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1 Introduction

Parallel functional programming has a relatively long

history. Burge was one of the �rst to suggest the basic

technique of evaluating function arguments in parallel,

with the possibility of functions absorbing unevaluated

arguments and perhaps also exploiting speculative eval-

uation [22]. Berkling also considered the application of

functional languages to parallel processing [17].

Due to the absence of side-e�ects in a purely functional

program, it is relatively easy to partition programs so

that sub-programs can be executed in parallel: any

computation which is needed to produce the result of

the programmay be run as a separate task. There may,

however, be implicit control- and data- dependencies

between parallel tasks, which will limit parallelism to

a greater or lesser extent.

Higher-order functions (functions which act on func-

tions) can also introduce program-speci�c control struc-

tures, which may be exploited by suitable parallel im-

plementations, such as those for algorithmic skeletons

(Section 3.2).

Here is a classic divide-and-conquer program, a variant

on the naive Fibonacci program. Since the two recur-

sive calls to nfib are independent, they can each be

executed in parallel. If this is done naively, then the

number of tasks created is the same as the result of

the program. This is an exponentially large number

(O(2n)).

nfib n = if n <= 1 then 1

else 1 + nfib(n-1) + nfib(n-2)

�Supported by a SOED Research Fellowship from the Royal

Society of Edinburgh and the UK EPSRC Parade project.

1.1 Determinism

The semantics of a purely functional program de�ne

the result of that program for a �xed set of inputs.

It follows that functional programs are deterministic

in the following useful sense: any program which runs

sequentially will deliver the same result when run in

parallel with an identical input. Apart from possible

resource starvation the parallel program will also ter-

minate under exactly the same conditions. This level

of determinacy is useful in several respects:

� Programs can be debugged to remove algorithmic

bugs without needing a parallel machine. Since

programming environments are generally better

on sequential machines, and there are usually fewer

time limitations on their use, this can be an im-

portant pragmatic concern. Performance prob-

lems must still be detected by actual (or perhaps

simulated) parallel execution.

� The result of the program is independent of dy-

namic task scheduling, except in terms of mem-

ory exhaustion. Thus tasks can be executed in

any desired order, with locking provided by the

normal execution model.

� Deadlock is impossible, except in conditions where

the sequential program would also fail to termi-

nate due to cyclic dependencies [107].

There are some programs (e.g. branch-and-bound searches)

where nondeterministic results are required. It is be-

yond the scope of this paper to consider nondetermin-

ism in detail, but Section 5.1 contains some pointers to

the literature.
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Figure 1: An ALICE Board

1.2 Strictness

There are two broad classes of functional language:

strict languages, where all the arguments to a func-

tion are evaluated before the function itself is evaluated

(e.g. Hope [25], OPAL [38])1, and non-strict languages,

where arguments are evaluated only if they are needed

(e.g. Haskell [67], pH [92], Id [91]). There are also

hybrids, where simple arguments such as integers are

evaluated before the function itself, but where complex

arguments such as lists and other recursive data struc-

tures are not (e.g. Hope+ [100]).

Non-strict languages may be implemented using either

a demand-driven or a data-driven approach. The lat-

ter is normally termed data
ow. Data
ow implemen-

tations are discussed in Section 5.2. With demand-

driven languages, arguments are computed as required

by the function. If the result of the argument is re-

computed each time it is needed, this is call-by-name;

conversely, if the result is shared this is call-by-need.

Call-by-need is typically implemented using graph re-

duction. Non-strict languages have the advantage that

only expressions which must be evaluated to give the

program result actually are evaluated. It is thus pos-

sible to manipulate notionally in�nite data structures.

Their principal disadvantage is that, in general, it is

necessary to

Strictness Analysis

Although all needed expressions can be executed in par-

allel, statically determining which expressions are ac-

tually needed can be di�cult in a non-strict language.

1These are \pure" functional languages. SML and Lisp are

examples of \impure" but strict functional languages.

Since exactly one redex is chosen at each step in a call-

by-need reduction, it may at �rst seem that there is no

opportunity for parallel execution [76]. However, this

ignores the fact that call-by-need is really just a means

for implementing non-strict reduction.

A function f is strict in its argument if, according to

the language semantics, f ? = ?, where ? is the sym-

bol representing the unde�ned value. Since the result

of the function will be unde�ned if any argument in

which it is strict is also unde�ned, it is safe to execute

the body of the function in parallel with any strict ar-

guments. Non-terminating computations are treated

as being semantically equivalent to ?. So in the de�-

nition of nfib above, nfib n = if n <= 1 then ...,

because n is used in the condition, nfib is clearly strict

in this argument.

1.3 Outline of this Paper

The structure of this paper is as follows. Section 2

is a brief historical overview. Section 3 considers the

main ways in which parallelism can be exploited in

functional languages. Section 4 considers implemen-

tation issues, including load management, communi-

cation, speculation and memory management. Sec-

tion 5 considers related research into concurrency, non-

determinism, data
ow programming, functional-logic

programming, term-graph rewriting and parallel exe-

cution of impure functional languages. Section 6 con-

siders future research directions. Finally, Section 7 sug-

gests some possibilities for further reading.
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Figure 2: A GRIP board on the test rack

2 A Brief History

Not surprisingly, the history of parallel functional pro-

gramming implementation is closely intertwined with

developments in sequential compiler technology. Many

early implementations were interpretive to a greater or

lesser degree. As interest in abstract machines, such as

G-machine derivatives, peaked around 1989 so special-

purpose parallel abstract machines were also designed

(e.g. Tuki [32], PAM [82]). In the absence of cheap

and e�ective parallel hardware, many implementations

such as ZAPP were simulated [28] long before they were

realised in hardware [87].

2.1 Novel Architectures

Backus' famous paper [11] kindled much interest in

functional languages as a means of breaking the von-

Neumann bottleneck between processors and memory,

which he perceived to be a limiting factor in the design

of new computer architectures. Indeed, for some time,

it was believed that novel architectures were necessary

to achieve high performance with functional languages,

and this led to a spate of designs for special-purpose

machines, many of which were parallel designs. Sec-

tion 5.2 describes

Reduction Machines

The �rst and most famous physical reduction machine

was ALICE (Applicative Language Idealised Comput-

ing Engine), designed by Darlington and Reeve at Im-

perial College in 1981 [36] and built over a period of

several years. The eventual aim was to build ALICE in

VLSI, but in the event the only ALICEs actually built

used stock components.

The prototype ALICE comprised 40 Transputer-based

processing agents and packet pools, connected by a

multi-stage switching network (Figure 1 shows an AL-

ICE board). Overtaken by developments in sequen-

tial compiler technology such as supercombinators [69,

72], and by improvements in conventional hardware de-

sign, the absolute performance of this machine was ul-

timately disappointing [56]. This may be partly ex-

plained by the interpretive nature of much of the proto-

type software, but the use of many small packets prob-

ably also degraded performance to some extent.

Many valuable lessons were learned from the design of
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this machine, and these have been applied to more re-

cent architectures such as the ICL Flagship [124, 122,

40] and EDS/Goldrush designs [121] (now emerging

as a commercial, though no longer purely functional,

product). These machines have been designed to ad-

dress a wide variety of pragmatic usability issues, such

as the provision of multi-user computing and fault tol-

erance, which are of less importance in a basic research

setting.

The novel graph reducer GRIP (Graph Reduction in

Parallel) [102, 101] is built from a network of distributed

conventional processors. It has a two-level bus struc-

ture, and incorporates fast packet-switching hardware

for message routing, and intelligent memory units for

e�cient operations on globally shared graph and spark/task

pools. Because it uses microcoded CPUs for the intelli-

gent memory units and PALs for the packet-switching

hardware, the GRIP machine has proved extremely


exible. Since its inception it has undergone a trans-

formation from a parallel abstract machine interpreter

to a machine running compiled Haskell directly. Figure

2 shows a GRIP board being tested on the GRIP test

rig.

Several other early machine designs were parallel com-

binator implementations. Examples of these are COB-

WEB [55], Burroughs' NORMA [106], and SKIM [119].

Most of these were built in some form, but were quickly

overtaken by the widespread adoption of supercom-

binators before they could deliver signi�cant results.

Other interesting machine designs which have failed to

come to fruition were Redi
ow [74], COBWEB-2 [5],

and Mag�o's FFP machine [83].

Most recent implementations have used conventional

hardware. There have, however, been several recent

proposals for novel implementations: Star:Dust sug-

gests adding special communication and task control

instructions to an otherwise unremarkable RISC pro-

cessor [97]; BWM is a VLIW machine to execute func-

tional programs [9]; and G-Line also exploits horizontal

parallelism within supercombinator reductions [89].

2.2 Stack, Packet or Environment?

For a long time, there was a sharp division between

packet-based and stack-based implementations. In packet-

based designs, function arguments and workspace are

allocated as part of a closure, whereas stack-based de-

signs use a per-task stack to hold these values. Figure

3 shows the di�erence between these representations.

Packet-based implementations allow easier task distri-

bution and migration since a packet contains all the

information needed to execute it. Compared with us-

ing a stack, however, this at the cost of losing locality

and perhaps increasing overall communication latency

(through the need to fetch work incrementally). In con-

trast, in a stack-based system, if a task is exported then

the entire contents of the stack must also be exported

with it. Examples of packet-based systems are Au-

gustsson and Johnsson's h�;Gi-machine [10], and King-

don, Lester and Burn's HDG-machine [78]. Modern

parallel implementations are often stack-based (e.g. the

Parallel ABC Machine [94], GRIP [102]). In addition

to the advantages quoted above, this has the practical

bene�t that it is possible to build on advances in se-

quential compilation technology rather than pursuing

an independent development route.

The other main sequential implementation technique

popular in the past, which was based on shared en-

vironments has some obvious problems for distributed

parallel implementations. It has thus never been seri-

ously adopted by parallel implementors.

3 Exploiting Parallelism

There are myriad possible ways to exploit the paral-

lelism present in a functional program. Most systems

have selected a set of these, and it is therefore di�cult

to isolate the e�ect of a single technique on overall per-

formance, even when concrete performance results are

available.

There are two basic strategies for deciding how to par-

tition a program. With implicit partitioning, the com-

pilation system decides which tasks should be created;

with explicit partitioning, however, the programmer is

left with the problem of determining which expressions

should be created as tasks. In either case, the parti-

tion could be static, in which case the number of tasks

which will be created at runtime is predetermined, or

dynamic, in which case tasks are created depending on

factors such as the overall runtime load, or load control

annotations. Tasks may be placed on the processor cre-

ating the task, on the processor owning the data which

the task requires, or on some other processor. Task

placement may also be explicit or implicit, static or

dynamic.

It is, of course, vitally important to choose tasks of

an appropriate granularity (or duration) for the tar-

get machine. The best partition for a given machine

will be one which maximises the available parallelism,

up to the number of processors available, while min-

imising the parallel overhead. Coarse-grained tasks are

desirable in order to minimise task creation overheads.

However, excessively coarse granularity can lead to in-

creased idle time if too few tasks are created, and can

also introduce high task migration overheads, if the

load is imperfectly distributed (Section 4.1).
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Figure 3: Argument Passing Conventions

3.1 Implicit Parallelism

Due to strictness e�ects, implicit parallelism takes a

di�erent form in strict and non-strict languages. It is

almost embarassingly easy to partition a program writ-

ten in a strict language. Unfortunately, the partition

that results often yields a large number of very �ne-

grained tasks.

In non-strict languages, implicit parallelism is normally

obtained from needed expressions, which are detected

by strictness analysis. However, neededness is undecid-

able in general, and strictness analysis has so far failed

to deal e�ectively with realistic parallel programs.

Serial Combinators

Serial combinators express fairly low-level control in-

formation as pseudo-functions in a functional language

[65]. They are not intended for direct use by program-

mers, but are intended to be inserted by an automati-

cally partitioning compiler.

For example, the nfib function can be written (in a

slightly sanitised syntax) as

nfib n =

(demand n

(spawn ((n1 (nfib (n-1)))

(n2 (nfib (n-2))))

(wait (n1 n2)

(n1+n2+1))))

The Alfalfa project implemented serial combinators for

the Intel iPSC [44]. Unfortunately, the communication

overheads on this machine were extremely high, and

this interacted badly with programs which needed to

share data such as divide-and-conquer matrix multi-

plication [45]. Buckwheat re-implemented this model

for the Encore Multimax, a shared-memory multipro-

cessor. Performance results were much more encourag-

ing for this machine, with good relative speedup being

achieved for all test programs including matrix multi-

plication [45].

3.2 Explicit Parallelism

In the absence of good implicit techniques for distributed

machines, most implementations have resorted to some

degree of explicit control. These range from the GRIP

approach which simply annotates potentially parallel

expressions, to the detailed partitioning and placement

possible in Caliban [75].

Annotations

Annotations for parallelismhave been proposed by many

authors. One of the �rst and simplest is Burton's @P
to indicate parallel function application [30]. More

complicated annotations to control the precise degree

of evaluation through strictness annotations were pro-

posed for Hope+ on Flagship [77]. This can be seen as

being akin to an explicit version of Burn's work on eval-

uation transformers to exploit strictness information

[24, 23]. The most complete example of a annotation-

based language is perhaps Concurrent Clean, which has

annotations to control graph copying and sharing as

well as task placement and scheduling [1].

Hudak introduced the term para-functional program-

ming for functional languages with annotations that

preserve the functional semantics [68]. For example,

exp $on left($self) could execute exp on the pro-

cessor to the left of the current one. A later paper

re�ned these ideas by introducing schedules of events

which include explicit demands and process creation/terminat-

ion, plus sequential and parallel compositions as well as

task mappings to particular processors [64].
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Control Languages

Caliban expands on this idea by providing a separate

functional language whose entire purpose is to specify

task placement. A program comprises a process part

and a wiring part. Normal functions may include a

moreover clause which speci�es how named expressions

are connected. The connection is implicit, through

function application and may be captured through higher-

order functions (which act as wiring templates). The

wiring system must be resolved entirely statically: Cal-

iban includes heuristics to prevent excessive resource

consumption by cyclic speci�cations. For example, the

following function de�nes a pipeline. The @ syntax is

used to create an anonymous process which applies the

function it labels (this is called 2 in [75]). arc indicates

a wiring connection between two processes. chain cre-

ates a chain of wiring connections between elements of

a list. The result of the pipeline function for a con-

crete list of functions and some argument is thus the

composition of all the functions in turn to the initial

value. Moreover, each function application is created

as a separate process.

pipeline fs x = result

where result = (foldr (.) id fs) x

moreover (chain arc (map (@) fs))

/\ (arc @(last fs) x)

/\ (arc @(head fs) result)

There has not yet been much practical experience with

Caliban. An implementation has been produced for the

Meiko transputing surface [33], but no concrete perfor-

mance results have yet been published. A practical

study into the use of Caliban to program an implemen-

tation of the Gamma model of parallel execution (see

Section 5.3) gave disappointing results under simula-

tion [57] giving a speedup of only 30%. On the pos-

itive side, it did prove straightforward to express the

required process network in Caliban.

Commutative Monads

Monads have proved popular in encapsulating state

problems in sequential functional programming [120].

The idea is derived from category theory, and allows

type-based control of certain kinds of state.

Because monads are generally used to program state,

their implementations are usually deliberately single-

threaded. This is not necessary, however. If the monad

is commutative, then the operations captured within it

can be computed in parallel. This has been exploited to

produce a parallel type inference algorithm [50], and to

formulate a general framework for parallelism [73]. In

the latter system, for some monad Par, with operations

unit :: a -> Par a

bind :: Par a -> (a -> Par b) -> Par b

fork :: Par a -> Par b -> Par (a,b)

Par is commutative if the following two de�nitions of

fork are equivalent.

fork1 p q = p `bind` \ x -> q `bind` \ y ->

unit (x,y)

fork2 p q = q `bind` \ y -> p `bind` \ x ->

unit (x,y)

It is simple to reformulate nfib in terms of these oper-

ations

nfib n :: Par Int

nfib n = (nfib (n-1) `fork`

nfib (n-2)) `bind` \ (n1,n2) ->

unit(n1+n2+1)

Unfortunately, the type of nfib now precludes its use in

non-monadic functions without some special trickery.

Algorithmic Skeletons

Algorithmic skeletons were so named by Cole [31]. The

idea, which pre-dates the name, is to capture patterns

of parallel computation, such as divide-and-conquer or

pipelining, in higher-order functions. These parallelism

templates can then be instantiated by the programmer

to suit a particular algorithm. The approach has the

advantage of restricting parallelism to a small, easily

isolated part of the program (the skeletons themselves,

plus the places where they are used). Ideally, the same

skeleton can be used for di�erent architectures: it is

necessary only to change the implementation of the

skeleton in order to change the program's behaviour,

the program itself is unchanged, both textually and se-

mantically.

For example, a divide-and-conquer skeleton divConmight

be de�ned by:

divCon :: (Prob -> Bool) ->

(Prob -> [Prob]) ->

([Soln] -> Soln) ->

(Prob -> Soln) ->

(Prob -> Soln)

divCon divisible split join f prob =

if divisible prob then

join (parmap f (split prob))

else

f prob

The divisible argument determines whether the prob-

lem of type Prob can be subdivided. If so, then the the

problem prob is split into a list of subproblems each of
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type Prob; the worker function f (whose argument is a

Prob and whose result is a Soln) is applied to each sub-

problem; and �nally the list of solutions each of type

Soln is combined into a single solution of type Soln

using join. For example, nfib could be skeletonised

as:

type Prob = Int; type Soln = Int

nfib n = divCon div split join nf n

where div n = n > 1

split n = [n-1,n-2]

join [r1,r2] = 1 + r1 + r2

nf n = if n > 1 then nfib n

else 1

Skeletons are not a universal panacea: one problem is

that the set of skeletons required to express all possible

parallel programs is large, and perhaps even in�nite.

Thus, no implementation based on a �xed set of skele-

tons can hope to be completely general. It remains to

be seen whether adequate sets of skeletons can be found

to suit most common parallel programming paradigms

[105]. A secondary problem is that good partitioning

and scheduling may require architecture speci�c infor-

mation, and perhaps di�erent skeletons.

The skeleton approach is seductive, however, and un-

like some of the other approaches mentioned here, work

has continued at several sites. Implementations are

now starting to appear [35, 21], though performance

has often been problematic. While skeletons are gener-

ally seen as a static technique, there is no real reason

why dynamic skeletons could not be employed to obtain

good partitioning, providing suitable hints to a good

runtime control system. Indeed the well-known ZAPP

[28] and serial combinator [65] approaches can be seen

as early examples of this. ZAPP has since achieved

good results for divide-and-conquer parallelism on net-

works of transputers [46, 87].

3.3 Data Parallelism

The techniques which have been described so far at-

tempt to exploit parallelism in control structures. Sev-

eral researchers have tried the alternative approach of

exploiting data parallelism, which arises where common

operations can be applied to all elements of a large data

structure in parallel.

A simple example is a parallel map function, which ap-

plies some function to each element of a list in parallel

to produce a result of the same length as its argument.

For instance, the function findImpacts is part of a sim-

ple ray tracer. Given a set of rays and a scene which

those rays may intersect, it returns a list representing

the �rst point at which each ray impacts an object in

that scene.

findImpacts :: [Ray] -> Scene -> [Impact]

findImpacts rays scene =

parmap (earliestImpact scene) rays

The e�ect is to create one task for each ray. Since

these tasks are identical they can be easily executed on

a SIMD machine.

Typically, in real data parallel programs, more complex

functions such as the families of fold and scan functions

are applied to large data structures. These functions

then control how arguments are communicated to the

tasks, and how results are collected. For example, a

rightmost scan operation for lists could be de�ned by,

scanl :: (a->b->a) -> a -> [b] -> [a]

scanl f a xs =

[foldl f a (take i xs)

| i <- [0..length xs-1]]

These ideas also arise in imperative languages, of course,

such as Connection-Machine Lisp [118]. However, func-

tional languages have the advantage of richer data struc-

tures and the ability for the programmer to create new

data parallel operators using higher-order functions.

Clearly there is a connection between data-parallelism

and the skeleton approach: the right skeleton can be

used to introduce data parallelism. Some recent ap-

proaches to exploiting data parallelism in functional

language are POD comprehensions, which aim to com-

bine data parallelism with lazy evaluation [60], bidirec-

tional fold and scan [96], and the data parallel language

NESL, which provides a mechanism for nesting paral-

lelism [19, 20].

4 Implementation

This section surveys issues which arise in the implemen-

tation of parallel functional languages: load manage-

ment, communication, memory management and spec-

ulation.

Many of these issues arise in all parallel implementa-

tions, but there are often more options for automat-

ically controlling the parallel execution of functional

languages. This is, in fact, one of their perceived ad-

vantages over imperative techniques.

4.1 Dynamic Load Management

It is useful to distinguish between load balancing, which

aims to maintain an even workload across the machine

by suitable task distribution, and more general load

management which also aims to control which tasks are

created. Good load management often includes some

load balancing, but this can be a secondary consider-

ation. Because it is often expensive to migrate tasks



4 IMPLEMENTATION 8

between processors in a distributed memory machine,

it may in fact be preferable to accept an uneven load

in order to minimise overall execution time. Load bal-

ancing techniques are most e�ective on shared-memory

machines.

In spite of Eager et al's result, which states that for an

ideal shared-memory architecture no schedule is more

than a factor of 2 worse than the best schedule for a

program [39], it is known that scheduling can be ex-

tremely poor in the worst-case [27], and this is borne

out in practice [54]. Techniques such as local task pool

scheduling can have a signi�cant e�ect on granularity

and overall performance [52]. Hofman's thesis [61] is

a good source for further reading on scheduling and

granularity issues.

The term spark is used here to denote a node which

has been marked for potential parallel execution. This

is distinct from the task which actually evaluates the

node to produce its result, not least because the spark

has only a minimal state attached and thus imposes

much lower memory overheads than a task. The term

future is often used in parallel Lisp implementations

with much the same meaning.

Throttling

The Manchester data
ow machine [47] introduced the

idea of throttling: controlling the rate at which tasks

are created by changing the scheduling strategy [108].

In this machine, tasks are symmetric and �ne-grained.

There is a single task pool, the token store, and no real

distinction between sparks and tasks.

Given a de�nition of nfib similar to the one de�ned

earlier (and noting that the data
ow machine is data-

driven and strict),

nfib n = if n <= 1 then 1

else 1 + nfib(n-1) + nfib(n-2)

each time this function is executed, two new tasks are

created. The parent task is suspended until both chil-

dren complete execution and notify it with their values.

It then sums their results and adds one before notifying

its own parent.

If the task pool is represented by a FIFO queue, then

the e�ect is to create an explosion of suspended tasks

(O(2n)). If however, a LIFO stack is used, then the

e�ect is more like sequential evaluation, and only O(n)

tasks will be created. This avoids 
ooding the to-

ken store with suspended tasks but, on the data
ow

machine, is not e�ective for programs involving loops.

Ruggiero and Sargeant therefore implemented a mixed

strategy, which changes between FIFO and LIFO schedul-

ing on the basis of system load [108]. In low load situ-

ations, FIFO scheduling is used to stimulate task cre-

ation. In high load situations, LIFO scheduling is used

to prevent the creation of excess tasks. In a (demand-

driven) functional setting, this strategy works well for

divide-and-conquer parallelism [111].

4.1.1 Hysteresis

In an attempt to prevent rapid changes between the

two scheduling strategies, which can prove disruptive a

form of hysteresis was implemented. Rather than using

a single load-based threshold, two thresholds are pro-

vided: high H and low L. When the workload rises

above the high threshold, LIFO scheduling is used.

Conversely, when the workload drops below the low

threshold, FIFO scheduling is used. If H > L then

there is a range of settings s, L <= s <= H, where

the strategy used depends on the one that was previ-

ously being used. So if LIFO scheduling is in force,

and the workload drops below H, but not below L,

LIFO scheduling will remain in force. If however, FIFO

scheduling is in force, and the workload rises above L,

but not H then FIFO scheduling will remain in force.

Unfortunately, hysteresis was not found to be partic-

ularly e�ective for the programs which were studied.

In practice, it proved quite tricky to set the hysteresis

parameters and to �nd settings which were universally

good [54].

Task Creation

Careful task creation can also have a highly bene�cial

e�ect on scheduling, since super
uous tasks can be ab-

sorbed into their parents. This has the e�ect of increas-

ing task granularity depending on system workload.

The simplest technique is load-based inlining. A deci-

sion as to whether to create a task is made immediately

a node is sparked, based on the processor's understand-

ing of the current system load. If the load is below some

threshold, then the task is created, otherwise the spark

is discarded. Several researchers have studied this tech-

nique ([90, 97]) and it has proved reasonably e�ective

on simple programs. Its principal disadvantages arise

from the fact that decisions concerning task creation

must be taken at the time a node is sparked. This has

three negative e�ects:

� A signi�cant amount of memory may be needed

to maintain the workspace for the newly created

task (for stacks etc.); consequently only a few

tasks can be maintained.

� A signi�cant overhead is incurred if the tasks cre-

ated are �ne-grained, whether they are exported

or retained locally.

� There is a strong probability of discarding signif-

icant parallelism.
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Two similar approaches which attempt to overcome

these problems are evaluate-and-die [101] and lazy task

creation [90].

With lazy task creation, sparks are maintained in a

local pool. Sparks are exported on demand to idle

processors. If a spark is not exported, then it is ab-

sorbed into its parent when the parent task returns to

the spark point.

The evaluate-and-die technique improves on this by

taking advantage of graph reduction. If a sparked node

is needed (not speculative), then it must be attached to

the parent computation. When the parent task needs

the child's value, one of three situations may apply.

1. The spark has been exported and evaluated by

another task: the parent obtains the child's value

as normal.

2. The spark has not been exported: the parent

evaluates the node as if it had not been sparked

and discards the spark.

3. The child node has been exported and is still be-

ing evaluated in another task: the parent sus-

pends until the child has been evaluated and its

value updated.

It is only necessary to synchronise tasks in the third

case.

A re�nement on this is to defer updates for remote

nodes until the value of the node is demanded. This

helps reduce communication, especially if (as is often

the case) the node is not shared. As a further re-

�nement, because any non-speculative spark must be

contained within the parent computation, it is safe to

discard any spark if desired, at the cost of reduced par-

allelism.

The e�ect of these schemes is to combine LIFO and

FIFO scheduling, as with the Flagship model [111]. If

the least recently created sparks are exported, then ex-

ported tasks are e�ectively generated in LIFO order.

These tasks are the ones which are most likely to gener-

ate further parallelism in a divide-and-conquer setting,

and are also likely to have the greatest granularity if

the process tree is well balanced. The most recently

created sparks

An alternative scheme for increasing granularity is based

on the rate at which tasks have previously been created

[3].

Task Export

There are two basic techniques for exporting tasks when

they are created: they can be distributed to remote pro-

cessors on the basis of load information, or as a result

of annotations; or they can be stolen by idle processors

as needed. The former runs the risk of distributing

work where it is not needed. The latter may increase

the latency before tasks are created remotely (because

they are exported only on demand rather than being

exported eagerly).

Because tasks are relatively large entities, it is normally

best to export sparks, which can then be turned into

tasks by the recipient processor. This both optimises

the use of the communications system and reduces the

overhead on the exporting processor.

4.2 Simulated Annealing

The above are all dynamic techniques. Sargeant has

studied the granularity which can be obtained with

strict, but still purely functional languages using feed-

back from sample executions to drive the compilation

process [112]. Sarkar's work on automatic partitioning

for Sisal took a similar approach [113].

4.3 Communication Issues

One of the advantages of using pure functional lan-

guages is that communication can be handled implic-

itly, through demands on shared data structures. This

basic mechanism can allow data to be exported with a

newly created task, and results to be communicated to

the parent task. Implicit communication helps avoid

deadlock, and considerably simpli�es the programming

task.

Blocking

When a task needs the value of a graph node which is

being evaluated by another processor, it has two basic

choices:

� It can re-evaluate the node locally.

� It can block until the node has been evaluated

remotely.

Re-evaluation has the disadvantage of increasing the

overall workload (which thus reduces potential paral-

lelism), and perhaps of losing sharing (and so intro-

ducing a space leak). In the absence of information

concerning the cost of evaluation and the size of the

result, this is probably undesirable. If, however, the

cost of re-evaluating the node is low, and the cost of

communicating the result is relatively high it may be

sensible to do this. As a corollary, this implies that a

naive implementation of full laziness [69], where nodes

are shared whenever possible regardless of evaluation

cost, can be positively harmful in a parallel environ-

ment.
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Figure 4: Blocking in GRIP

If a task blocks, then it is suspended until the shared

node has been evaluated, and the fact that it is blocked

is recorded in the processor which is evaluating the

node. When the node is updated with its result, the up-

dating processor noti�es any blocked tasks. These may

then be resumed. In some systems, it is possible to set

up a noti�cation on a shared node without becoming

blocked. This allows the task to perform further work

if possible, such as evaluating the remaining strict ar-

guments to a function, and so helps reduce idle time at

the cost of complicating the blocking mechanism and

code generation.

Figure 4 shows the sequence of blocking on GRIP,where

communication occurs through independent Intelligent

Memory Units (IMUs), which collectively hold the glob-

ally shared program graph.

4.4 Speculation

When the system workload is low, it is tempting to

be able to create speculative tasks which may later be-

come useful, and so contribute to the overall execution.

Several major issues must be addressed before a spec-

ulative implementation can be produced.

� Either a priority or a fair scheduling algorithm

must be implemented in order to ensure that pro-

gram termination is not a�ected due to execut-

ing speculative tasks at the expense of mandatory

ones.

� Speculative evaluation runs the risk of memory

exhaustion, both directly through stack and other

memoryusage, and through creating results which

are connected to mandatory tasks, but which are
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not yet required.

� It must be possible to upgrade a speculative task

if a mandatory task needs its result, and to kill

a speculative task if its result can no longer be

reached.

An early scheme to manage speculative evaluation in a

distributed system was suggested by Hudak [63]. Un-

fortunately, this scheme seems both complicated and

costly, and has apparently never been implemented.

Partridge has simulated a similar scheme for shared-

memory machines. His results are promising for some

applications, but remain to be veri�ed on real machines

[99].

Mattson has implemented a speculative scheme for the

STG-machine on a 64-processor shared-memory But-

ter
y [85]. Speculative tasks create revertible \grey

holes" (in analogy to the \black holes" created by manda-

tory tasks, which indicate that the node is under evalu-

ation). If a speculative task demands the value of a grey

hole node, it suspends until that value is computed. If

a mandatory task demands the value of a grey hole,

this becomes a black hole, and the speculative task

is temporarily upgraded to mandatory status. Initial

results were somewhat disappointing, but perhaps re-


ected problems with the implementation rather than

the idea. Mattson and Griswold have also investigated

local speculative evaluation on GRIP [86].

Several authors have proposed fairly simple systems,

where speculative tasks are restricted by being given

a limited amount of \fuel", but are otherwise treated

as mandatory tasks [58, 126]. The advantages are that

special schedulers are not required, and that it is rela-

tively easy to kill such tasks. However, memory recla-

mation is still di�cult. It remains to be seen whether,

and how well, this strategy performs in practice.

Speculative evaluation is applicable to both strict and

non-strict languages, since even strict languages have

some non-strict constructs (function bodies or condi-

tionals, for example). Because more parallel tasks are

likely to be created in a strict environment, there may

be fewer opportunities to exploit speculation in a strict

language, however.

4.5 Memory Management

Initially, much e�ort was expended in devising compli-

cated schemes to ensure that garbage collection could

proceed in parallel, perhaps using some variant of weighted

reference counting [18]. One of the most elaborate of

these schemes, which is capable of detecting cycles in

distributed graphs was devised by Lester [81]. There

is some doubt that such schemes are practical for dis-

tributed memory architectures, however, communica-

tion costs seem generally too high for practical imple-

mentation.

The current practice in GRIP is to use two levels of

garbage collection [102]. This allows frequent garbage

collections locally to each processor, with infrequent

collections of the entire program. More sophisticated

schemes do not seem worthwhile.

Other garbage collection schemes are those devised by

Watson and Watson [123], Augusteijn [8], Hudak and

Keller [66] and Hughes [70].

5 Related Areas

5.1 Concurrency/Nondeterminism

Concurrent programs di�er in kind from those men-

tioned earlier. The purpose of concurrency is to al-

low the construction of programs comprising multiple

communicating processes, without particular regard to

execution on parallel hardware. Communication is gen-

erally explicit, either through channels or shared vari-

ables, and deadlock is entirely possible. In order to

eliminate the possibility of deadlock in some circum-

stances, a fair scheduler is needed. Applications where

concurrency arises naturally include operating systems,

user interfaces, and distributed systems such as bank

auto-tellers. In these settings, concurrent processes are

often written independently, and linked through prede-

�ned communication protocols or interfaces.

Generally, concurrent programs are nondeterministic in

their execution order, and may also have nondetermin-

istic results (exceptions are [62, 2] but note that these

approaches can be used nondeterministically, and are

only deterministic if systems are carefully designed).

Many authors have considered how nondeterminism can

be provided in functional languages without destroying

their basic properties. One approach is based on the

use of oracles which can be consulted to give a de�nitive

value of an expression for one execution of a program

[26]. Other approaches have been based on data struc-

tures such as sets which can be executed in parallel

with one result chosen to represent the set [71], or bags

with nondeterministic access functions [84]. ?[29].

5.2 Data
ow

Data
ow or single-assignment languages may have ei-

ther strict or non-strict semantics. They are imple-

mented by evaluating all the arguments to functions

before evaluating the application. A non-strict seman-

tics is obtained if all redexes are evaluated in parallel

and no redex has its evaluation delayed inde�nitely.

For example, in Id [91] any redex not in the body of a

conditional or lambda-abstraction will be reduced.
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There has been much successful work on data-
ow pro-

gramming. Results obtained from the Sisal language

[88], in particular, rival those for Parallel Fortran on nu-

meric problems. Data
ow programs typically produce

much �ne-grained parallelism, which must be managed

carefully to avoid memory exhaustion [34]. There have

been attempts to increase granularity by combining in-

structions into larger basic blocks, but the result is still

relatively �ne-grained [114].

Data
ow Machines

The �rst successful data
owmachine was built at Manch-

ester [48, 47]. This demonstrated good relative speedup

for several small applications, and provided much basic

data on task scheduling. The prototype machine with

12 Function Units ran data
ow programs at about 25%

of the speed of a VAX 11/780 running C [47]. The

substantially similar tagged token data
ow architec-

ture (TTDA) designed at MIT [6] was never realised

in hardware, but a much revised design was eventu-

ally built in the shape of Monsoon [98]. Another early

data
owmachine was the Japanese SIGMA-1 [127], de-

signed for scienti�c computations. Work on data
ow

architectures has now ceased at Manchester, but is still

being pursued at MIT in the P-RISC [7] and *T [93] de-

signs, which are both derived from conventional RISC

machines.

5.3 Term-Graph Rewriting

Term-graph rewriting [13] is a practical technique de-

rived from theoretical term rewriting. Where term

rewriting assumes (computationally expensive) syntac-

tic equality, term-graph rewriting relies instead on iden-

tity through shared graph nodes. This is theoretically

equivalent to working with labelled terms. Parallel

computation is easily achieved by choosing a reduc-

tion strategy whose e�ect is to create a pool of possible

redexes for parallel execution (this strategy is often pre-

determined, but is sometimes explicitly programmed).

Term-graph rewrite systems are exempli�ed by approaches

such as the DACTL parallel intermediate language [43,

51] or Lean [14]. The Clean language, which has roots

in graph-rewriting but which is orthogonal and uses a

�xed reduction strategy, is essentially a functional lan-

guage.

The books by van Eekelen, Plasmeijer and Sleep [103,

117] are good sources for further reading on graph rewrit-

ing.

The Gamma model, whose intuition involves creating

\chemical reactions" by nondeterministically matching

\reagents" from a bag (or multiset) of computations

[12] seems to have some aspects in common with term

rewrite languages, as do functional-logic languages (e.g.

[]), which attempt to combine the higher-order nature

of functional languages with the non-deterministic, �rst-

order predicate logic nature of logic languages.

5.4 Impure Features

There is insu�cient space here to rehearse the argu-

ments over the precise nature of purely functional lan-

guages. However, it is clear that features such as as-

signment, general exceptions (as opposed to error val-

ues), and side-e�ecting I/O will have a detrimental

e�ect on parallel execution. The techniques adopted

for languages such as Lisp, Scheme and ML are thus

much more closely related to those for imperative lan-

guages such as Fortran or C, than those discussed here.

In particular, most implementations of these languages

are concurrent rather than parallel, in the senses these

terms are used here.

6 Future Directions

Parallel functional programming has come a long way

since its inception. Absolute performance is still a ma-

jor issue, but modern sequential implementations are

starting to eliminate the gap with imperative languages

and this can be exploited by derivative parallel imple-

mentations. For example, for the Pseudoknot bench-

mark, several functional language compilers can pro-

duce code whose performance is close to that obtained

with the GNU C compiler for sequential machines [41].

This section discusses some other current trends and

presents some challenges for future parallel functional

language implementations which have not been raised

in previous sections.

6.1 Architecture

Despite the relative success of novel machines such as

GRIP, it seems likely that most future parallel func-

tional implementations will exploit conventional hard-

ware. It is easier (and cheaper) to buy an up-to-date

general-purpose machine than to design and maintain

a one-o� prototype. It is also easier to share and com-

pare results. The only recent exceptions to this trend

are projects such as the *T data
ow machine which is

supported by Motorola [93]. It is still worth research-

ing the architectural implications of parallel functional

programming, however, since this may in
uence main-

stream architectural research, especially where the de-

signs are not limited to functional languages.

At �rst sight, shared-memory implementations seem

to present fewer implementation problems than dis-

tributed memory implementations, since locality is less

of an issue. It is, however, increasingly necessary to
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exploit cache or local memory locality. Compared with

their imperative cousins, functional languages have the

advantage of signi�cantly reducing cache coherency prob-

lems. It should be possible to exploit this to minimise

the costs of using coherency hardware in a shared mem-

ory (or virtual shared-memory) machine. Bennett has

performed some simulations which may prove useful

here [16].

6.2 Implicit Parallelism

The early goal of cheap implicit parallelism still remains

elusive for distributed memory machines. Experience

suggests that if a program is written completely with-

out thought of parallelism then it will almost certainly

be di�cult or even impossible to produce a parallel ver-

sion without substantial algorithmic changes.

In spite of the best e�orts of many good researchers,

strictness analysis is still some way from being usable

as a practical technique for parallelismdetection in gen-

eral non-strict languages. The problems are manifold:

a really e�ective analyser needs to handle higher-order

functions, polymorphismand arbitrary data structures.

In addition, in order to cope with real programs, it must

be fast enough that it can be used repeatedly, and it

must cope with separate compilation. This is a tall or-

der, though there are indications that progress is being

made [116].

Even so, strictness analysis is just the start. Perfect

strictness information is not su�cient by itself to achieve

a perfect parallel partition. Since most strict expres-

sions will be small and cheap to compute, information

is also needed about both the size and cost of individual

expressions (a granularity analysis [125]) if even a good

dynamic system is to be able to make good schedul-

ing decisions. A perfect cost analysis, as proposed by

some authors, is not needed; a fast, reasonably accu-

rate analysis is likely to be as e�ective. A good analysis

will also need sharing analysis in order to correctly ap-

portion costs to sub-expressions in a lazy environment.

Granularity information can also be used to control the

extent to which data structures are communicated or

recomputed.

6.3 Distributed Systems

Throughout the world there are many loosely-coupled

networks of relatively unused, relatively high-performance

workstations. It is not a new idea to attempt to exploit

these resources, but a functional language could be

the ideal \glue" to knit together distributed machines.

Concurrent Clean [95] and the Glasgow GRAPH for

PVM [49] are examples of how this could develop.

6.4 Data Structures

Although some work has been done on distributing

data structures such as arrays [79], this is still a far

from solved problem. One big issue is that e�cient

sequential access to large data structures, for example

using linear types or a state monad, usually involves im-

posing single-threaded access { a disaster in a parallel

environment. Good data placement is also important

for applications such as parallel databases [4].

6.5 Performance Prediction

Predicting the performance of even sequential func-

tional programs is still something of a black art. De-

tailed performance results are the best way of seeing

how a program has behaved in practice, but do not

always allow future performance to be predicted.

Runciman and Wakeling's quasi-parallel performance

\pro�ler" [109] simulates an idealised parallel execu-

tion on the basis of a sequential run. The information

produced can be informative, but needs to be regarded

with some circumspection. In its present form, the pro-

�ler fails to consider communication and task creation

overheads or any sophisticated form of scheduling, and

is incapable of dealing with speculative evaluation. It

is also somewhat unrealistic in assuming that each su-

percombinator reduction is equally expensive, but this

is a common problem with simulation.

6.6 Applications

Functional languages are surprisingly general. The pri-

mary applications base is, of course, symbolic, and

good examples of such applications are the Lolita natu-

ral language recogniser, designed at Durham, or many

of the parallel demonstrators produced as part of the

FLARE project [110]. Data
ow languages such as Sisal

show, however, that properly-designed languages can

also succeed at fast parallel scienti�c computations.

One application area that is especially likely to re-

pay further study is that of parallel functional data-

bases. For some time, functional languages have been

known to be good for constructing parallel read-only

queries, as shown by, for example, the AGNA system

[59], but the presence of implicit control dependencies

managed by the underlying implementation rather than

an explicit lock manager also makes them good for gen-

eral transactions involving updates [4]. The PARADE

project at Glasgow is actively working on these and

other related issues.
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7 Further Reading

Parallel functional programming is a broad area, which

this paper has barely begun to cover. Roe's thesis con-

tains a useful introduction up to 1991 with examples of

di�erent styles of parallelism [107]. Schreiner's anno-

tated bibliography is highly useful, and relatively com-

plete, with over 400 entries [115]. Ben-Dyke has edited

a timeline for parallel functional programming, which

was consulted heavily when writing this paper [15].
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