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Abstract

In this paper we introduce a new general framework for
set covering problems, based on the combination of ran-
domized rounding of the (near-)optimal solution of the Lin-
ear Programming (LP) relaxation, leading to a partial inte-
ger solution, and the application of a well-behaved approx-
imation algorithm to complete this solution. If the value of
the solution returned by the latter can be bounded in a suit-
able way, as is the case for the most relevant generalizations
of bin packing, the method leads to improved approximation
guarantees, along with a proof of tighter integrality gaps for
the LP relaxation.

Applying our general framework we obtain a
polynomial-time randomized algorithm for d-dimensional
vector packing with approximation guarantee arbitrarily
close to ln d + 1. For d = 2, this value is 1.693 . . ., i.e.,
we break the natural 2 “barrier” for this case. Moreover,
for small values of d this is a notable improvement over
the previously-known O(ln d) guarantee by Chekuri and
Khanna [5].

For 2-dimensional bin packing with and without rota-
tions, we construct algorithms with performance guarantee
arbitrarily close to 1.525 . . ., improving upon previous al-
gorithms with performance guarantee of 2 + ε by Jansen
and Zhang [12] for the problem with rotations and 1.691 . . .
by Caprara [2] for the problem without rotations.

The previously-unknown key property used in our proofs
follows from a retrospective analysis of the implications of
the landmark bin packing approximation scheme by Fer-
nandez de la Vega and Lueker [7]. We prove that their ap-
proximation scheme is “subset oblivious”, which leads to
numerous applications.

Another byproduct of our paper is an algorithm that
solves a well-known configuration LP for 2-dimensional bin

packing within a factor of (1 + ε) for any ε > 0. Interest-
ingly, we do it without using an approximate separation or-
acle, which would correspond to a well-known geometric 2-
dimensional knapsack. Although separation and optimiza-
tion are equivalent [10] and the existence of an approxima-
tion scheme for the separation problem remains open, we
are able to design an approximation scheme for the config-
uration LP since its objective function is unweighed.

1 Introduction

The study of the Bin Packing problem and its multidi-
mensional generalizations goes back to the origins of Op-
erations Research. From an approximability viewpoint, rel-
evant results were obtained as soon as the main concepts
in approximation were defined, in the late 1970s and early
1980s. These results essentially settled the status of Bin
Packing with the Asymptotic Polynomial-Time Approxima-
tion Schemes (APTASes) due Fernandez de la Vega and
Lueker [7] and Karmarkar and Karp [15].

For practical applications, the most relevant generaliza-
tion of Bin Packing is its 2-Dim version, where a given set
of rectangular items must be packed in the minimum num-
ber of unit rectangular bins. The most commonly studied
case is the so called orthogonal packing, where the items
must be packed parallel to the sides of the bin. In some ver-
sions, the items are allowed to be rotated. A closely related
problem is 2-Dim Strip Packing (also known as Cutting-
Stock), motivated by applications in cloth cutting and steel
cutting industry. Here we are given a strip of infinite height
and unit size in other dimensions, and the goal is to pack the
items such that the height occupied is minimized. Although
these higher dimensional versions of Bin Packing are more
complex, starting from the 1980s a slow but continuous



progress was made, mainly concerning the 2-dimensional
case. This culminated in a series of recent relevant results.
Kenyon and Rémila [14] showed that there is an APTAS for
2-Dim Strip Packing. This was recently extended by Jansen
and van Stee [11] to the case where the items can be ro-
tated. For 2-Dim Bin Packing Bansal et al. [1] showed that
it does not admit an APTAS unless P=NP. The best known
algorithm for 2-Dim Bin Packing without rotations is due
to Caprara [2] that achieves an asymptotic approximation
guarantee arbitrarily close to 1.691 . . .. For the case when
items can be rotated, an asymptotic approximation guaran-
tee of 2 follows from the result of [11].

Another well studied (non-geometric) multi-dimensional
packing problem is d-Dim Vector Packing. Here each item
and bin is a d-dimensional vector with non-negative entries,
and the goal is to place the items using the minimum num-
ber of bins such that for every bin the sum of the vectors
placed in that bin is coordinate-wise no greater than the
bin’s vector. This problem is widely used to model resource
allocation problems. The items can be viewed as jobs with
requirements for d independent resources such as memory,
CPU, hard disk, . . . , and the bins as machines that have a
certain amount of each resource available. The goal is then
to place the jobs on the minimum number of machines such
that no machine is overloaded and each job meets its re-
quirements. For d = 1 this problem is identical to the 1-
Dim Bin Packing problem. For the d-Dim case, a folklore
d+ ε approximation follows trivially by essentially consid-
ering each dimension independently and applying the AP-
TAS for 1-Dim Bin Packing. The first non-trivial result was
due to Chekuri and Khanna [5] who gave an O(ln d) ap-
proximation algorithm for constant d1. On the other hand,
Woeginger [21] ruled out an APTAS even for d = 2. For
d = 2 the best known result is an absolute approximation
guarantee of 2 due to Kellerer and Kotov [13]. A natural
question motivated by its intrinsic simplicity and practical
applications [4] is whether there is an asymptotic approxi-
mation guarantee better than 2 for d = 2 (the method of [5]
has guarantee 3 for d = 2).

In this paper we show the following results based on a
more general framework for Set Covering problems. For 2-
Dim Bin Packing, both with and without rotations, we give a
polynomial-time randomized algorithm with approximation
guarantee arbitrarily close to 1.525 . . .. This improves upon
previous algorithms with performance guarantee arbitrarily
close to 2 for the case with rotations [12] and to 1.691 . . . for
the case without rotations [2]. For d-Dim Vector Packing we
give a polynomial-time randomized algorithm with approx-
imation guarantee arbitrarily close to ln d + 1 for fixed d.
For small values of d this is a notable improvement over the

1Though [5] state their result as O(ln d), upon a closer look, the ap-
proximation achieved by their method is actually about ln d + 2 for large
d.

previously known O(ln d) guarantee. For d = 2, our result
implies an approximation guarantee of ln 2 + 1 = 1.693 . . .
which breaks the natural barrier of 2 for this case. In the
full version of the paper, we show that our algorithms can
be derandomized. Our results also imply better integrality
gaps for the configuration LP relaxation of these problems,
which plays a key role in the state-of-the-art practical solu-
tion approaches [3, 20].

The basic idea of our framework is simple. We view
the problem at hand as a Set Covering problem (for exam-
ple in Bin Packing, each set corresponds to a valid way of
packing a bin and the goal is to cover all the items with the
minimum number of sets), and consider the LP relaxation
of the Set Covering formulation. We apply a randomized
rounding procedure for a few steps, after which we are left
with a small fraction of uncovered elements (we call this the
residual instance) that we cover using some approximation
algorithm with certain “good” properties. The good prop-
erty we seek is that the cost of the algorithm on the resid-
ual instance should be much smaller than its cost on the
original instance. In particular, we prove that if we have a
ρ-approximation algorithm that satisfies certain properties
(being subset oblivious, see Definition 1) then we can de-
sign an LP-based (ln ρ + 1)-approximation algorithm (see
Theorem 2). Roughly speaking, the subset oblivious prop-
erty means that if the algorithm produces a solution with
value at most ρ opt(I) on instance I , then, given a “ran-
dom” subset S of I where each item occurs with probabil-
ity about 1/k, the cost of the algorithm on S is bounded by
approximately ρ opt(I)/k.

The key observation in this paper is that many known
algorithms for Bin Packing problems are subset oblivious,
or can be modified to be such. We show that the clas-
sic APTAS for 1-Dim Bin Packing due to Fernandez de
la Vega and Lueker [7] is a subset oblivious algorithm af-
ter minor modifications. Based on these ideas, we give a
simple (d + ε)-approximate subset oblivious algorithm for
d-Dim Vector Packing for constant d, which yields an ap-
proximation guarantee of ln d + 1 by the framework men-
tioned above. We also give (1.691 . . .)-approximation sub-
set oblivious algorithms for 2-Dim Bin Packing with and
without rotations, which yield an approximation guarantee
of ln(1.691 . . .) + 1 = 1.525 . . . by our framework. Given
the simplicity of our framework, we believe that it should
be applicable to other problems of set covering type.

In the description above, we assumed that an optimum
solution to the Set Covering LP relaxation was available.
However, since our sets are implicitly described and are
typically exponentially many, the problem of solving this
LP relaxation is non-trivial. For the applications considered
in this paper, we show that the LP relaxation can be solved
to within (1 + ε) accuracy for any ε > 0. For d-Dim Vector
Packing, we do this by observing that the dual separation



problem (also known as column generation problem) has
a Polynomial-Time Approximation Scheme (PTAS), which
implies a PTAS for the LP relaxation following the frame-
work of [15, 19, 9, 10]. However, this approach does not
work for 2-Dim Bin Packing. In this case the dual sepa-
ration problem is the well-known maximum 2-Dim (Geo-
metric) Knapsack problem, for which the best known al-
gorithm, due to Jansen and Zhang [12], has a performance
guarantee arbitrarily close to 2, and the existence of a PTAS
is open. However, we are still able to design a PTAS for the
LP relaxation bypassing the need for solving the dual sepa-
ration problem. The key idea is that the objective function
of our LP relaxation is unweighted, which allows us to use
some structural properties of d-Dim Bin Packing and con-
sider the LP relaxation on a restricted Set Covering problem
that has only polynomially many sets. We believe that this
technique may be of independent interest.

2 Preliminaries

In all the packing problems considered in this paper we
are given a set I of d-dimensional items specified by a d-
tuple (ai1, a

i
2, . . . , a

i
d) that must be packed in the smallest

number of unit size bins, i.e., with dimensions (1, . . . , 1).
For the case d = 1, we let si := a1

i be the size of item i. For
the case d = 2, for i ∈ I we will write bi for ai1 and hi for
ai2. The first dimension will be called the width (or basis)
and the second dimension will be called the height.

For d-Dim Bin Packing, we say that a set C of items is
feasibly packed if these items can be placed in a bin without
any two overlapping with each other. We only consider the
orthogonal packing case, where the items must be placed
such that their edges are parallel to the edges of the bin.
We will also consider the case of orthogonal packing with
rotations. For d-Dim Vector Packing, a set C of items can
be packed in a bin if

∑
i∈C a

i
j ≤ 1 for each j = 1, . . . , d.

Given an instance I of a minimization problem, we let
opt(I) denote the value of the optimal solution of the prob-
lem for I . Given a (deterministic) algorithm for the prob-
lem, we say that it has asymptotic approximation guarantee
ρ if there exists a constant δ such that the value of the solu-
tion found by the algorithm is at most ρ opt(I) + δ for each
instance I . If δ = 0, then the algorithm has (absolute) ap-
proximation guarantee ρ. Given a randomized algorithm for
the problem, we say that it has asymptotic approximation
guarantee ρ if there exists a constant δ such that the value of
the solution found by the algorithm is at most ρ opt(I) + δ
with a probability that tends to 1 as opt(I) tends to infinity.
An algorithm with an asymptotic approximation guarantee
of ρ is called a ρ-approximation algorithm. An APTAS is
a family of polynomial-time algorithms such that, for each
ε > 0, there is a member of the family with asymptotic ap-
proximation guarantee 1 + ε. If δ = 0 for every ε, then this

is a PTAS.
All above problems could be formulated as the following

general Set Covering problem, in which a set I of items has
to be covered by configurations from the collection C ⊆ 2I ,
where each configuration C ∈ C corresponds to a feasible
way of packing a bin:

min{
∑
C∈C

xC :
∑
C3i

xC ≥ 1 (i ∈ I), xC ∈ {0, 1} (C ∈ C)}.

(1)
As mentioned earlier, the collection C is given implicitly in
the applications we consider, and hence we need to specify
how to solve the LP relaxation of (1). The dual of this LP is
given by

max{
∑
i∈I

wi :
∑
i∈C

wi ≤ 1 (C ∈ C), wi ≥ 0 (i ∈ I)}. (2)

Note that the separation problem for the dual is the fol-
lowing Knapsack type problem: Given weights on items
wi, find, if any, a feasible configuration in which the total
weight of items packed exceeds 1. By the well known con-
nection between separation and optimization [9, 10, 19], it
follows that

Theorem 1 If there exists a PTAS for the separation prob-
lem for (2), that is given wi ∈ RI+ solve maxC∈C

∑
i∈C wi,

then there exists a PTAS for the LP relaxation of (1).

3 The General Method

Our method, hereafter called Round and Approx (R&A),
constructs an approximate solution of the Set Covering
problem (1) by performing the following steps, where α >
0 is a parameter whose value will be specified later.

1. Solve the LP relaxation of (1), possibly approximately
in case C is exponentially large in the input size. Let
x∗ be the (near-)optimal solution of the LP relaxation
and z∗ :=

∑
C∈C x

∗
C be its value;

2. Define the binary vector xr starting with xrC := 0 for
C ∈ C and then applying the following procedure in-
dependently dαz∗e times: select one configuration C ′

at random, letting each C ∈ C be selected with proba-
bility x∗C/z

∗, and let xrC′ := 1;

3. Consider the set of items S ⊆ I that are not covered
by xr, namely i ∈ S if and only if

∑
C3i x

r
C = 0, and

the associated optimization problem for the residual
instance:

min{
X
C∈C

xC :
X
C3i

xC ≥ 1 (i ∈ S), xC ∈ {0, 1} (C ∈ C)}.

(3)
Apply some approximation algorithm to the problem

(3) yielding solution xa;



4. Return the solution xh := xr + xa.

Note that in Step 2 each selection is independent of the
others (i.e., the same configuration may be selected more
than once).

Of course, the quality of the final solution depends on
the quality of the approximation algorithm used to solve the
residual instance. Here we focus our attention on the case
in which this latter quality can be expressed in terms of a
small set of “weight” vectors in RI , as stated in Definition
1 below.

Given a set S ⊆ I , with an abuse of notation we let S
denote also the Set Covering instance defined by the items
in S. Moreover, we let opt(S) and appr(S) denote, respec-
tively, the value of the optimal solution of (3) and the value
of the heuristic solution produced by the approximation al-
gorithm that we consider, and χSI ∈ {0, 1}I the incidence
vector of S, χII being the all-one vector. When no confusion
arises, we will write χS for χSI . For a vector v, we will use
vi to denote the ith co-ordinate of v. Given two vectors v
and w, throughout the paper we will use vw to denote the
dot product of v and w.

Below we define the class of the subset oblivious algo-
rithms, which are very useful for our analysis. Intuitively,
since we apply a randomized rounding in Step 2 we do not
know in advance which will be the subset S of remaining
items, but we still want our approximation algorithm to per-
form “well” in a suitably-defined sense. The definition be-
low captures the property of this “subset independence” we
need.

Definition 1 A ρ-approximation algorithm for problem (1)
is called subset oblivious if, for any fixed ε > 0, there exist
constants k, ψ and δ (possibly depending on ε) such that,
for every instance I of (1), there exist vectors w1, . . . , wk ∈
RI with the following properties:

(i)
∑
i∈C w

j
i ≤ ψ, for each C ∈ C and j = 1, . . . , k;

(ii) opt(I) ≥ max{w1χI , . . . , wkχI};

(iii) appr(S) ≤ ρ max{w1χS , . . . , wkχS}+ ε opt(I) + δ,
for each S ⊆ I .

Property (i) says that the vectors obtained from w1, . . . , wk

by dividing all the entries by constant ψ must be feasible
for the dual of the LP relaxation of (1), Property (ii) pro-
vides a lower bound on the value of the optimal solution for
the whole instance I , and Property (iii) guarantees that the
value of the approximate solution on subset S is not signifi-
cantly larger than ρ times the part of the lower bound in (ii)
associated with S.

It is instructive to consider an example. Suppose we have
an instance of the 1-Dim Bin Packing problem and we con-
sider the Next Fit algorithm where each item is placed in the

current bin if it fits, and placed in a new empty bin other-
wise (closing the previous bin). We wish to show that Next
Fit is a 2-approximation subset oblivious algorithm. To do
this, we let k := 1 and define the vector w1 by setting its ith

co-ordinate w1
i = si, the size of item i. Then clearly Prop-

erty (i) is satisfied with ψ = 1, as no bin can contain items
with total size more than 1. Property (ii) follows trivially as
the number of bins used is at least equal to total size of the
items in the instance. Property (iii) holds with ρ = 2 and
δ = 1, and follows by observing the total size of the items
in every two consecutive bins packed by Next Fit is at least
1.

In general there are many candidates for the vectors wi.
In particular, any feasible solution w to the dual problem
defined by (2) satisfies Property (i) with ψ = 1, and satisfies
Property (ii) by LP duality. Typically, the non-trivial part is
to choose a small collection of appropriate vectors wi and
show that Property (iii) holds with a reasonable value of ρ.

Our main result is the following:

Theorem 2 If there exists a ρ-approximation subset oblivi-
ous algorithm for problem (1) then, for any constant γ > 0,
the cost of the final heuristic solution produced by R&A us-
ing that algorithm in Step 3 with α := ln ρ is at most

(ln ρ+ 1 + ε) opt(I) + δ + γz∗ + 1, (4)

with probability at least 1 − k e−2(γz∗)2/(ψ2dz∗ ln ρe), i.e.,
method R&A is a randomized (ln ρ+1+ ε)-approximation
algorithm for problem (1).

We need the following concentration inequality in the
analysis of R&A, due to McDiarmid [17] (see also [18] for
a nice survey on concentration inequalities).

Lemma 1 (Independent Bounded Difference Inequality)
Let X = (X1, . . . , Xn) be a family of independent ran-
dom variables, with Xj ∈ Aj for j = 1, . . . , n, and
f :

∏n
j=1Aj → R be a function such that

|f(x)− f(x′)| ≤ cj

whenever the vectors x and x′ differ only in the j-th coor-
dinate. Let E(f(X)) be the expected value of the random
variable f(X). Then, for any t ≥ 0,

Pr(f(X)− E(f(X)) ≥ t) ≤ e−2t2/
Pn

j=1 c
2
j .

Proof of Theorem 2 The cost of the rounded solution xr

produced in Step 2 is at most dαz∗e ≤ α opt(I) + 1.
We now estimate the cost of xa. Consider random vari-

able wjχS for j = 1, . . . , k. By the structure of the algo-
rithm and linearity of expectation, we know that

E(wjχS) =
∑
i∈I

wjiPr(χ
S
i = 1)

=
∑
i∈I

wji (1−
∑
C3i

x∗C/z
∗)dαz

∗e ≤ e−αwjχI



where the last inequality follows from
∑
C3i x

∗
C ≥ 1 for

i ∈ I and (1− 1/a)dαae ≤ (1− 1/a)αa ≤ e−α for a > 0.
By the structure of the algorithm, the random variable

wjχS is a function of dαz∗e independent random vari-
ables. Changing the value of any of these random vari-
ables may lead to the selection of a configuration C ′ in
place of a configurationC. Letting S′ be the resulting resid-
ual instance in the latter case, we have |wjχS − wjχS

′ | =
|
∑
i∈C\C′ w

j
i −

∑
i∈C′\C w

j
i | ≤ ψ, by Property (i). There-

fore, applying Lemma 1, we get

Pr(wjχS−E(wjχS) ≥ γz∗) ≤ e−2(γz∗)2/(ψ2dαz∗e). (5)

Using (5) and Properties (ii) and (iii) we obtain that, for
any constant γ > 0, the cost appr(S) of the approximate
solution xa is at most

ρ max{w1χS , . . . , wkχS}+ ε opt(I) + δ

≤ ρ e−α max{w1χI , . . . , wkχI}+ ε opt(I) + δ + γz∗

≤ ρ e−α opt(I) + ε opt(I) + δ + γz∗.

with probability at least 1− k e−2(γz∗)2/(ψ2dαz∗e). �

Of course, it would be interesting to have a deterministic
counterpart of R&A. Although we are unable to derandom-
ize the algorithm in its full generality, in the full version of
the paper we show how to do it for the Bin Packing prob-
lems that we consider.

In the rest of the paper, we represent the LP relaxation of
the residual instance S as:

min{
∑
C∈C

xC :
∑
C3i

xC ≥ χSi (i ∈ I), xC ≥ 0 (C ∈ C)}

(6)
and its dual as:

max{
∑
i∈I

χSi wi :
∑
i∈C

wi ≤ 1 (C ∈ C), wi ≥ 0 (i ∈ I)}.

(7)
Note that the feasible region of (7) is independent of the
choice of the subset S, which appears only in the objective.
This observation will be crucial in defining subset oblivious
algorithms.

4 A Subset Oblivious APTAS for 1-Dim Bin
Packing

The structural property of 1-Dim Bin Packing proved in
this section is the key to analyze versions of R&A for gen-
eralizations of the problem. Recall that for an instance I the
size of an item i ∈ I is denoted by si. A dual solution w of
(7) is called monotone if, for i, j ∈ I , si ≥ sj implies that
wi ≥ wj .

Lemma 2 For any fixed ε > 0, there exists a polynomial-
time (1 + ε)-approximation subset oblivious algorithm for
1-Dim Bin Packing. Moreover, the vectors w1, . . . , wk from
Definition 1 are monotone feasible solutions of (7).

Proof We show that the APTAS of [7] with very minor
modifications is a subset oblivious algorithm. Let σ :=
ε/(1 + ε), M := {i ∈ I : si < σ} be the set of small
items and L := {i ∈ I : si ≥ σ} the set of large items,
with ` := |L|, assuming s1 ≥ s2 ≥ . . . ≥ s`, i.e., items are
ordered according to decreasing sizes.

Define the following reduced sizes for the items in L
starting from their original real sizes s1, . . . , s`. If ` <
2/σ2, we let p := ` and, Li := {i}, si := si for
i = 1, . . . , `, i.e., we do not change the sizes. Otherwise,
using the fundamental linear grouping technique of [7], we
define q := b`σ2c and define p := d`/qe groups L1, . . . , Lp
of consecutive items in L, where, for j = 1, . . . , p − 1, Lj
contains items (j − 1)q + 1, . . . , jq, and Lp contains items
(p − 1)q + 1, . . . , ` (the smallest items in L). The reduced
size sj of each item in group Lj is given by the size of the
smallest item in the group, namely sj := mini∈Lj

si. It is
easy to check that p ≤ 1 + 3/σ2 = O(1/ε2).

Consider the following LP, which is the counterpart of
(6) for reduced sizes, where items of the same size are as-
sociated with a unique constraint. Let b1, . . . , bm be the
collection of the vectors b ∈ {0, . . . , b1/σc}p such that∑p
j=1 bjsj ≤ 1. These vectors represent the feasible pack-

ing configurations of the items in L with reduced sizes.
Note that m = O(O(1/ε)O(1/ε2)). The LP associated with
a given S ⊆ I is:

min{
m∑
r=1

xr :
m∑
r=1

brjxr ≥ |Lj ∩ S| (j = 1, . . . , p),

xr ≥ 0 (r = 1, . . . ,m)} (8)

and its dual:

max{
p∑
j=1

|Lj ∩ S|vj :
p∑
j=1

brjvj ≤ 1 (r = 1, . . . ,m),

vj ≥ 0 (j = 1, . . . , p)}. (9)

We define the following approximate solution starting from
an optimal basic solution x of LP (8). Consider the solution
dxe obtained by rounding up x. This corresponds to a fea-
sible packing of the items in L∩S with reduced sizes. If no
grouping was performed, this is also a feasible packing for
the real sizes. Otherwise, we define the following packing
for the real sizes: in the rounded solution, for i < |L∩S|−q,
use the space for the reduced size of the i-th largest item in
L ∩ S to pack the real size of the (i + q)-th largest item
in L ∩ S (which is not larger by definition of the grouping
procedure). The real sizes of the q largest items in L∩S are



packed in q additional bins, one per bin. Finally, the small
items in M ∩S are packed in an arbitrary order by Next Fit,
starting from the bins already containing some large items
and considering a new bin only when the current small item
does not fit in the current bin. Let appr(S) be the value of
the final solution produced.

We now show the subset obliviousness of the above algo-
rithm. Note that the feasible region of the dual (9) does not
depend on S. Moreover this feasible region is defined by p
variables and p+m constraints and hence the number of its
basic solutions is at most t =

(
p+m
m

)
, which is constant for

fixed ε. This implies that, for all choices of the 2|I| possible
subsets S, the basic optimal solutions of (9) form a constant
size collection v1, . . . , vt. Starting from v1, . . . , vt, we de-
fine the monotone solutions v1, . . . , vt by vhj := maxpi=j v

h
i

for h = 1, . . . , t and j = 1, . . . , p. For h = 1, . . . , t, vh is
monotone by definition and has a value for (9) that is clearly
not worse than vh. Moreover, it is easy to check that vh is
feasible for (9) (details are left to the full paper).

We define the set of vectors w1, . . . , wk as follows, let-
ting k := t+ 1:

• for h = 1, . . . , t, we set whi := vhj for j = 1, . . . , p
and i ∈ Lj , and whi := 0 for i ∈ M (in other words,
wh is obtained by “expanding” the vector for reduced
sizes vh back to the actual sizes);

• wt+1
i := si for i ∈ I .

By the above definition, w1, . . . , wk are monotone so-
lutions of (7) (noting that also s is such a solution) and,
for each S ⊆ I , max{w1χS , . . . , wk−1χS} is equal to
the optimum of (9) for instance L ∩ S with reduced sizes.
Moreover, opt(S) ≥

∑
i∈S si. Therefore, opt(S) ≥

max{w1χS , . . . , wkχS} for each S ⊆ I . This implies
Properties (i), with ψ = 1, and (ii) in Definition 1.

Finally, we show Property (iii), namely appr(S) ≤
(1 + ε) max{w1χS , . . . , wkχS} + ε opt(I) + 1 + 3/σ2,
completing the proof.

If new bins are needed after packing the small items, we
have that all the bins with the possible exception of the last
one contain items for a total size of at least (1 − σ). This
implies

appr(S) ≤
∑
i∈S si

1− σ
+ 1 = (1 + ε) wkχS + 1,

and we are done. On the other hand, if no new bins are
needed for the small items, since the number of fractional
components in the basic solution x is at most p we have that∑m
h=1dxhe ≤

∑m
h=1 xh + p, and recall that p ≤ 1 + 3/σ2.

Moreover, recall that in case grouping is performed we use
q additional bins for the q largest items, and note that q ≤
`σ2 ≤ ε opt(I), since σ ≤ ε and opt(I) ≥ σ` as all items

in L have size at least σ. Now, letting w ∈ {w1, . . . , wk−1}
be the dual solution of (7) corresponding to the optimal dual
solution v ∈ {v1, . . . , vt} of (9) associated with S, we have:

appr(S) ≤
m∑
h=1

dxhe+ q

≤
m∑
h=1

xh + 1 + 3/σ2 + ε opt(I)

=
∑
i∈L∩S

wi + 1 + 3/σ2 + ε opt(I)

≤ wχS + ε opt(I) + 1 + 3/σ2.

�

It is interesting to note that the dependence of k on ε is
multiply exponential.

We will use Lemma 2 many times in the paper, and to
avoid confusion we will denote by optBP(I) the value of the
optimal 1-Dim Bin Packing solution for a generic instance
I and apprBP(I) the value of the solution obtained by the
subset oblivious APTAS on instance I .

5 Improved Approximation for d-Dim Vector
Packing

We show how to combine the results of the previous sec-
tions to derive a polynomial-time randomized algorithm for
d-Dim Vector Packing with asymptotic approximation guar-
antee arbitrarily close to ln d + 1 = 1.693 . . . for d = 2.
Recall that each item i ∈ I corresponds to a 2-dimensional
vector (bi, hi).

Lemma 3 For any fixed ε > 0, there exists a polynomial-
time (d + ε)-approximation subset oblivious algorithm for
d-Dim Vector Packing for constant d.

Proof We give the proof in the case d = 2. The general
case is proved analogously. Consider the following simple
approximation algorithm analogous to the one in [7]:

We partition the set I of items into sets B := {i ∈ I :
bi ≥ hi} and H := I \ B, and for a given S ⊆ I we pack
the items in B ∩ S (resp., H ∩ S) near-optimally in bins
by applying the subset oblivious APTAS of Lemma 2 to the
Bin Packing instance with sizes {bi : i ∈ B} (resp., with
sizes {hi : i ∈ H}). Note that each feasible packing into
one bin of one-dimensional items with sizes in {bi : i ∈ B}
(resp., {hi : i ∈ H}) corresponds to a feasible packing into
one two-dimensional bin of the corresponding set of two-
dimensional items from B (resp., H). Finally, we return
the packing of the items in S defined by the bins in the two
solutions obtained.



By Lemma 2, we have that for any σ > 0, there ex-
ist constants `, m, γ and vectors u1, . . . , u` ∈ RB and
v1, . . . , vm ∈ RH with the following properties:

optBP(B) ≥ max{u1χBB , . . . , u
`χBB},

apprBP(B ∩ S) ≤ (1 + σ) max{u1χB∩SB , . . . , u`χB∩SB }
+σ opt(I) + γ, for each S ⊆ I,

optBP(H) ≥ max{v1χHH , . . . , v
mχHH},

apprBP(H ∩ S) ≤ (1 + σ) max{v1χH∩S
H , . . . , vmχH∩S

H }
+σ opt(I) + γ, for each S ⊆ I.

Moreover, u1, . . . , u` ∈ RB and v1, . . . , vm ∈ RH are
monotone solutions of (7) for Bin Packing.

The required vectors w1, . . . , wk are the following, let-
ting k := `+m:

• for h = 1, . . . , `, whi := uhi for i ∈ B; whi := 0 for
i ∈ H;

• for h = 1, . . . ,m, w`+hi := 0 for i ∈ B; w`+hi := vhi
for i ∈ H .

Property (i) is trivially satisfied by the vectors w1, . . . , wk

with ψ = 1. Moreover, Properties (ii) and (iii) are now
simple to prove, letting σ be such that 2(1 + σ) ≤ 2 + ε:

opt(I) ≥ max{optBP(B), optBP(H)}
≥ max{u1χBB , . . . , u

`χBB , v
1χHH , . . . , v

mχHH}
= max{w1χII , . . . , w

kχII},

and, for each S ⊆ I:

appr(S) = apprBP(B∩S)+apprBP(H∩S)

≤ (1+σ) max{u1χB∩SB , . . . , u`χB∩SB }

+(1 + σ) max{v1χH∩S
H , . . . , vmχH∩S

H }+ 2σ opt(I) + 2γ

≤ 2(1+σ) max{w1χSI , . . . , w
kχSI }+2σ opt(I)+2γ.

�

Since the separation problem for the dual of the config-
uration LP of the d-Dim Vector Packing is a maximum d-
Dim (Non-geometric) Knapsack Problem, which admits a
PTAS for constant d [8], Theorem 1 implies the existence
of a PTAS for the configuration LP for d-Dim Vector Pack-
ing. Thus by Lemma 3 with Theorem 2, we obtain:

Theorem 3 For any fixed ε > 0, using the algorithm
of Lemma 3 in Step 3, method R&A is a randomized
polynomial-time (ln(d + ε) + 1 + ε)-approximation algo-
rithm for d-Dim Vector Packing, for constant d.

6 Improved Approximation for 2-Dim Bin
Packing without Rotations

We now show the implications of our approach for 2-
Dim Bin Packing, in which the items in an instance I corre-
spond to rectangles with sizes {(bi, hi) : i ∈ I}.

We first present the (relatively simple) approximation al-
gorithm of [2], called Harmonic Decreasing Height (HDH),
and show its subset obliviousness. This algorithm has an
asymptotic approximation guarantee arbitrarily close to the
well known harmonic number (in the Bin Packing context)
Π∞ = 1.691 . . . [16]. This algorithm packs items in bins
in two stages, by first packing the items in shelves, a shelf
being a subset L ⊆ I such that

∑
i∈L bi ≤ 1 (the items in

L fit besides each other in a bin), and then by packing the
shelves in bins by solving the 1-Dim Bin Packing instance
with one item of size maxi∈L hi for each shelf L created.

More precisely, HDH receives as input a parameter t,
and forms shelves by first partitioning the items in types,
where an item i is of type q if bi ∈ (1/(q + 1), 1/q] for
q = 1, . . . , t, and of type t + 1 if bi ≤ 1/(t + 1). For
each type, the corresponding items are packed in shelves
by Next Fit Decreasing Height [6], considering the items
in decreasing order of height and packing them by a next
fit policy, closing the current shelf and starting a new one
when the current item does not fit in the shelf. The shelves
formed are treated as one dimensional objects with height
equal to the maximal height of an item packed in a shelf.
Shelfs are then packed in bins near-optimally by using an
APTAS for 1-Dim Bin Packing.

Let H be the 1-Dim Bin Packing instance defined by
sizes {hi : i ∈ I}. Note that the solution produced by
HDH for items S ⊆ I is a near-optimal solution of a Bin
Packing instance H(S) ⊆ H in which the sizes are equal to
the heights of the shelves created by HDH.

The key property in the analysis of [2] is the following.
For each item i ∈ I with basis bi, let vi := 1/b1/bic if
bi > 1/(t+1); vi := bi(t+1)/t if bi ≤ 1/(t+1). Moreover,
let ϕ := 1/(Π∞ + 1/t).

Lemma 4 For each monotone dual solution u of (7) for Bin
Packing instance H the following holds:

(i) uχH(S)
H ≤

∑
i∈S viui + t+ 1 for each S ⊆ I;

(ii) the vector w ∈ RI defined by wi := ϕviui for i ∈
I is a feasible solution of (7) for 2-Dim Bin Packing
without rotations.

Based on Lemma 4 we prove the following.

Lemma 5 For any fixed ε > 0, there exists a polynomial-
time (Π∞ + ε)-approximation subset oblivious algorithm
for 2-Dim Bin Packing without rotations.



Proof We show that algorithm HDH satisfies the require-
ments.

By Lemma 2, we have that, for any σ > 0, there exist
constants `, γ and vectors u1, . . . , u` ∈ RH with the fol-
lowing properties:

optBP(H) ≥ max{u1χHH , . . . , u
`χHH},

apprBP(H(S)) ≤ (1 + σ) max{u1χ
H(S)
H , . . . , u`χ

H(S)
H }

+σ optBP(H) + γ, for each S ⊆ I,

where u1, . . . , u` are monotone solutions of (7) for Bin
Packing.

Consider vectors w1, . . . , wk, with k := `, defined by
wji := ϕviu

j
i for i ∈ I and j = 1, . . . , `. For the sake of

presentation, we first prove that these vectors are “nearly”
fine. That is, Property (i), with ψ = 1, and Property (ii),
namely

opt(I) ≥ max{w1χI , . . . , wkχI}

follow from Lemma 4, since all these vectors are feasible
solutions of (7) for 2-Dim Bin Packing. Moreover, since we
solve the instance H(S) by an APTAS, say with accuracy
σ, we obtain, for each S ⊆ I:

appr(S) = apprBP(H(S))

≤ (1 + σ)max{u1χ
H(S)
H , . . . , u`χ

H(S)
H }+ σoptBP(H) + γ

≤ (1+σ) max{
∑
i∈S

viu
1
i , . . . ,

∑
i∈S

viu
`
i}+σoptBP(H)+O(1)

= (1+σ)/ϕ max{w1χS , . . . , wkχS}+σoptBP(H)+O(1).
(10)

Defining σ and t appropriately, we can ensure that (1 +
σ)/ϕ ≤ Π∞ + ε and σ ≤ ε, as required. Unfortunately,
this does not imply Property (iii) since optBP(H) can be ar-
bitrarily larger than opt(I). This is settled by defining vec-
tors w1, . . . , wk in a technically more complex way that is
discussed in the full paper. �

We now show that the configuration LP can be solved to
arbitrarily close accuracy. Recall that with d-Dim Bin Pack-
ing, we cannot use Theorem 1 as the separation oracle for
the dual problem is a d-Dim (Geometric) Knapsack, which
is APX-hard for d ≥ 3 [1] and for which the existence of a
PTAS is open for d = 2. However we bypass this problem
in the 2-dimensional case by designing a PTAS for the LP
directly. In particular we show that:

Theorem 4 For any fixed ε > 0, there exists a polynomial-
time (1+ ε)-approximation algorithm for the LP relaxation
of (1) for 2-Dim Bin Packing with and without rotations.

The proof of this theorem is somewhat technical and we de-
fer the details to the full version of the paper. The main
idea is to show that for any instance I , we can define a re-
stricted configuration LP that only considers polynomially

many configurations, and yet produces a solution arbitrarily
close to that of the unrestricted LP. Since this restricted LP
has polynomially many variables and constraints, it can be
solved exactly in polynomial time.

We now sketch the proof of the fact that polynomially
many configurations suffice. For simplicity, consider first
the case when all items in I are large, i.e., have width and
height both > δ for some constant δ > 0. In this case, no
bin can contain more than 1/δ2 items. Moreover, given any
feasible packing of items in a bin we can make the packing
“tight” by shifting each item greedily to the left and top as
much as possible. Thus, without loss of generality one can
assume that the items in the bin are placed so that the top left
corner of each item is placed at some (x, y) position which
is an integer linear combination of widths and heights of
items in that bin. However, there are only a constant number
of such candidate positions. Thus there are only O(n1/δ2)
relevant configurations for the whole instance that need to
be considered. Moreover, it is easy to see that this can be
extended to the case with rotations.

To handle the general case we use an extension and re-
finement of ideas from [1]. First we show how to choose
another constant δ′ � δ such that we can ignore all items
whose width or height lies between δ′ and δ, without much
loss in quality of solution. We also show that (very small)
items with both height and width smaller than δ′ can be han-
dled later. This leaves us with three types of items: Large,
very thin (with width ≤ δ′ and height > δ), and very fat
(width > δ, height ≤ δ′). We then consider a further re-
laxation of the notion of a configuration to what we call a
fractional configuration. Here we allow a thin item to be
sliced up vertically and a fat item to be sliced horizontally
and its various pieces can be packed in separate configu-
rations. Using the technique of [7] we show that we can
round the height of thin items (and respectively, the width
of fat items) to O(1) different values without affecting the
quality of the solution too much. Based on this property
and exploiting the rectilinear nature of items, we show the
final and most technical step that any arbitrary (fractional)
packing of these items can be made “structured” without too
much loss. In particular, the structure is regular enough to
allow us to enumerate all possible such structures in polyno-
mial time and restrict our LP to these structured fractional
configurations. We then finish off by showing that LP solu-
tion to the fractional configurations can be converted back
to an LP solution for actual configurations without much
loss in the objective value.

By Lemma 5, Theorem 4 and Theorem 2 we get:

Theorem 5 For any fixed ε > 0, using the algorithm
of Lemma 5 in Step 3, method R&A is a randomized
polynomial-time (ln(Π∞ + ε) + 1 + ε)-approximation al-
gorithm for d-Dim Bin Packing without rotations.



7 Improved Approximation for 2-Dim Bin
Packing with Rotations

We show that Lemma 2 leads to a polynomial-time (de-
terministic) subset oblivious approximation algorithm for
2-Dim Bin Packing with rotations with asymptotic approx-
imation guarantee arbitrarily close to Π∞, improving on
the previously-known 2. Moreover, this algorithm can be
plugged into the R&A framework, leading to an approxi-
mation guarantee arbitrarily close to lnΠ∞+1. The results
presented hold also for the case in which the bin size is not
the same for both dimensions, and we address the case of
unit square bins only for simplicity of presentation.

We first show that:

Lemma 6 For any fixed ε > 0, there exists a polynomial-
time (Π∞ + ε)-approximation subset oblivious algorithm
for 2-Dim Bin Packing with rotations.

Proof Assume without loss of generality bi ≤ hi for i ∈ I .
A subset rotation is represented by a partition SN ∪ SR of
S ⊆ I , where SN represents the subset of items that are not
rotated and SR the subset of items that are rotated. A triv-
ial exponential-time algorithm with asymptotic approxima-
tion guarantee arbitrarily close to Π∞, given an item subset
S ⊆ I , tries all the 2|S| rotations and, for each of them, ap-
plies the HDH algorithm of the previous section to the items
rotated accordingly. The key idea of the polynomial-time
version is to avoid trying all rotations, using the estimation
on the HDH value provided by Lemma 4.

We present and analyze our algorithm, called Harmonic
Rotation (HR), for the special case in which bi ≥ δ for
some constant δ. In the full version of the paper, we will
show how to adapt it to the general case. HR receives on
input an accuracy ε and a subset S ⊆ I of items, defines
internally σ and t as a function of ε (as will be specified in
its analysis), and performs the following steps:

1. Consider the Bin Packing instance H defined by sizes
{bi : i ∈ I} ∪ {hi : i ∈ I} and constructively apply
Lemma 2 to it, deriving for some constants ` and γ
monotone solutions of (7) u1, . . . , u` ∈ RH such that:

optBP(H) ≥ max{u1χHH , . . . , u
`χHH},

apprBP(S̃) ≤ (1 + σ) max{u1χS̃H , . . . , u
`χS̃H}

+σ optBP(H) + γ, for each S̃ ⊆ H;
(11)

2. Let v, w, x1, . . . , x`, y1, . . . , y` be |I|-dimensional
vectors defined, for i ∈ I and j = 1, . . . , `, by:

vi := 1/b1/bic, for i ∈ I;
wi := 1/b1/hic, for i ∈ I;
xji := coordinate of uj associated with hi;
yji := coordinate of uj associated with bi;

(12)

3. Find a rotation SN ∪SR that approximately minimizes

`
max
j=1

∑
i∈SN

vix
j
i +

∑
i∈SR

wiy
j
i ; (13)

4. Return the solution found by HDH for the instance of
2-Dim Bin Packing without rotations obtained by ro-
tating the items in S according to SN ∪ SR.

Note that the first two steps are independent of S,
and that in Step 1 we have to explicitly compute vectors
u1, . . . , u`, as opposed to the previously-described applica-
tions of the method, in which we simply needed these vec-
tors to exist.

The intuition for HR is the following. Consider a generic
rotation SN ∪ SR. By Lemma 4, we have that r :=
max`j=1

∑
i∈SN

vix
j
i +

∑
i∈SR

wiy
j
i is a rough estimation

of both the value of the HDH solution for this rotation
(namely, by (i) combined with (11) r is nearly at least equal
to this value), and the optimal value of the 2-Dim Bin Pack-
ing solution for this rotation (namely, by (ii) r is nearly at
most equal to Π∞ times this value). Accordingly, we find
in Step 3 the rotation that nearly minimizes this rough esti-
mation.

The following elementary algorithm is sufficient to find
a near-optimal solution of the problem in Step 3. (It is easy
to show that this problem is weakly NP-hard and solvable in
pseudo-polynomial time by dynamic programming.) Con-
sider the ILP formulation with binary variables zi := 1 if
i ∈ SN and zi = 0 if i ∈ SR, along with variable r express-
ing the objective value:

min{r : r ≥
∑
i∈S

vix
j
izi +

∑
i∈S

wiy
j
i (1− zi) (j = 1, . . . , `)

zi ∈ {0, 1} (i ∈ S)}. (14)

We solve the LP relaxation of (14), finding an optimal basic
solution, and then return the integer solution obtained by
rounding the fractional z variables arbitrarily. Letting L ⊆
I be the set of indices such that variables zi are not integral
in the optimal basic solution of (14), we have |L| ≤ `.

Let I∗N ∪ I∗R be the rotation associated with the optimal
solution of 2-Dim Bin Packing with rotations for set I . As
each coefficient of zi in (14) has absolute value at most 1
and |L| ≤ `, we obtain:

`
max
j=1

∑
i∈SN

vix
j
i +

∑
i∈SR

wiy
j
i

≤ `
max
j=1

∑
i∈S∩I∗N

vix
j
i +

∑
i∈S∩I∗R

wiy
j
i + `. (15)

Moreover, Lemma 4 implies

opt(I) ≥ ϕ
`

max
j=1

∑
i∈I∗N

vix
j
i +

∑
i∈I∗R

wiy
j
i . (16)



Define |I|-dimensional vectors qj for j = 1, . . . , ` by
qji = ϕvix

j
i for i ∈ I∗N and qji = ϕwiy

j
i for i ∈ I∗R, noting

that we simply need these vectors to exist and do not have
to compute them explicitly. By (16), these vectors satisfy
Property (ii). Moreover, for j = 1, . . . , `,

∑
i∈C q

j
i ≤ 1

for each feasible configuration C for the instance of 2-Dim
Bin Packing without rotations associated with I∗N ∪ I∗R. We
claim that

∑
i∈C q

j
i ≤ 4 for each feasible configuration

C for 2-Dim Bin Packing with rotations since by rotating
items in C according to I∗N ∪ I∗R we could pack items in
at most 4 bins (4 times the area). That is the vectors sat-
isfy Property (i) with ψ = 4. As to Property (iii), letting
appr(S) denote the value of the solution found by HR and
H(S) ⊆ H be the heights of the shelves formed by HDH
for rotation SN ∪ SR, Lemma 4 (i) together with (11) and
(15) imply:

appr(S) = apprBP(H(S))

≤ (1+σ) max{u1χ
H(S)
H , . . . , u`χ

H(S)
H }+σ optBP(H)+γ

≤ (1+σ)

 `
max
j=1

∑
i∈S∩I∗N

vix
j
i +

∑
i∈S∩I∗R

wiy
j
i


+σ optBP(H) +O(1). (17)

With an appropriate definition of σ and t, Property (iii) then
follows from (17) together with optBP(H) = O(opt(I)),
implied by trivial volume arguments since bi ≥ δ for all
i ∈ I . �

Combining Lemma 2, Lemma 6 and Theorem 4 we ob-
tain

Theorem 6 For any fixed ε > 0, using the algorithm
of Lemma 6 in Step 3, method R&A is a randomized
polynomial-time (ln(d + ε) + 1 + ε)-approximation algo-
rithm for d-Dim Bin Packing with rotations.
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