
 35

Quality, Cleanroom and Formal Methods

Zarrin Langari
School of Computer Science

University of Waterloo
Waterloo, On, Canada

1-519-888-4567
zlangari@uwaterloo.ca

Anne Banks Pidduck
School of Computer Science

University of Waterloo
Waterloo, On, Canada

1-519-888-4567
apidduck@uwaterloo.ca

ABSTRACT

We have proposed a new approach to software quality combining
cleanroom methodologies and formal methods. Cleanroom
emphasizes defect prevention rather than defect removal. Formal
methods use mathematical and logical formalizations to find
defects early in the software development lifecycle. These two
methods have been used separately to improve software quality
since the 1980’s. The combination of the two methods may
provide further quality improvements through reduced software
defects. This result, in turn, may reduce development costs,
improve time to market, and increase overall product excellence.

Defects in computer software are costly. Their detection is usually
postponed to the test phase, and their removal is also a very time
consuming and expensive task. Cleanroom software engineering
is a methodology which relies on preventing the defects, rather
than removing them. It is based on incremental development and
it emphasizes the development phase. An enhancement to this
methodology is presented in this paper, which combines formal
methods and cleanroom. The efficiency of the new model rests on
an appropriate logical representation, to write the specification of
the intended system. In the new model, design plans are formally
verified before any implementation is done. The advantages of
finding defects in the early stages are decreased cost and
increased quality. Results show that, by using formal methods, a
higher quality will be achieved and the software project can also
benefit from the existing mechanized tools of these two
techniques.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification –
formal methods.

D.2.8 [Software Engineering]: Metrics – process metrics,
performance metrics
General Terms

Measurement, Performance, Verification.

Keywords
Software Quality, Cleanroom, Formal Methods.

1. INTRODUCTION

Failures in a software project are costly, no matter whether these
failures happen during development or later on the customer’s
site. There are many examples where systems failed to operate as
the result of software or hardware failure. Peter G. Neumann in
Software Engineering Notes [7] stated: “A computer fault may
have accidentally erased some immunization records from among
425,000 Toronto school children during April 2002... This is
especially important since failure to ensure appropriate
immunizations can possibly result in suspension of children from
school.” He also pointed to the grounding of Air Canada “Jazz”
airline by a computer virus in a flight-planning computer in early
February 2003. Another example is Therac-25; a computer-
controlled radiation therapy machine made by Atomic Energy of
Canada which overdosed six people between June 1985 and
January 1987. The error was a timing problem on data entry. The
program did not consider data entry corrections made by the
operator.

The recovery cost of these failures is huge. There are some direct
costs related to quality problems [2]:

• many tests to find defects;
• repeating tests after each error correction;
• customer’s requirements do not match the system functions

after delivery;
• delays in marketing, idle resources, staff redeployments;
• postponed new developments, for maintenance;
• good developers assigned to do error correction;
• other products may be postponed if the direct customer is

another department waiting for the product.

Besides the cost, government legislation mandates safe software
and improved methods to gain defect-free developments in safety-
critical systems. For example, the European Commission
legislation, the Machine Safety Directive, effective from January
1993 states: if there is an error in the machine’s logic that results
in injury then a claim can be made under civil law against the
supplier [1]. The manager can be charged for criminal acts if
there is proved negligence in a product’s design and manufacture.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
3-WoSQ ‘05, May 17, 2005, St Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-122-8/05/0005…$5.00.

1

36

This can result in sending the manager to jail for several months.
Therefore software costs could be millions of dollars and also
many human lives.

A possible solution is using Cleanroom techniques. These
techniques have been used as development methods previously.
Nevertheless, they did not address issues raised in the
specification and requirement phase. This paper presents an
enhancement to the previous Cleanroom methodology using
Formal Methods. This enhancement considers applying formal
techniques to the specification phase of Cleanroom methodology.
The paper also outlines the quality and cost benefits of the new
approach.

Section 2 introduces the Cleanroom methodology and how
management uses this methodology. Section 3 describes the need
for an enhancement to Cleanroom methodology. Later, the
section introduces formal methods, their usage in the new
enhancement, and the automation of correctness proofs by these
methods. Sections 4 and 5 investigate the influence of formal
methods on quality and cost. The paper ends with a summary of
the points covered.

2. CLEANROOM METHODOLOGY

Semiconductor plants use clean rooms to produce failure free
products. In clean rooms, people wear sterile gowns and masks to
manufacture integrated circuits. In the process of producing
circuits, a speck of dust can be considered a failure. Any failure is
considered a failure in process rather than in product. Errors are
tracked to process failures, failed products are thrown away, and
the process is fixed [8].

Mills has developed the Software Cleanroom Methodology [6],
which is an approach emphasizing defect prevention over defect
removal. A failure in the software is considered a process failure,
which can be in software specification, design, or verification.
The process is fixed and the failed product is thrown away. In
software this means sending the erroneous unit back to the point
in process where the failure happened. Cleanroom development
uses the Waterfall software model as its base, and adds
incremental development to the traditional model [5]. The
objective of the Cleanroom software engineering process is to
develop near zero-defect software.

There are four teams operating in Cleanroom software
process. These teams may turn into multiple teams of teams for
large projects: The Specification Team analyzes and represents
customer requirements. It produces two specifications: functional
(requirement) and usage. The functional specification defines the
required external system’s behavior in all circumstances. External
behavior is a function mapping of all inputs to outputs of the
system. The team considers all input cases including unexpected
and erroneous inputs, to express the system’s external behavior.
This formalization will then be used instead of the natural
language description of what is required that can be easily
misinterpreted and is often incomplete. Usage specification
defines usage scenarios and their probabilities for all possible
system usages. The functional specification is the basis for
incremental software development, and the usage specification is

the basis for generating test cases for incremental statistical
testing and quality certifications [4].
The Development Team carries out incremental analysis and
design activities to produce a formal design in box structures.
Designs are verified to be correct through mental proofs of
correctness in team reviews. The team builds a plan in which the
software will be incrementally built and certified. Each increment
is a working program, and a specification is produced for each
increment. The first increment provides a basic functionality and
each successive increment adds functionality until the
development cycle specification is satisfied. Each increment will
undergo the design and build, functional verification, and
certification phases. The logic of increments rests on breaking
down the complexity of the system. Fixes and updates can also be
done more easily in increments.

The Certification Team develops test cases to test the
functionality of the system stated in the increment specification.
Even though the code has been formally verified, it is still
necessary to test the quality of the software. This testing approach
is different with traditional testing, in which testers assume there
are errors in the software and try to find as many as possible.
Certification, which is the Cleanroom term for testing, certifies
the software reliability and performance. It does not seek errors in
the software. This type of testing focuses on external system
behavior not the internal part of the software. Cleanroom
certification and statistical usage-based testing, does not measure
quality in defects per line of code.

The Documentation Team produces documents in parallel with the
development and certification teams. For each increment the
evolving document will be validated for quality.

2.1. Cleanroom Management

Management planning and control in Cleanroom is based on
developing and certifying software increments. The increments
are developed and certified by small, independent teams.
Determining the number and functional content of increments is
an important task. For each increment, the development team
carries out a design and verification cycle, based on the functional
specification. Completed increments are periodically delivered to
the certification team for statistical testing, and errors are returned
to the development team for correction. The idea is to quickly
develop the right product with high quality for the user, then go
on to the next increment to incorporate new requirements arising
from user experience.

In Cleanroom, box structures allow accurate definition of the
required user functions without dealing with the internal behavior
of boxes. Then the development team verifies the correctness of
functionality against the requirements. Finally, verification
reviews are held by the team to formally or informally verify the
software using a set of correctness proofs. Proof of software
correctness can be done by direct assertion of correctness
conditions.

In traditional Cleanroom, there is no emphasis on using formal
proofs or automated formal proofs to verify correctness of boxes.
In addition, in traditional Cleanroom, the development cycle has
the main role in the software life cycle. The next section

2

37

investigates the need for the enhancement of traditional
Cleanroom considering the importance of the specification phase,
and the use of formal methods.
3. ENHANCED CLEANROOM

Cleanroom development begins with a specification of required
system functions. Without rigorous specification technology, it is
difficult to devote time and effort to the specification process.
Specifications are normally written in natural language, with
inevitable ambiguities and omissions. In addition, in a box
structure, it is important to define specifications correctly.
Therefore there is a need to translate the natural language to a
formal specification. Then all possible circumstances of usage,
such as input/output paths, can be verified against the formal
specification of the system. It takes months or even years to
perform proofs for a small or medium sized industrial project [3],
so formal software development is impracticable without
appropriate automated techniques. In addition, programs may
contain an infinite number of paths that cannot all be checked
manually.

The purpose of a formal specification is to provide an
unambiguous notation that can be validated. The efficiency of
using Formal Methods relies on the choice of an appropriate
logical representation, which eases the natural specification of the
intended system and the proofs being done. Most specification
languages used in automated formal techniques can specify, at a
minimum, propositional logic.

In the next sections, we define Formal Methods and their
influence on software quality and costs.

3.1. Formal Methods

Formal methods use a mathematical and logical formalization to
prove that key properties of the system satisfy the expected
behavior of the software system. Characteristics of formal
methods include [9]:

• Formal methods check the consistency of the system’s
descriptions. They make sure properties that the system
analysts have defined meet the requirements of the system.
They actually check whether the analysts have correctly
interpreted the system’s requirements.

• Formal methods make it possible to find defects in the
system early in the software lifecycle. Due to early defect
detection the correct implementation through consistent
requirements is possible.

• Formal methods avoid more testing. After applying
these methods to high quality software systems, they find
defects that may go undetected after extensive testing.

• Formal methods use mathematical notations to
formalize the system’s descriptions. By using mathematical

notations (e.g. ∀ for all), we can make sure the system is
correct for all possible inputs. Test cases always check the
system just for a finite set of inputs, but formalization allows

a large (potentially infinite) set of inputs to be considered for
correctness proofs.

• Formal methods can be present in all phases of the
software project. The software project manager decides when
these methods should be used in the analysis, design and
development phases, to detect more defects. Many times
these methods guarantee defect-free software.

Based on the above description of formal methods and the goal of
Cleanroom methodology, we propose that using rigorous formal
specification in the initial phases of the Cleanroom process can
ease correctness verification and automation of this process. A
difference between the traditional Cleanroom and the new
enhancement is that design choices are formally verified before
any code is implemented in increments. This has the advantage of
finding design problems early and, hence, lowering the cost.

In the Cleanroom process, formal methods should be applied in
two stages. First, they are necessary in the specification phase for
specifying the system behaviour with a logical notation which is a
basis for increment specification. Second, they can be applied in
an iteration where each increment’s design will be formally
modeled and verified against its formal specification using an
automated model checker.

3.2. Automating Correctness Proofs

Formal specifications use mathematical language to specify what
a system is supposed to do. They use abstraction to remove details
as much as possible. After formalizing the system’s properties,
we need to prove that these property statements are valid. A proof
is a set of rules to justify what we conclude from a set of
assumptions. There are automating tools, which help to provide
formal proofs. From the definition, it may be concluded that
everything has to be proved correct. In fact, however, many
current industrial uses of formal methods involve no, or minimal,
proofs [1]. This involves using a theorem prover e.g. Z notation1
at the first cycle of the software project to have a high-level
specification of the system to be designed. Then at the
development level applying formal methods can be done by VDM
(Vienna Development Method), which uses a set of rules to refine
the operations and data structures in the requirement specification
to reach an implementation level. Actually formal methods tend to
reduce human involvement in evaluating arguments. They limit
the acceptability of arguments to calculation, which can be
checked mechanically [4].

The goal of formalization with the cleanroom methodology is
error reduction in the early phases, enhancing quality, lowering
cost and time to market. To achieve this goal, formal methods
should be applied correctly and through the right choice of
management for the level of formalization and tools.

In the following section, we discuss the influence of using formal
methods on quality and cost.

1 A first order logic and set theory with graphical representation.
Its use resulted in two awards for technological achievement: for
the IBM CICS project and for a specification of the IEEE standard
for floating-point arithmetic.

3

38

4. IMPROVED SOFTWARE QUALITY

The goal of cleanroom methodology is achieving higher quality
rates. A traditional project may experience five errors per
thousand lines of code (KLOC) in function testing for example.
Considering the first execution and unit testing, it may increase to
25 errors/KLOC. Table 1 [10] shows faults discovered during
unit testing for the delivered code based on different formal
methods design types. Using this table, Hatton reports that the
faults discovered during unit testing occur more often in
informally designed modules.

Table 1. Faults discovered during unit testing

 FSM VDM VDM/CCS Total
formal

Informal

Number of
faults
discovered

43 184 11 238 487

Number of
modules
with this
deign type

77 352 83 512 692

Number of
faults
normalized
by the
number of
modules

0.56 0.52 0.13 0.46 0.70

Table 2 [10] compares the failure rate of projects that used formal
methods and those that did not use formal methods.

Table 2. Failure rates reported in literature

Source Language Failure
per
KLOC

Formal
methods
used?

Siemens operating system Assembly 6-15 No
NAG scientific libraries Fortran 3.00 No
CDIS air-traffic-control
support

C 0.81 Yes

Lloyd’s language parser C 1.40 Yes
IBM Cleanroom
development

Various 3.40 Partly

IBM normal development Various 30.0 No
Satellite planning study Fortran 6-16 No
Unisys communication
software

Ada 2-9 No

Others have proposed joint use of formal methods and rapid
prototyping [11]. In software systems with combined Cleanroom
and formal methods, the correctness is increased through formal
specification, design, and verification. All errors are accounted for
from the first execution on, with no private debugging allowed.

Errors left behind by the Cleanroom correctness verification tend
to be simple mistakes easily found and fixed by statistical testing,
not deep design errors.

Based on the above results, we conclude that formal design,
combined with Cleanroom, can yield highly reliable code.

5. COST BENEFIT

The biggest payoff from the use of formal methods occurs in the
early life cycle stages, given that errors become more expensive
to correct as they proceed undetected through later development
stages. Early detection leads to lower life cycle costs. In
traditional software systems, the test phase and later maintenance
are also very expensive and many expensive resources
(developers) are needed to fix the bugs. Often tests must be
repeated to check the correctness of programs. These products are
not as reliable as when formal methods have been used.

One additional factor in reducing the cost is reusability. Like the
software development itself, formal methods can benefit greatly
from reusing assets. The abstract specifications and general
theories can be reused on the other parts of the same project or in
entirely different projects. This is especially true when
mechanized forms of formal methods are employed.

On the other hand, there are some overhead costs regarding the
training of staff to provide specifications, and to use formal
methods tools. This cost will be covered later in the project by
eliminating most of the test phase, and by using the knowledge of
the staff for other projects.

6. CONCLUSIONS

Cleanroom in software is the methodology that prevents defects
from happening rather than removing them after they’ve
happened. The main focus of this methodology is on incremental
development. It uses box structures to verify the correctness of
properties for each increment against the specification for that
increment.

A new enhancement to Cleanroom methodology has been
proposed which focuses on the specification phase. Formal
Methods are the techniques suggested to be used at the
specification phase to write all the user’s requirements in a logical
and mathematical language. The benefits of having formal
specifications are:

• Unambiguous language in comparison to natural
language.

• Logic is able to define statements that consider all
possible input values. This is significantly better than unit
tests, which are usually able to test just a small subset of
input data.

• Design choices can be formally verified before any
implementation.

4

39

• Correctness verification can be done automatically
through theorem provers and model checkers [4].

• Changes in software specifications can be handled more
easily.

Quality improvement and cost reduction are two other benefits of
using formal methods in Cleanroom methodology. The
experiments in industrial projects have been used to show how the
number of errors decreased when formal methods were used. A
low failure rate results in higher reliability and quality. The cost
will be reduced as well, because the unit testing has been
eliminated and error correction in early phases is easier and
cheaper than in later development stages.

Further research is needed to discover the role of other factors
such as team size or CMM level. A formal implementation of our
ideas could also provide more precise results.

7. REFERENCES

[1] Bowen, J. The Industrial Take-up of Formal Methods in
Safety-Critical and Other Areas: A Perspective, In J.C.P.
Woodcock and P.G. Larsen, editors, Proceedings of FME'93:
Industrial Strength Formal Methods, LNCS 670. Springer-Verlag,
1993.

[2] Deck, M. An Introduction to Cleanroom Software Engineering
for Managers, Cleanroom Software Engineering Inc., Boulder,
CO, USA, 1995.

[3] Hutter, D., Schairer, A. Towards an Evolutionary Formal
Software Development, Proceedings of 16th Annual International

Conference on Automated Software Engineering, Nov. 2001, pp.
417 –420.

[4] Kemp, K. Formal Methods Specification and Verification
Guidebook for Software and Computer Systems, Volume I:
Planning and Technology Insertion, NASA, 1998.

[5] Linger, R.C., Hevner, A.R. Achieving software quality
through Cleanroom software engineering, Proceedings of the
Twenty-Sixth Hawaii International Conference on System
Sciences, Volume: IV, 5-8 Jan. 1993, pp. 740 -748.

[6] Mills, H.D., Dyer, M. and Linger, R.C. Cleanroom Software
Engineering, IEEE Software, September 1987.

[7] Neumann, P.G. Risks to the public in computers and related
systems, ACM SIGSOFT Software Engineering Notes, Volume
28, Issue 3, (May 2003), pp. 5-9.

[8] Oshana, R. Quality Software via a Cleanroom Methodology.
Embedded Systems Programming Magazine, Sept. 1996, pp. 36-
52.

[9] Palshikar, G.K. Applying formal specifications to real-world
software development, IEEE Software, Volume: 18, issue: 6,
Nov.-Dec. 2001, pp. 89-974.

[10] Pfleeger, S.L., Hatton, L. Investigating the Influence of
Formal Methods, IEEE Computer, Volume: 30 Issue: 2, Feb.
1997, pp. 33 -43.

[11] Quemada, J. Formal Description Techniques and Software
Engineering: Some Reflections after 2 Decades of Research,
Proceedings of FORTE 2004, LNCS 3235. 2004, pp. 33-42.

5

