Our results show that the problem

is in PSPACE for AI and Al and is in EXPSPACE for

Ar (compare this \vith the non-elcJnentariness of the

enlptiness problenl for regular expressions with c0l11ple­

nlent [MS73]). Fronl an automata-theoretic point of view,

our main technique, the maximal technique, is a con­

struction that unifies the classical subset constroction for

determinizing finite automata and the flag construction of

[Ch74] for running several automata in parallel under

central control.

Finally, to explore the full power of OUf technique,

we introduce alternating finite automata connectives.

These can be exponentially more succinct than nondeter­

ministic automata connectives, and one may expect their

introduction to push the complexity of the logic up.

Surprisingly, this is not the case. In fact, we view alter­

nating automata as capturing the quintessence of the

maximal model technique.

Though we have chosen tetnporal logic as the

framework fOf this investigation, our results can also be

stated in the framework of propositional dynamic logic

[FL79]. We discuss this in the concluding section of the

paper.



• ETL,: A run s is accepting iff it is infinite.

• ETL,: A run s is accepting iff some state sEF
occurs infinitely often in s (Biichi acceptance).

2. Temporal Logic with Automata Connectives

We consider propositional temporal logic \vhere

the temporal operators are defined by finite automata,

similarly to the extended temporal logic fETL) of

[Wo8I]. More precisely, we consider formulas built from

a set P of atomic propositions by means of:

• Automata connectives. That is, every nondeter­

ministic finite automaton A = (L,S ,R ,so,F), where

L is the input alphabet {ah 0 0 • , an}, S is the set

of states, R: 2XS -+2s is the transition relation,

soES is the initial state, and F~S is a set of

accepting states (or a set of repeating states, see

below), is considered as an· n -ary temporal connec­

tive. That is, if f 1, ••• , In are fOlmulas, then so

is A(fl, · , · ,In)'

Before giving the construction, we need to define

3. Translations to Autoll1ata and Decision Procedure.

Sequences of truth assignments to the proposi­

tional variables in P can be viewed as infinite \\'ords over

the alphabet 2P • It is not hard to show that our logics

are tra.nslatable into SIS, and hence, by [Bu62] and

(f\1cN66], they define w-regular sets of \vords. That is,

there is a translation from each of the logics ETL"

ETL/, and ETL, to Biichi automata. Ho\vever, since

negation in front of automata connectives causes an

exponential blow-up, we might have expected the com­

plexity of the translation to be non-elementary, as is' the

translation from SIS to Biichi automata [Bu62]. Not so.

Theorem 3.1: Given an ETLf or an ETL/ fonnula f of
length I, one can construct a Biichi automaton of size

exp(I) that accepts exactly those sequences that satisfy f.

Sketch of Proof: We will give the proof for ETLfo The

proof for ETL[ is similar. Given- an ETLj fonnula f, the

construction of the Biichi autoDlaton proceeds in three

steps. First, we construct the local automaton for the for­

mula. This automaton checks for "local inconsistencies"

in the model, Le., it checks for inconsistencies between

consecutive states. For a fonnula A{f), ... , In) to be

satisfied, the automaton A has to reach an accepting

state. This condition, which we call an eventuality, is not

checked by the local automaton. Thus we construct a

second automaton, the eventuality automaton whose pur­

pose is to inlpose these eventuality conditions. Finally,

the construction combines the local and eventuality auto­

mata.

defined over the alphabet ~={a ,b }. If we consider

looping acceptance·, it only accepts one word:

w= ababababab · 0 ~ • It thus defines an ET£, connective

such that Alifhi2) is true of a sequence iff f 1 is true in

every even state and f 2 is true in every odd state of that

sequence.

Every formula defines a set of sequences, the set of

sequences that satisfies it. Our yardstick for measuring

the expressive power of all these logics is their ability to

define sets of sequences.

Example: Consider the automaton

Boolean connectives•

A structure for our logic is an infinite sequence of

truth assignments, i.e., a function w:N -+2P that assigns

truth values to the atomic propositions in each sta.te. We

use Wi to denote the i-th utail" of TI, i.e.,

Wi(k)= w(k + f). We now define satisfaction of formulas

and runs of fonnulas A(j}, ... ,fll) over sequences by

mutual induction. Satisfaction of a fonnula f by a stnlc­

ture 'IT is denoted w1=f.

• for an atomic proposition p, 'IT 1=p if p E71(0).

• 'IT 1=f 1 /\ f 2 if 'IT Ff 1 and 'IT t=f 2·

• 'IT l= -'1 if not 'IT l=I ·
• 'IT J= A(f], ... ,1,,), where, A =(2,S ,R ,so,F), if

there is an accepting run S=SO,Sl, • •• of

A if], ... ,In} over '11.

• A run of a fannula Aif], ...• In), where

A =(~,S ,R ,so,F), over a structure 'IT is a sequence

S= SO,Slt • •• of states from S where for all i,

05:;<Is I, there is some aj E~ such that 'lTi 1=Ij
and Si +1ER (aj ,St).

Depending on how we de.fine accepting runs, we

get three different versions of the logic:

• ETLf : A run's is accepting iff some state sEF

occurs in s.
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the notion of the closure of an ETLj formula I·, denoted

cl{J). It is similar in nature to the closure defined for

PDL in [FL79]. Given an automaton A =CL,S ,R ,so,F),

for each sEs we define As to be the automaton

(L,S ,R ,5,F). The closure is then defined as follows:

• I Ee/(J)

• f 1/ \[2Ee/(f) --. [1,[2Ee/{J)

• If1Ee/(J) --. f 1Ee/(J)

• 11EclU') not of the fonn If2 -+ IIIEe/{J)

• A if}, · · · ,In )Ee/{J) --. I}, · · · ,In Ee/{f)

• A(fJ., • • • ,In)Ee/{J) --. As{f}, · · · ,1,,)Eel(f),

for all sESe

If we define the size of an automata connective to

be equal to the number of states of the automaton, then

for an ETLf fonnula !, the size of e/if) can easily be

seen to be at most 2/ where I is the length of I.
Constnleling.the Local Automaton

The local automaton is L =(2cU!),NL,PI4,Nj,NL).

The state set NL will be the set of all sets X of tormulas

in elV) that do not have any propositional inconsistency.

Namely they must satisfy the follo\ving conditions (we

identify a formula g with -'Ig):

• gEX iff IgfX.

• gl / \ g2EX iff glEX and g2EX.

For the transition relation PL , we have that

YEpL(a,X) iff a =X and:

• for all A{flt ... ,In)EX, where A =(~,S,R,s,F),

either sEF or there are an Ij and an s' such that

IjEX, s'ER(aj,s), and As{ff, ..• ,fn)EY.

• for all -'A (fIt ... , In)Ex t where

A = (L,S ,R ,s ,F), s fl.F, and for all Ij such that

IjEX, if s'E.R(aj,s) then 'As{flt ... ,In)EY.

Finally, the set of starting states Nf consists of all

sets X such that ! Ex. The local automaton does not

impose any acceptance conditions. Ho\\'ever, the infinite

sequences that correspond to paths through the local

automaton satisfy the fOffilula I except possibly for

eventualities. l'hat is, if we have a formula of the fonn

A (I}, . · . , In), nothing requires that an accepting state

of the automaton A will ever be reached. We no\\' build

the eventuality automaton that \vill ensure that the even­

tuality fonnulas are indeed satisfied.
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The Eventuality Automaton

Given an ETLf fonnula [, we defined the set

e(f) of its eventualities as the subset of cl(j) that con­

tains all formulas of the form A(f J., ••• , In)' The even­

tuality automaton is E =(2c1([),2e{f),PE ,{0},{0}), where

for the transition relation PE, \ve have that YEpE(a,X)

iff:

• X =0 and for all A{Jl, ... , j'n)Ea, where

A =(L,S ,R ,S ,F), either s EF or there are an Ij

and an s' such that !jEa, s'ER(aj,s), and

Ifs{fJ., ••• ,In)Ey.

• x*0 and for all A{JJ., ••• ,!n)EX, where

A = (L,S ,R ,s ,F), either s EF or there· are an Ij

and an s' such that Ij Ea , s'ER (elj ,s), and

As<!lt · · · ,!n)EY.

Intuitively, the eventuality autonlaton tries to

satisfies the eventualities in the model. When the current

state is 0, it looks at the model to see which eventuali­

ties have to· be satisfied. Then, the current state says

which eventualities have yet to be satisfied. Observe that

E does not try to satisfy the eventualities of each state of

the model. Since, however, the model is infinite, it

suffices td satisfy the eventualities infinitely often. Note

thclt as opposed to what happens in PTL, the satisfaction

of eventualities can not be imposed by requiring the

appearance of certains states, but rather sequences of

states have to be considered

Combining the Automata

To ensure that paths through the local automaton

are actual models of the ETLf formula, we combine it

with the eventuality automaton to get the model automa­

ton. The model automaton M=(2cl{J),NAf,PM,NMO,FM) is

obtained by taking the cross product of L and E. Its

sets of states is NM =NT X2e{f). The transition relation

PAl is defined as follows: (Y,Z)Ep.u(a,(W,X» iff

Y EpL (a, W) and Z EpE(a ,X). The set of starting states

is NMO=Nf X{0}, and the set of repeating states is

FM =NL X{0}.

The automaton M is a Buchi automaton. That is,

it is an automaton on infinite strings and the strings

accepted are those for which the intersection between the

states visited infinitely often and FM is nonempty.
l'he automaton we have constructed, accepts

strings over 2c1(j). I-Iowever, the models off are defined



by strings over 2P • SO, the last step of our constnlction

is to take the projection of our automaton on 2P • This is

done by mapping each element b E2c/(J) into all elenlents

aE2P such that bnp~a.

The size of both the local and eventuality auto"

Inata is at most 2cl{J). Thus for a formula of length I, the

size of the model automaton constructed is at nlost 24/••

The construction described above sitnultaneollsly

takes care of running automata in parallel, when we helve

an autonlata connective nested within another automata

connective, and conlplementing automata, when we have

a conlplementcd autolnata connective. Thus the con­
struction can be viewed as combining the classical subset

construction and Choueka's "flag construction" in [Ch74].

It is interesting the compare this technique to Pratt's

model construction technique [pr79]. There one starts by

bui!ding a maximal model, and then one eliminates states

whose eventualities are not satisfied. Our local automata

correspond to those Inaximal models. However, instead

of eliminating states, we combine the local automata with

eventuality automata that check for satisfaction of even...

tualities. This construction always yields automata whose

size is exponential in the size of the fonnula. We could

also construct our automata using the tableau technique

of [Pr80]. This technique can sometimes be more

efficient than the maxinlal model technique.

Theorenl 3.2: Given an ETLr formula I of length I ~ one

can construct a Bi.ichi automaton of size exp3(/) that

accepts exactly those sequences that satisfy f.
Idea of Proof: The nlaximal technique is not applicable

here, because the subset construction is not applicable to

Biichi automata. Instead, we use McNaughton's con­

struction [McN66) for complementing Biichi automata

and the· flag construction [Ch74] to combine all the auto­

mata that occu~ in I. •.
The constructions of rfheorems 3.1-3.2 also give us

dec'lsion procedures for the various logics, since to check

whether a fonnula f is satisfiable it suffices to check that

the synthesized autonlaton accepts some word (the so

called emptiness problem). This will cost exponential

tirrle for ETLf and ETL, and triply exponential time for

.E'TLr• We can, however, do better by realizing that it jC1

not. necessary to synthesize the Biichi automaton given bJ

tIle theorems. Rather, it suffices to non-deterministically
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guess a path through the automaton and check whether

this path leads to acceptance. l'his is quite simple for

E'TLj and ETLi , but doing it for ETL, requires a

thorough understanding of McNaughton's construction.

Combining it with the fact that PTL is PSPACE-hard

[Se82], we get:

1-<theoren1 3.3: The satisfiability problem for ETLf and

E'fLI is logspace complete in PSPACEt, and the
satisfiability problem for ETL, is in EXPSPACE. •

The applicability of the maximal model method to

ETLf and ETLJ·also enables us to get a sound and com'"

plete axiomatization for these 10gi~.

4. Translations Among the logics

The results of the previous section show that ETLr

has the same expressive power as Biichi automata. Since

the notions of finite and looping acceptance are weaker

than the notions of repeating acceptance, it would have

been conceivable for ETL! and ETL/ to be less expres­

sive than ETL,. We show~ howevert that they have the

same expressive power.

Theorem 4.1: Given an ETLr formula! of length 1, one

can construct an ETLf fonnula I and an ETL/ formula

(', both of length o(exp3(1»t that are satisfied by

exactly the same sequences as f.

Proof: We give the proof for ETLf , the proof for ETL1

is similar. The proof will show how an ETL, fonnula

A(jl,... ,!n) can be translated into ETLf . The main

difficulty is to express in ETL! the condition imposed by

the repetition set of the nondeterministic Biichi automa­

ton. This can be done by using a deterministic version of

the formula.

Determinizing the Formula

We want to express A(fl, ... ,In) in terms of

automata connectives that are deterministic in the sense

that, given a structure, there will be at most one run of

the formula over that structure. The nondeterminism we

have to deal with is double. First, one can have several

transitions labeled by the same letter coming from the

same state. Secondly, a given state in a given structure

may satisfy more than one It .
t Satistiability of ETL1 was originally shown to be PSPACE­

complete by a different technique in (W082] and, though with a
flaw in the proof, in [SC82].



To overcome the second type of nondeterminism,

we replace A =(~,S,R,s,F) by an automaton over 2~.

the automaton is A I=(2~ ,S ,R I,S ,F), where the transi­

tion relation R I is defined as follows: Si ER 'cr ,Sj) iff
s;ER(a,sj} for some aEx. Now, A{f], •.. ,In} is

equivalent to A '(g), ••• , g2n), where the formula gi

corresponding to a set Xi~~ is (/\/) /\ (/\ '.Ij).
ajEX; ·a)Ut

oearly, in a given state exactly one gi is satisfied.

We now have to deal with the nondeterminism of

the ·first kind. Unlike finite automata over finite words,

nondeterministic Biichi automata are more powerful than

detenninistic 'Biichi automata. In order to be able to

determinize our autonlata, we need the more general

notion of acceptance of infinite words due to Muller

[Mu63]. This acceptance condition is specified by a col­

lection F of subsets of S. An automaton whose accep·

tance condition is specified by F accepts an infinite word

w if it has a nln over w where the set of states that

repeat infinitely often belongs to F. It is shown in

[McN66] that every n-state Biichi automaton is

equivalent to a O(exp2(n»-state deterministic Muller

automaton. We can extend the definition of ETL, in the

obvious way to include Muller automata connectives.

Furthermore, if F= {Fh •••• Fill and A; is the Muller

automaton (~,S,R ,s,{Fi}), then

n

So, we only need to show ho\v a formula A(g}, .•. , gm),

where A is a Muller automnton (L,S,R,s,{F}) can be

translated into ETLf . The automaton A(gl••.. ,gm)

has exactly one infinite lun over any given structure.

Expressing Repetition

Let s' be any state in F. The fonnula

A(g], ••. , gm) is satisfied by a given structure, if the run

over the structure reaches the slate s', and from that

point, A(g], •••.' gm) has an infinite run starting with s'

and going only through states fmol F. This last property

is expressed by the ETLf formula ep='A '(g), .•.• gm).

where A'=('L,S,R,s',S-F). Thus A(g}, ... ,gm) is

satisfied if the run reaches s' and at that point cp is
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satisfied. To express this we add to S a new accepting

state e, we add to L a new letter a, and we extend the
transition relation by R (a ,s ')=e. Let the extended auto-

maton be B =('LU{a},SU{e},R U(a,s',e),s,{e}).

Now, the ETLf formula B(g}, ... , gm,<P) is satisfied by

a structure iff the fonnula A(gh ..• , gm) is satisfied by

the structure.

Complexity 0/ the translation

The deterministic automaton is of size two

exponentials in the size of the Biichi automaton. But,

the set F of sets of repeating· states in the deterministic

version can contain a number of elements exponential in

the size of that automaton. The whole translation is thus

three exponentials.•

Theorems 3.1 and 4.1 together provide a transla­

tion between ETLf and ETL,. That translation, how­

ever, is quadruply exponential. We can do much better.

Theorem 4.2: There is a one exponential translation

between ETLf and ETL/.

Idea of Proof: For an automaton A, let·A' be the auto­

maton constructed' from A by the subset construction.

The· key idea is that looping rejection of an infinite word

by A means that A' reaches 0 on this word, and finite

rejection means that A' loops on sets that do not contain

accepting states. Thus, looping and finite acceptance are

in some sense dual notions. The translation between the

logics proceeds by applying the subset construction to the

automata connectives and then complementing them. _

It is also interesting to note that our logics are

expressively equivalent to a quantified version of tem­

poral logic. However quantified temporal logic is, like

SIS, of non-elementary complexity (the number of

exponentials depends on the alternation of quantifiers).

5. Alternating Temporal Logic

The results of the preceding sections show that the

maximal model technique is applicable to automata con­

nectives and to the negation of automata connectives.

This suggests that this technique can also deal with alter­

nation.

Given a set S of states, let us denote by Bs the set

of all Boolean fonnulas that use the states in S as vari­

ables. Members of Bs can be vic\ved as Boolean-valued
functions on 28 • Let cpEBs and S'~S. Then ~S~ is



the Boolean value of ep when the states in S' are

assigned 1 and the states in S - S' are assigned O. An

alternating finite automata [BL80,CKS81] (abbr. afa) A is

a quintuple A =(~,S,g,(j1o,F), wher~ ~ is the input

alphabet, S is the set of states {sI, ••• , sm},

g:~XS -.Bs is the transition function that associates

with each state and letter a Boolean fonnula in Bs,

cpoEBs is the start Connula, and Fg is the set of

accepting states. We can extend g to LXBs : g(a,9') is

obtained by substituting g(a,Sj) in cp for each ~J'

19·<m. The run of Aon a word W=Q}, ••• ,Ql is the
sequence ~ ... , {J)/ of fonnulas from Bs, where

CPt =g(ai,CPi-l). A accepts w if «J'1(F)=1.

Afa's define regular sets. Nevertheless, it follows

from the results in [Le81,CKS81] that they can be

exponentially more succinct than nfa's. That is, given

any n ·state afa, one can construct an 2" -state nra that
accepts the same language. Furthermore, for each n
there is an n-states afa A, such that the language defined

by A is not definable by any nfa with less than 211 states.

For simplicity we deal here only with the alternat­

ing analog of ETLf. ATLf is defined analogously to

ETLj, with afa connectives replacing nfa connectives.

We require, however, that the start formulas of the afa

connectives be either states or negation of states. For an

afa A=={L,S,g.tpo,F) and a formula epEBs, we define

Aq) to be the afa ("2,S,g,qJ,F). The semantics of ATLf

are defined as follows:

• for an atonlic proposition p, WFP iffpEw(O).

• "1=/1 /\ 12 iff 71F/l and 711=/2.

• '111= -'/ iff not 'IIFf.
For an automata connective A =(L,S ,g ,fPo,F) we have:

• w1= A if}, ...• In) if and only if <po(F)= 1 or

there are an Ij and a set S'~S such that i t=." 11'
g(a,<poXS')=l, for all sES' \ve have

'111 t=As(j}, .•. ,In), and for all sES -S' we have

'111 t= A-,s(f}, • · · , In).

In §2 satisfaction is defined via some accepting run

of the fomlulas over the structure. TIllS kindQf
definition here would not correspond to our intuitive

notion of automata running in parallel over the structure

fT, while the above definition does. Qearly, ATLf is at

least as expressive as ETL,. Indeed, if we restrict the
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fonnulas in Bs to be positive disjunctions then ATLJ

reduces to ETLf . Also, there is an exponential transla­

tion from ATLj to ETL,. (Note that the translation

must involve more th~n translatingafa to nfa, since the

seltlantics of ATLj is not analogous to that of ETLf .)

The interest in this logic is twofold. First, since the

translation from ATLf to ETLf causes a one exponential

blow-up, one may expect ATLj to be of higher complex­

ity then ETLf . Surprisingly, it has the same complexity.

Furthermore, ATLf is the natural "homeland" of the

maximal technique,· and it is theoretically interesting to

pursue the technique to its limit

Theorem 5.1:

1. Given an ATL, fomlula f of length I, one can

construct a Biichi automaton of size exp(I) that

accepts exactly those sequences that satisfy I.

2. The satisfiability problem for ATLf is complete in

PSPACE.

Sketch of Proof: We prove here the first claim, and the

second claitn follows as in §2. The proof parallels the

proof of Theorem 3.1. Weare given a fOImula I, and

we constnlct a .model. automaton, which is the cross pro­

duct of the local· automaton and the eventuality automa­

ton. The notion of closure is similar to that in Theorem

3.1. For an ATLf formula I, cl<J) is defined as follows:

• fEcl{f)

• fl/\f2Ecl(j) -. fI/2Eel(j)

• ---wf1Eel(j) --. f 1Eel(j)

• fIEel(j) not of the form -'/2 -+ ---wf1Ee/{J)

• Aif}, · • • , fn)Ec/{f) -+ f}, • • • , In Ecl(f)

• A{fIt ... ,f,,)Ec/(f) -+ A,(j], .•. ,!,,)Ecl(j),

for all sES.

• A(j], ... , fn)Ecl{f) -+ A-,,(jI, ... 11 In}Ecl(j),

for all sESe

Constructing the Local Automaton

The local automaton is L =(2cl{f),NL ,PL,N/,NL ).

The state set NL will be the set of all sets X of formulas

in e/(j) that do not have any propositional inconsistency

as in Theorem 3.1. For the transition relation PL. we

have that YEpL(a,X) iff a =X and:

• For all A(j!, ••• ,!,,)€X, where



A =(}:,S,g,cpo,F), either <po(F)=1 or there are an

Ii and a set of states s'g such that IjEx,
g(aj,q.>oXS')=l, for all sES' we have

As(j}, ... ,!n)EY, and for all sES-S' we have

A....s{f], ••. ,In)EY.

• For all ""A {f], ... , I,,)EX, where

A =(L,S ,g ,cpo,F), we have cpo(F)= 0 and for all

Ij such that fjEX and all sets s'g such that

g(aj,epoX.S')=l either for some sES' we have

""A ....s{Jj, ... ,In)EY or for some sES-S' we

have --.As{fI,. · · ,!n)€Y.

Finally, the set of starting states Nj consists of all

sets X such that I EX.

The Eventuality Automaton

Given an ETLj formula I, we defined the set

elf) of its eventualities as the subset of c/{f) that con­

tains all fonnulas of the form AifI, ••• , In ). The even­

tuality automaton is E =(2c1(f),2e(f),PE,{0},{0}), where

for the transition relation PE, we have that YEpE(a,X)

iff:

• x=0 and for all A{f]., ..• ,fn)Ea, where

A =(}:,S,g,flJo,F), either ~F)=l or there are an

Ij and a set of states s'g such that fjEX,

g(aj,qJfJ)(S')=I, for all sEs' we have

As(/J, ... ,!n)EY, and for all sEs-s', we have

A.,s{fJ, • • • , J~)EY

• x*0 and for all A(JI, .•. ,In)EX, where

A = (2,S ,g ,qJo,F), either <po(F)=1 or there are an

Ij and a set of states s'g such that fjEx,
g(aj,<poXS')=l, for all sES' we have

As{fJ, ... ,!n)EY, for aU sES-S' we have

A.,s{f» · · · "fn)EY

Combining the Automata

The model automaton is taken to be the cross pro­

duct of the local automaton and the eventuality automa­

ton. The model automaton is of size at most 241 •

Finally, we project the model automaton on 2P••

6. Concluding Remarks

Another approach to extend PTL ~as taken in

[HP82]. They chose to extend the language by regular

operators corresponding to concatenation and the Kleene

star. This, however, pushes the decision problem for
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their language to non-elementary complexity. Further­

more, it does not show the fine interplay between the

different acceptance conditions that we have considered.

These conditions can also be presented within the frame­

work of propositional dynamic logic (PDL) [FL79]. Since

we are reasoning here about computation. paths, \ve con­

sider PDL with one deterministic atomic program

(IDPDL), where the structures are infinite sequences. In

this framework, the finite acc.eptance condition

corresponds to the diamond construct [FL79], the looping

acceptance condition corresponds to the loop· construct

(HP79], and the repeating acceptance condition

corresponds the the repeat construct [HP79]. It follows

that adding to IDPDL looping, repeating, fixpoint, and

even quantification over propositions does not change the

expressive power of the language and does not render it

undecidable. This in sharp contrast with what happens

for propositional dynamic logic in general. It is known

that PDL is less expressive from PDL +loop (Pratt),

which is less expressive than PDL + repeat [HS83], which

is less expressive than PDL +fixpoint [Ko82], which can

be shown to be less expressive than

PDL +quantification. Also, the last language can even

be shown to be highly undecidable (nl- complete).

The maximal model technique that we are using is

also applicable to propositional dynamic logic, extending

the results in [Pr81] for flowchart - PDL . Consider the

logic LPDLal1t which is PDL augmented by the loop

construct and "\lith programs described by alternating

finite automata. We can decide satisfiability for this logic

by translating it into PDL + repeat and using the deci-

sion procedure of [St81], but that would take quintuply

exponential time. By using the maximal model tech­

nique, we can not only give an exponential decision pro­

cedure, but also give a sound and complete axiomatiza­

tion.
Another consequence concerns the relative expres-

sive power of SIS, and WSIS (WSIS is SIS where

quantification is only over finite 'sets). From the fact that

we can simulate automata with repeating acceptance by

automata with finite acceptance, it follows that

quantification over arbitrary sets can be simulated by

quantification over finite 'Sets. That means that SIS and

WSlS have exactly the same expressive power. This

observation generalizes results appearing in [Bu62].
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