Integer programming and totally unimodular matrices

E.de Klerk

Delft University of Technology

Week 7: Slides about Chapter 8 of the Lecture notes.

The matching polytope: representation

Recall from week 2:

Theorem: Let G = (V, E) be bipartite. Then $P_{matching}(G)$ is the set of vectors $x \in \mathbb{R}^{|E|}$ which satisfy:

$$x_e \geq 0$$
 for each $e \in E$; $\sum_{e \ni v} x_e \leq 1$ for each $v \in V$

Proof via Exercises 3.11 and 3.26.

Maximal weighted matching as linear optimization problem:

$$\max_{x \in \mathbf{I\!R}^{|E|}} w^T x$$

subject to the above constraints.

Integer programming

Integer program:

$$\max\left\{c^Tx\mid Ax=b,\ x\ \text{integer}\right\}$$

Example

Finding maximal cardinality matching. Define the *incidence matrix*:

$$A_{v,e} = \left\{ egin{array}{ll} 1 & \mbox{if } v \in e \ 0 & \mbox{if } v
otin e. \end{array}
ight.$$

Size of the maximal matching:

$$\nu(G) = \max \left\{ \mathbf{1}^T x \mid Ax \le \mathbf{1}, \ x \ge \mathbf{0}, \ x \text{ integer} \right\}$$

Recall from Exercise 3.26, 3.27 that we can drop the integrality condition for *bipartite graphs*.

We can do this because all the vertices of the *matching polytope* are *integer* for *bipartite graphs*.

Totally unimodular matrices

A matrix A is totally unimodular if every square submatrix has determinant 0, 1, or -1.

NB: Every entry of A is 0, 1, or -1.

Theorem: Let A be totally unimodular and b an integer vector. The polytope

$$P := \{x \mid Ax \le b\}$$

is integer (all vertices are integer).

Proof:

Let A be $m \times n$. Every vertex z is determined by some $n \times n$ nonsingular submatrix A' in the sense A'z = b' where b' contains the corresponding rows of b. Now use Cramer's rule to solve for z.

Total unimodularity and bipartite graphs

Theorem: A graph is bipartite if and only if its incidence matrix is totally unimodular.

Proof:

' \Leftarrow ': Let A totally unimodular. Assume G not bipartite then G contains an odd cycle (why?). The submatrix of A which corresponds to the odd cycle has determinant 2; this contradicts the total unimodularity of A.

' \Rightarrow ': Let G be bipartite. Consider a $t \times t$ submatrix of A. Proof by induction on t. (t = 1 follows from the definition of the incidence matrix.)

Corollaries: König's theorems

König Matching Theorem: Let G be bipartite. Cardinality of maximal matching = cardinality of minimal vertex cover $(\nu(G) = \tau(G))$.

Proof: We know that the matching number is given by

$$\nu(G) = \max \{ \mathbf{1}^T x \mid Ax \le 1, \ x \ge 0 \}.$$

Dual problem:

$$d^* = \min \{ \mathbf{1}^T y \mid y \ge 0, A^T y \ge 1 \}.$$

By LP duality $d^* = \nu(G)$.

Let y be the *incidence vector* of the minimal vertex cover. Then y is feasible in the dual problem (why?) with objective value $\tau(G)$. Assume y not optimal. Then there is some 0-1 optimal solution (why?) with objective value $d^* < \tau(G)$. This 0-1 solution must be the incidence vector of a vertex cover. Contradiction.

Corollaries: König's theorems (ctd)

König Edge Cover Theorem: Let G be bipartite. Cardinality of maximal coclique = cardinality of minimal edge cover $(\alpha(G) = \rho(G))$.

Proof:

Same as previous proof: only replace A by A^T .

Incidence matrix of a directed graph

Let D = (V, A) a directed graph.

Define the $|V| \times |A|$ incidence matrix:

$$M_{v,a} = \left\{ egin{array}{ll} 1 & ext{if a leaves v,} \ -1 & ext{if a enters v,} \ 0 & ext{otherwise} \end{array}
ight.$$

NB: Every column of M has exactly one 1 and one -1, the other elements are zeroes.

Total unimodularity and directed graphs

Theorem: The incidence matrix M of a directed graph D is totally unimodular.

Proof:

Let B be a $t \times t$ square submatrix of M. Proof by induction on t (case t=1 trivial). Three cases:

- Case 1: B has a zero column $\Rightarrow \det(B) = 0$.
- Case 2: B has a column with exactly one 1. Calculate det(B) using this column and use the induction assumption.
- Case 3: Every column of B has one 1 and one -1. The row vectors of B add up to the zero vector \Rightarrow $\det(B) = 0$.

Flows and total unimodularity

Given: directed graph D = (V, A).

Recall from week 3: A function $x:A\mapsto \mathbb{R}$ is called an r-s flow if:

$$x(a) \ge 0 \quad \forall a \in A$$

and

$$\sum_{a \in \delta^{in}(v)} x(a) = \sum_{a \in \delta^{out}(v)} x(a) \quad \forall v \in V \setminus \{r, s\},$$

Second condition is *flow conservation*: in-flow = out-flow in each node.

In terms of the incidence matrix M, the flow conservation can be written as:

$$M'x = 0,$$

where M' is obtained from M by deleting rows r and s.

Flows and total unimodularity (ctd)

We can now prove the 'max r-s flow = min capacity r-s cut' theorem. Let w^T be row r of M, and M' the matrix obtained by removing the rows corresponding to r and s.

Maximal r - s flow given by:

$$\max \{ w^T x \mid x \le c, \ M' x = 0, \ x \ge 0 \},$$

where c is the *integer capacity vector* for the arcs.

Dual problem:

$$\min \{ y^T c \mid M'^T z + y \ge w, y \ge 0 \}.$$

Rewrite dual constraints:

$$\left(egin{array}{cc} M'^T & I \ 0 & I \end{array}
ight) \left(egin{array}{c} z \ y \end{array}
ight) \geq \left(egin{array}{c} w \ 0 \end{array}
ight)$$

Coefficient matrix is TUM (why?)

Flows and total unimodularity (ctd)

Dual problem has integer solution y,z because the coefficient matrix is TUM. Define

$$W := \{v \in V \setminus \{r, s\} \mid z_v \le -1\} \cup \{r\}.$$

We now show that

$$c(\delta^{out}(W)) = y^T c \ (= \max \text{ flow})$$

by showing

if
$$a = (u, v) \in \delta^{out}(W)$$
 then $y_a \ge 1$. (1)

Expand the vector z to include r, s by defining:

$$ilde{z}_v = \left\{ egin{array}{ll} -1 & ext{if } v = r \\ 0 & ext{if } v = s \\ z_v & ext{otherwise} \end{array}
ight.$$

Now $M^T \tilde{z} + y \geq 0$. If $a = (u, v) \in \delta^{out}(W)$ then $y_a + \tilde{z}_u - \tilde{z}_v \geq 0$ which implies (1).

Interval matrices

An interval matrix has 0-1 entries and each row is of the form

$$(0, ..., 0, \underbrace{1,, 1}_{consecutive 1's}, 0, ..., 0).$$

Theorem: Each interval matrix A is totally unimodular.

Proof: Let B be a $t \times t$ submatrix of A and let

Note that $\det(N) = 1$. Now NB^T is (a submatrix of) the incidence matrix of some directed graph (why?) Therefore NB^T is totally unimodular and

$$\{0,\pm 1\} \ni \det(NB^T) = \det(N)\det(B^T) = \det(B).$$