
Deriving the fast Fourier algorithm by calculationGeraint JonesProgramming Research Group11 Keble RoadOxford OX1 3QDAbstractThis paper reports an explanation of an intricate algorithm in the terms ofa potentially mechanisable rigorous-development method. It uses notationsand techniques of Sheeran [1] and Bird and Meertens [2, 3]. We have claimedthat these techniques are applicable to digital signal processing circuits, andhave previously applied them to regular array circuits [4, 5, 6].This paper shows that they can deal with an apparently very di�erentand more complex algorithm: the fast Fourier transform. Similar papers tothis one [7, 8, 9] perform most of the same calculations, but experiment withdi�erent ways of expressing the algorithms and their development.Twenty-�ve years ago Cooley and Tukey rediscovered an optimising technique usu-ally attributed to Gauss, who used it in hand calculation. They applied the tech-nique to the discrete Fourier transform, reducing an apparently O(n2) problem tothe almost instantly ubiquitous O(n log n) `fast Fourier transform' [10]. The fastFourier transform is not of course a di�erent transform, but a fast implementationof the discrete transform.Its greatest virtue lies in that it can be executed in O(log n) time on O(n)processors in a uniform way { it lends itself to a low-latency high-throughputpipelined hardware implementation. Indeed, a footnote to the Cooley{Tukey paperrecords that a hardware implementation was underway as the paper was published,speci�cally that a component for evaluating a four-point transform had been `de-signed by R. E. Miller and S. Winograd of the IBM Watson Research Centre'.The unfortunate disadvantage of the fast algorithm is that although the fun-damental idea is simple, the detail of its e�cient implementation is very hard tounderstand. That e�ciency depends on intricate permutations which rearrangedata to maximise the sharing of work done in calculating intermediate results.Presentations of the algorithm abound in mysterious artefacts like the reversal ofbits in subscripts [11], and the translation of parts of subscripts from time spaceto frequency space [12]. More recent descriptions of implementations seem to glossover the problem, either referring the reader back to older presentations [13], orapparently assuming that the algorithm { because it is well known { must be wellunderstood [14].This paper reports some success in describing the derivation of the the Cooley{Tukey fast Fourier algorithm from the speci�cation of the discrete Fourier transform.



A functional programming notation was used to express the discrete transform,and the fast algorithm has been calculated from it by equational reasoning. Thecalculation has been carried out in some detail as part of the feasibility study for amechanical circuit-designer's assistant. The style of the calculation is such that webelieve that the process of deriving a reasonable layout of an implementing circuitfrom our �nal program would also be mechanisable.The discrete Fourier transformThe discrete Fourier transform is de�ned in terms of the arithmetic on an integraldomain. You can think of arithmetic on complex numbers, for a de�nite example,although there are applications where �nite �elds or vector spaces over integraldomains are appropriate. The derivation depends only on the algebraic propertiesof the arithmetic, not on the underlying arithmetic itself, so everything said hereabout the algorithm will be true for �nite �elds and vector spaces as well.The discrete Fourier transform of a vector x of length n is a vector y of the samelength for which yj = Xk:06k<n !j�k � xkwhere ! is a principal n-th root of unity. (In the example of complex numbers, youcan think of ! = e2�i=n.) The result, y, is sometimes called the `frequency spectrum'of the sample x.Even if the powers of ! are pre-calculated, it would appear that O(n2) multi-plications are required to evaluate the whole of y for any x. The fast algorithmavoids many of these by making use of the fact that !n = 1. The discovery madeby Cooley and Tukey was that if n is composite, the calculation can be divided intowhat amounts to a number of smaller Fourier transforms. Suppose n = p� q, thenby a change of variablesypa+b = Xc:06c<p Xd:06d<q !(pa+b)(qc+d)xqc+d= Xc:06c<p Xd:06d<q(!pq)ac(!p)ad(!q)bc!bdxqc+d= Xd:06d<q(!p)ad!bd Xc:06c<p(!q)bcxqc+dSince !q is a p-th root of unity, and !p is a q-th root of unity, it is not surprisingthat the above calculation leads to an implementation in which p-sized and q-sizedtransforms appear. It is harder, however, to see what that implementation mightbe. A notation for describing circuitsTo simplify calculation with algorithms, we write and work with expressions whichrepresent not data values, but functions. This requires a variety of operators forcombining functions { algorithms, or circuits, depending on whether you think we



are designing programs or hardware { rather than the more usual operators whichact on data.The basic operation on circuits is composition, f � g de�ned by (f � g)x = f(gx),which you can think of as connecting the output of g to the input of f . We havepreviously [7] tried explaining this development in terms of `reverse composition',f ; g = g � f , which is easier to read left-to-right as an operational description, butwhich �ts less well with our other notational conventions.All our data are organised in �nite lists { or vectors { and many of the operatorsin this paper describe the way that a function operating on a signal is manipulatedto make a function which operates on a list of signals. In this way we avoid havingto manipulate subscript expressions or individual components of the vectors. Forexample, f � x read `f map x', is de�ned by (f � x)i = fxi and represents thereplication of the circuit f so that each instance can be connected to one of each ofthe signal sources in the list x. We write f�, or sometimes (f�) for the replicatedcircuits { the function that takes the list x as input and returns the list f � x.Similarly, f � � means (f�)� which is a circuit that expects a list of lists of signals {a column of rows, say { and applies f� to each row, which is to say that it appliesf to each element of each row. Very occasionally we will be driven to write (�) forthe function which when applied to f returns f�, that is (�)f = f�.One of the more useful properties of map is that it distributes over composition:(f � g)� = f� � g� irrespective of the particular functions f and g. Moreover, if fand g commute, that is if f � g = g � f , then f� � g� = (f � g)� = (g � f)� = g� � f� sof� and g� commute, and so do f �� and g ��, and so on. All our calculations are ofessentially this form, and rely on a rich collection of laws none of them signi�cantlymore complex than these.The concatenation of lists, x ++ y is the list consisting of the elements of xfollowed by those of y. (All our lists are of �nite length.) A function like f� is calleda homomorphism of lists because f � (x++ y) = (f � x) ++ (f � y). Homomorphismsare clearly ideal candidates for parallel implementation.Reduction is a generalisation of the way that the P operator applies additionto a list of values. We write � = x, read `the � reduce of x', for the value ofx0 � x1 � x2 � . . . but only when � is associative so that it does not matter inwhat order the � operations are applied. (We follow a convention of Bird andMeertens that the symbols �, 
 and so on are not speci�c operators but are usuallyoperator variables, just as f , g and so on are function variables, and x, y and soon are data variables.) Flatten, ++=, is the operation which joins a list of lists tomake a single list, and the generalisation of the homomorphism property of mapis that f� � ++= = ++= � f � �. In the case of the usual arithmetic operations +and �, for which n� (x+ y) = (n� x) + (n� y), it is similarly the case thatn� � += = += � n � �. This is called the distribution of � over +, so we will alsosay that � distributes over ++.For any operation �, its reduction can be divided over ++ because � = (x++ y) =(� = x) � (� = y), and more generally �= �++= = �= � � = �. That means that youcan reduce a list of lists either by concatenating the rows and reducing the whole,or by reducing each of the rows and then reducing the list of results. The equality�= � ++= = �= � � = � therefore captures the essence of the associativity of the �operation.



If x and y are lists of the same length x �� y, read as `x zip-with-� y', is thepoint-by-point operation de�ned by (x�� y)i = xi � yi. This is another replicationoperation like map, which produces an operation that has a naturally parallelimplementation. An example is �+ which is the usual point-by-point additionof vectors. Some notation speci�c to this algorithmIn the course of the calculation of the fast Fourier algorithm, we identi�ed a numberof useful operations which may not be familiar to the users of the Bird{Meertenscalculus. Much of the work of the development is encapsulated in the algebra ofthese operations.The transposition of lists of lists is here written I, de�ned by (Ix)ij = xji. (Youcan calculate many of its properties from Bird's and Meertens' observation thatI = �++= � 1 c
 � � where 1 c
 x is the list of length one whose only element is x.)Throughout the theory underlying this paper, lists of lists have to be `rectangular'with every sublist having the same length. In that case it follows from the de�nitionsthat for any binary �, ��= = � = � �I. That is, if given a column of rows, you can�� the rows together column by column by transposing the rows and columns, andthen �-ing along each of the rows. Consider now�+= � n� � � = f transposition rule for �+= g+=� �I � n� � �= fmap acts pointwise, so I � f � � = f � � �I g+=� � n� � � �I= fmap distributes over composition g(+= � n� �)� �I= fmultiplication distributes over addition g(n� �+=)� �I= fmap distributes over composition gn� � �+=� �I= f transposition rule for �+= gn� � ��+=so showing that n � �, which is the multiplication of vectors by the scalar n,distributes over �+, which is the point-by-point addition of vectors. The calculationshows that this is a consequence of the distribution property of scalar addition andmultiplication.Transposition is useful in capturing other properties of operations. For example,if as well as being associative � is a commutative operation { that is if x�y = y�x{ you can choose to �-reduce an array of values either by rows and then columns,or by columns and then rows, that is �= ���= = �= � � = � �I = �= � � = �. Thisequality captures the essence of the commutativity of �. (Bird describes operatorsfor which �= � �
= = 
= � � = � by saying that � abides with 
, so commutativeoperators are ones which abide with themselves.)



Some of the properties of the � operation are shared by operators that havepreviously usually been used to explain the skewing of data in time [15, 16]. Thetriangle operation is de�ned by (f M x)i = f ixi where f i represents i repeatedapplications of f , and the block operation (f 2x)i = f# xxi where #x is the lengthof x. We will call �, M, and 2 pointwise operations.If � and 
 are any two pointwise operators, and if f and g are two functions thatcommute { that is, if f �g = g �f { then so do f� and g
 { that is, f��g
 = g
�f�{ and by repeated application of this same theorem, so do any pair of terms likef M � M � and f 2 M M �. Again, if f and g commute and � is pointwise, then(f � g)� = f� � g� and so on, which is reminiscent of the distribution of � overcomposition. If � and 
 are pointwise operations, f �
 �I = I � f 
�, which isa general form of an earlier observation that f � � �I = I � f � �.Of course, not all the properties of � are shared by pointwise operations, and itis possible to relax some of the preconditions of these results if it is known that oneof the pointwise operators is map. Given functions which do not quite commute,say f � g = g �h, then for any pointwise � operation f� � g� = g� �h� even if f 6= h.To construct constant lists n c
 x, read `n copies of x', is a list of length n,each element of which is x. Although it is an apparently unusual operation, it hasproperties which are familiar-looking when cast in algebraic terms, for (m+ n) c
x =(m c
 x)++(n c
 x) and n c
 (x� y) = (n c
 x)�� (n c
 y). For any f it is clearly thecase that n c
 � f = f� � n c
 because if you want n copies of the output of a circuit,you can just as easily fan out the output of one instance of the circuit or fan out theinput to a number of copies of the circuit. Although you might expect only to usethis equation to optimise by replacing the right-hand side by the left, it can also beused left to right so as to increase the amount of parallelism, perhaps in the hopethat the f� term can be combined with some later processing to achieve a globalsimpli�cation.Because transposition is e�ectively an interleaving operation, it interacts quiteregularly with the copying operator. Copying a list and interleaving the copies isthe same as making individual copies of the elements of the list, I � n c
 = n c
 �,and replicating the rows of a transposed list of lists is related to replicating theentire list by n c
 � �I = I �n c
 �I = I �I� �n c
. Other interactions between theseoperations can be calculated from these and from earlier equations.Calculating with functions of speci�c typesThe width (or period) of a Fourier transform is of course a part of the calculation.It transpires that in reasoning about the algorithm, say F , it is necessary to beable to refer this width, which is of course the length of the argument, x. However,the argument does not normally appear in the calculations, which deal with Frather than with Fx which is the value of the output. There are two apparentalternative techniques for dealing with this. One possibility which suggests itself isto handle the width information as a part of the type of the expression, and performa parallel calculation of the type alongside the manipulation of the algorithm-valuedexpression.The other possibility { explored in reference [7] { is to code the type, wherenecessary, by introducing functions which are the identities on just that type. This



technique makes the type-calculation uniform with the algorithm-calculation, andis probably the right approach to use in implementing mechanical tools to supportthe calculation. On the other hand, it makes the formulae appear rather strange,and leads to some unnatural manipulations.Most exponents of this sort of calculation tend to be rather vague about details oftype, for example writing the name of a polymorphic function in a calculation evenwhen the calculation is valid only for particular instances. Their calculations areusually supported by an informal natural-language commentary about the restric-tions. In this paper, the presentation is a compromise between these approaches: wewrite type-restrictions in the function-expressions, but will not be quite as carefulwith the type restrictions as with the values. To do this is simply to cast a cloak ofnotational formality over the informality of a running commentary.If f is a function which takes arguments of type � and if � is a subtype of �,the function f � � is that which agrees with f but is applicable only to values in �,and to all values in �. Similarly, if f returns values of �0 and if � 0 is a subtype of�0, the function � 0 � f is the largest which agrees with f but returns values in � 0.(Small letters from early in the Greek alphabet are type variables in this paper.)Occasionally f � g is written even when the domain of f is strictly smaller thanthe range of values returned by g, intending by that to indicate a restriction of g.The cost of this otherwise harmless convention is that even if g is a bijection, it isnot necessarily the case that f = (f � g) � g�1. On the other hand, it is always thecase that (f � �) � g = (f � �) � (� � g) = f � (� � g). Moreover, restriction associateswith composition, (f �g)�� = f �(g��) and �� (f �g) = (��f) �g, so all the bracketscan be left out, and if you prefer you can read the restrictions as compositions withidentity functions.The types that need to be named in this calculation are all the types of zerothorder objects: values of the integral domain over which the arithmetic is de�ned,lists of these, and lists of lists and so on. The type of lists (of any length), eachcomponent of which is of type �, would usually be written ��, making a pun betweenthe list-type constructor and the operation of mapping over lists. The subtype ofthat type containing just lists of length n each component of which is of type �,would similarly be written �n. So, for example, ��;p is the type of p-lists of listsof � values; �q;� is the type of lists of q-lists of � values; and �q;p is the type ofp-lists of q-lists of � values. This last type is the greatest common subtype of thepreceding two, and in general the greatest common subtype { intersection { of twotypes satis�es �x;y \ �p;q = (� \ �)(xtp);(ytq) where � is now also punned with thebottom of the 
at lattice of natural numbers. This gives a way of factoring typerestrictions, for example f � (� \ �) = f � � � �.The calculations in this paper use a number of rules about the interaction be-tween speci�c operations and type restriction, for example that I � �x;y = �y;x �I,that n c
 � � = �n � n c
, and that f2 � �n = fn� � �n, for any proper naturalnumber n. Moreover, if f is homogeneous on �, that is if f � � = � � f , and if � ispointwise, then f� is homogeneous on �� and on each �n.For the most part, in this paper the only part of a type which is relevant iswhether it is a list type, or the number of components in that list. Accordingly weshall usually omit the base type, writing f � �; p for the restriction of f to p-lists oflists; f � q; � for the restriction of f to lists of q-lists; and so on.



Since #(x++ y) = (#x) + (# y), it follows that # � ++= = += �# � and so that++= � n;m = n�m �++= � n;m. Notice that you cannot in general compare theselast two functions with n �m �++= since they are applicable only to lists of lengthm with sublists of length n, whereas n�m � ++= can 
atten any rectangular listof lists with a total length of n �m, and there will be other factorisations of thisproduct unless n and m are equal primes.Casting the algorithm in the notationThe �rst task in a calculation dealing with an algorithm is to cast the speci�cationin the notation that will be used to handle the development. There are two thingswhich we do in this stage.One part appears to be largely a process of eliminating subscripts, since theusual convention is to specify separately each co-ordinate of an output vector.The conventional understanding of a speci�cation of the form yi = . . . is thatthe subscript is universally quanti�ed, so that this one equation formally representsa number of di�erent equations, one for each value of i. To make clear that analgorithm operates uniformly at all co-ordinates of its output we write a singleequation which de�nes the whole list of output values. This means that we need(temporarily) a notation for lists, which we write hi : 0 6 i < n : xii for the list oflength n, the ith element of which is xi.The other part of the translation is to manipulate the speci�cation { whichis usually an expression describing the output of a calculation for a given input{ into the form of an application to that input of an expression representing thealgorithm. The manipulation of the algorithm can then proceed without referenceto the particular input.The discrete Fourier transform was speci�ed byyj = Xk:06k<n !j�k � xkby which was meant that the output y should be de�ned for each j in the range0 6 j < n, so meaning thaty = hj : 0 6 j < n :Xhk : 0 6 k < n : !j�k � xkii= fmeaning of summation, meaning of arithmetic exponentiation ghj : 0 6 j < n : + = hk : 0 6 k < n : (!j)k � xkii= fmeaning of � and associativity of �g+= � hj : 0 6 j < n : hk : 0 6 k < n : ((!�)j)kxkii= fmeaning of M g+= � hj : 0 6 j < n : (!�)j M xi= fdistribution of M over commuting composition, meaning of c
 g+= � hj : 0 6 j < n : ((!�)M)j(n c
 x)ji= fmeaning of the M operator g+= � (((!�)M)M (n c
 x))



= fmeaning of composition g((+=�) � (((!�)M)M) � (n c
))x= f conventions about parentheses g(+=� � !�MM � n c
)xSince ! depends on n, because !n = 1, we will write !� using a new operator & forwhich n & z = ! � z. This operation has the property, which will be useful later,that ((p� q)&)q = (p&).The term +=� �n& MM �n c
 represents the discrete Fourier transform algorithm,but is only applicable to lists of length n, so we will calculate from the de�nitionF � n = +=� � n& MM � n c
 � nDividing large problems into smaller onesSuppose f is an algorithm or circuit for calculating some list-valued function of alist of values. If it is possible to express f in the form ++= � g, then g is an algorithmfor constructing the same result in parts, and may be implementable by a numberof independent parts. For example, (m� n) c
 = ++= �m c
 � n c
 = ++= � n c
 � �m c
describes a divide-and-conquer strategy for fanning out a signal m�n times by �rstmaking m copies, and then independently fanning each of those out n times.Similarly, f � ++= is an algorithm which constructs the same result as f froma partition of the same input into a rectangular list of lists. If it is possible to`simplify' f � ++= into a form which has a parallel implementation, that gives astrategy for dividing the calculation of f . A particularly useful result in the presentcase is that fM �++= = ++= �f 2M �f M � which means that fM can be implementedby a number of (smaller) independent instances of fM and a triangular array of f2components. (Notice that this equality depends the decision to allow lists of listsonly where every sublist has the same length.)In the course of factorising the discrete Fourier transform, this rule is appliedtwice to an instance of an expression of the form f MM.f MM �++= �++= � �= f factorising Mg++= � fM2M � fMM � �++= � �= f factorising M and properties of � and pointwise operators g++= � fM2M �++= � � � (f 2 M � f M �)M �= f again g++= �++= � � � (f 2 M � f M �)2 M � (f 2M � f M �)M �= f commuting pointwise terms g++= �++= � � � f 2 M2 M � f M �2M � f 2MM � � f M �M �This factorisation corresponds to the two changes of variables in the earlier calcu-lation with summations. Notice that all four of the terms in f commute, becauseall of the operators in them are pointwise.



Since the f in question is n&, this is the point to observe that some powers of fare going to be cancellable, speci�cally thatn& 2M2 M � q; �; p; � = n&n �M �M � q; �; p; �= 1& �M �M � q; �; p; �= 1& � � � � � q; �; p; �where 1& is the identity on the type underlying the arithmetic.Dividing the discrete Fourier transformSuppose that n = p � q. The factorisation of the n-point transform proceeds, assuggested above, by simplifying a speci�c instance of F � n � ++=. The particularinstance is chosen { with hindsight, of course { so that a term can be cancelledlater. F � n �++= � q; p= fde�nition g+ = � � n& MM � n c
 � p � q �++= � q; p= f absorbing restriction, factorising c
g+ = � � n& MM �++= � q c
 � p c
 �++= � q; p= fproperties of c
 and � g+ = � � n& MM �++= �++= � � � q c
 � p c
 � q; p= f earlier calculation g+ = � �++= �++= � � �K � q c
 � p c
 � q; pwhere K = n& 2 M2 M � n& M �2M � n& 2MM � � n& M �M �= f f� is a homomorphism g++= �+= � � �++= � � �K � q c
 � p c
 � q; p= f � distributes over composition, + is associative g++= � (+= �+ = �) � � �K � q c
 � p c
 � q; pBut then, because q c
 � p c
 � q; p = q; p; p; q � q c
 � p c
 the instance of K is appliedonly to values of type q; p; p; q.K � q; p; p; q = fhomogeneity of n& and pointwise operations g(p � q)& 2M2M � q; p; p; q � (p � q)& M �2M � q; p; p; q �(p � q)& 2MM � � q; p; p; q � (p � q)& M �M � � q; p; p; q= fproperties of 2 and pointwise operators g(p � q)&p�q �M �M � q; p; p; q � (p� q)&p M � �M � q; p; p; q �(p � q)&q �MM � � q; p; p; q � (p� q)& M �M � � q; p; p; q= fproperties of & g1& �M �M � q; p; p; q � q& M � �M � q; p; p; q �p& �MM � � q; p; p; q � n& M �M � � q; p; p; q= f 1& is cancellable, and commuting terms g�; �; p; q � q& M � �M � n& M �M � � p& �MM � � q; p; �; �



Substituting back into the main calculationF � n �++= � q; p = ++= � (+= �+ = �) � � � �; �; p; q �q& M � �M � n& M �M � � p& �MM � �q; p; �; � � q c
 � p c
 � q; p= ++= � p; q � (+= �+ = �) � � �q& M � �M � n& M �M � � p& �MM � �q c
 � p c
 � q; pThe strategy from this point is to use the equality k c
 � f = f� � k c
, and thedistributivity of & over addition, that is += �k&� = k& �+= to simplify by eliminatingsome of the � operators from the expression. To do this the order of some of theoperators must be changed by composing both sides with a transposition.F � n �++= � q; p �I = ++= � p; q � (+= �+ = �) � � �q& M � �M � n& M �M � � p& �MM � �q c
 � p c
 �I � p; q= f transposing pointwise operations g++= � p; q � (+= �+ = �) � � �I � � �q& �M �M � n& �MM � � p& M �M � �q c
 � p c
 � p; q= f commutativity of + g++= � p; q � (+= �+ = �) � � �q& �M �M � n& �MM � � p& M �M � �q c
 � p c
 � p; q= fdistributivity of & over + g++= � p; q �+= � � � q&M �M � n&MM � �+=� � � � p& M �M � � q c
 � p c
 � p; q= f carrying q c
 across � g++= � p; q �+= � � � q&M �M � q c
 � n& MM �+= � � � p&M �M � p c
 � p; q= f factorising and distributing restriction g++= � p; q �+= � � � q&M �M � q c
 � q; � �n& MM �+= � � � p&M �M � p c
 � p; �There are two occurrences of similar expressions in the right-hand side, di�eringonly in the parameter p or q. Each of these can be shown in the same way to satisfy+= � � � k&M �M � k c
 � k; � = f k c
 � �; � = I � k c
 � g+= � � � k&M �M �I � k c
 � � k; �



= f transposition of pointwise operations gI �+= � � � k&MM � � k c
 � � k; �= f � distributes over composition gI � (+=� � k& MM � k c
 � k) �= fde�nition gI � (F � k)�so showing thatF � n �++= � q; p �I = ++= � p; q �I � (F � q)� � n& MM �I � (F � p)�Now I is its own inverse, and so can be carried over to the other side of the equation.Moreover, ++= � q; p is a bijection onto the set of q � p-lists { which is anyway thedomain of F � (p � q) { and so can be inverted.F � n = ++= � p; q �I � (F � q)� � n& MM �I � (F � p)� �I � (++= � q; p)�1= ++= � p; q �I � (F � q)� � n& MM �I � (F � p)� �I � q; p � (++=)�1Allowing for a slight abuse of notation, the bizarre looking function q; p � (++=)�1is that which takes a list of length n and divides it into p chunks each of length q.The remaining asymmetry in the expression is annoying, but merely super�cial forof course n& MM �I = I � n& MM.The decomposition of F � n can be read { taking terms from right to left { asa divide-and-conquer algorithm for implementing transforms of composite width:divide the input into p chunks of length q; interleave them; apply an array (of q)independent p-point transforms; interleave the results; modify by scaling the hi; ji-th signal by (n&)i�j; apply an array (of p) independent q-point transforms; interleavethe results; and �nally concatenate the q resulting lists, each of which is of lengthp, into a single n-list. This is the algorithm known as the `fast Fourier transform'.It is the contention of this paper that this equation shows much more clearlythan the manipulation of summations that a discrete Fourier transform can be im-plemented by a divide-and-conquer algorithm using a number of smaller transformsof the same kind. TwiddlingLeaving aside the rearrangement of the data, on unwinding the recursive calls ittranspires that all the substantial work performed by the fast Fourier transformalgorithm is in the application of n& MM � p; q.Suppose that � and 
 are operators that cross-associate, in the sense that(x� y)
 z = x� (y 
 z), and that 
 has a left unit �
, then it can easily beshown by induction on k that (x�)k = ((x�)k�
)
. Since each component of ��
is necessarily �
, it follows immediately that x�M = (x�M ��
)�
.Again, since the associativity of �
 follows from that of 
, and since anyassociative operator cross-associates with itself,x�MM = f applying the lemma to � and the inner M g(x�M ��
) �
 M



= f applying the lemma to �
 and the outer M g((x�M ��
) �
 M���
 ) ��
= f inverting the lemma, for � and the inner M g(x�MM ���
 )��
This decomposition gives an algorithm for calculating x�MM by anO(p�q) = O(n)linear-time application of ��
 to the signal and a term which depends only on thesize of the circuit.In the case of the Fourier transform, this term is an array of elements of theunderlying integral domain { frequently referred to mysteriously as the `twiddlefactors' { which can therefore be pre-calculated. The 
 operation corresponding to& is the multiplication on the integral domain, and its left unit is the unit of thedomain, so n& MM � p; q = (n & MM 1)���where 1 is the appropriately-sized (two-dimensional) array of ones. The n & MM 1term is the array of twiddle factors, and they can be applied by about p � qmultipliers arranged according to ��� . To be precise, only (p�1)�(q�1)multiplierscan be needed since p + q � 1 of the twiddle factors are guaranteed to be one.Outline of an implementationThe usual recursive `butter
y' implementation of the fast Fourier transform appliesonly to transforms on vectors of length 2n for some n. This is because it is veryeasy to do two-point transforms: because minus one is the principal square root ofunity, the two-point transform � = F � 2 takes hx0; x1i into hx0 + x1; x0 � x1i andrequires no multiplications.For higher powers of two, it uses the factorisationF � 2n = ++= � 2; n �I � (F � n)� � (2n & MM 1)��� �I � �� �I � n; 2 � (++=)�1The function n; 2 � (++=)�1 divides its input into halves of length n, and ++= � 2; njoins a list of n pairs. The only explicit multiplications in this factorisation are inthe ��� operator, and can be implemented by an array of 2n multiplications onlyn � 1 of which are non-trivial. The factorisation is used recursively on the F � nterm until only two-point transforms remain.The usual way of implementing this algorithm { that is, the usual way of layingout the circuit { is to divide F into two parts: let F = S � F 0 whereF 0 � 2n = ++= � n; 2 � (F 0 � n)� � (2n & MM 1)��� �I � �� �I � n; 2 � (++=)�1(A transposition has been omitted from the left-hand end of the expression, whichexplains the type of the �nal catenation.) Sheeran [17, 18] gives a solution, usuallyknown as a `butter
y' circuit, to the recursionB � 2n = ++= � n; 2 � (B � n)� �I � �� �I � n; 2 � (++=)�1



which is almost the same as that for F 0. The solution need only be adjusted {perhaps using Luk's heterogeneous constructors [19] { to accommodate the twiddlefactors. Alternately, the twiddle factors might be calculated in a pre-pass usinganother co-located butter
y of the same shape as B.Similarly, the solution toS � 2n = ++= � 2; n �I � (S � n)� � n; 2 �++=is a permutation. It is that very thorough shu�e which appears inscrutably inimplementations of the fast transform, and which reverses the bits of the index ofthe position of a value in a vector.It should also be clear from this paper that the butter
y implementation canbe extended to input of any width n, given only implementations of F � p for eachprime p which divides n. This generalization is also suggested by Cooley and Tukey.Estimation of costsThe reason that the `fast' algorithm is so called is that it requires a signi�cantnumber fewer of the basic arithmetic operations. As shown, you can implementn& MM� p; q for a given n by (p� 1)� (q� 1) circuits which multiply by constants,and +=� � p; q by (p � 1) � q adders. Accordingly, the algorithm suggested byF � n = +=� � n& MM � n c
 � nseems to require (n� 1)2 multipliers and n � (n � 1) adders.Suppose the fast algorithm requires at most Mk multipliers and Ak adders toimplement Fk, for k < n, then if n is composite, then for any factorisation into pand qF � n = ++= � p; q �I � (F � q)� � n& MM �I � (F � p)� �I � q; p � (++=)�1gives an algorithm which shows thatMn 6 p �Mq + (p � 1)� (q � 1) + q �MpAn 6 p � Aq + q �ApEach of these gives a bound of O(n log n) on the number of active components.In the speci�c case of the power-of-two sized transform, the number of multipli-cations (discounting mere sign-changes) can be shown to be (n log n)=(2 log 2)�n+1,and the number of additions (or subtractions) is n log n.Transforms over vectorsHaving set up the mechanism, it is worth showing that we can also explain withinthis formalism the sense in which the fast transform is related to transforms onvectors. Let G be the discrete Fourier transform, abstracted on the arithmeticoperations: G(�;
) � n = �=� � n
MM � n c
 � n



A term in the factorisation of a discrete Fourier transform has the formI � (G(�;
) � n)� �I = fde�nition gI � (�=� � n
MM � n c
 � n)� �I= fdistribution of � over composition gI � �= � � � n
MM� � n c
 � � n; � �I= f transposition exchanges pointwise operators g�= � � � n
M �M �I � n c
 � � n; � �I= fproperties of transpose and c
g�= � � � n
M �M � n c
 � n; � �I= fproperties of transpose and c
g�= � � � n
M �M �I� � n c
 � �; n= f transposition exchanges pointwise operators g�= � � �I� � n
 �MM � n c
 � n= f transposition rule for ��= g��=� � (n
 �)MM � n c
 � n= fde�nition gG(��; (�) � (
)) � nbut if n
 is a scaling of a value of some type, then ((�) � (
))n = (�)((
)n) = (n
)�is the corresponding scaling of vectors of that type; and if � is addition of valuesof some type, then �� is addition of vectors of that type.This has related a number of scalar transforms on interleaved samples to atransform on vectors of samples. You can therefore, if you so wish, see the termI � (F � n)� �I in the factorisation of the transform as an n-point vector-valuedtransform operating on a list of n vectors.SummaryA notation has been presented for describing circuits, and a framework for reason-ing about them. This framework was previously known to be able to deal withsimple, regular circuits of the sort that have little wiring in their layout. Havingsuggested that these techniques were suitable for designing digital signal-processingcircuits, it was necessary to show that they could deal with existing signal processingcomponents.The speci�cation of the discrete Fourier transform was translated into the no-tation; and a summary was given of a calculation from that speci�cation of thefast Fourier transform algorithm. The details of the calculation appear in anotherpaper [20], where it is conducted at a level that could be explained to a very simplemechanical proof checker. Reference [7] contains essentially the same summaryof the calculation as is in the present paper, but in a di�erent notation. Thepresentation given here seems to be a little more natural, at least to users of theBird-Meertens formalism.Because all of the reasoning is based on the algebra of the operators, and not onthe speci�c operators or type of data, the calculation is independent of the choice



of that type. Although the calculation might have seemed to be about a circuitthat would transform a constant input vector, earlier work [21] has shown thatthe algebra is unchanged by a systematic re-interpretation of all the operators asones that operate, for example, on time-sequences. (This re-interpretation is knownelsewhere as as `lifting' [22].) It follows that our development of the fast algorithmapplies equally well to a circuit that would operate on a time-sequence of samplevectors.Although the detailed calculation { like any calculation carried out in greatdetail { is di�cult to follow, we contend thatF � (p � q)= ++= � p; q �I � (F � q)� � ((p � q) & MM 1)��� �I � (F � p)� �I � q; p � (++=)�1shows much more clearly than any expression describing the output (rather thanthe circuit) that a discrete Fourier transform can be implemented by a divide-and-conquer strategy which yields a number of smaller transforms of the same kind.The derivation of this equation proved also to be necessary in writing a programto implement the fast Fourier transform: without the equation it would be hardto understand the program; without the derivation it would be hard to believe theequation. The relevant fragment of the program isfft (+/) ($igma) = fwhere f xs = f' xs, if prime (#xs)= f'' xs, otherwisef' = dft (+/) ($igma)f'' xs = ((++/) . (|/|) . (f *) .(((n $igma) /\) /\) .(|/|) . (f *) . (|/|) . (\++)) xswhere n = #xs(\++) = into (factor n)A complete Orwell [23] program demonstrating the execution of this function ap-pears as an appendix to this paper.Performing the detailed derivation of fast Fourier transform from the speci�ca-tion has shown that it is reasonable to expect to be able to perform this derivationusing the sort of machine assistance available for supporting array designs in thesame style. It might also be possible to extend this to mechanical layout of high-wirecircuits like the butter
y implementation of the fast Fourier transform, includingallocation of the correct twiddle factor to the correct multiplier. Although thisnecessarily detailed study of the fast Fourier algorithm has revealed structure whichwas not previously so clear, the principal outcome of the work is to support ourclaim that our functional circuit-design style can indeed deal with another kind ofdigital signal processing circuit.I am grateful to Mary Sheeran, for having spared me the necessity of the other halfof this work; Lambert Meertens, for some unfortunate notational advice which Ihave nevertheless taken to my heart; and to the squiggolists at the ProgrammingResearch Group, for tolerating this calculation in its unruly adolescence.
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> %prefix |/|> (|/|) :: [[a]] -> [[a]]> |/| xss = [ [x] | x <- hd xss ], if #xss = 1> = [ x:xs | (x,xs) <- zip (hd xss, |/| (tl xss)) ], if #xss > 1The operator +/ will be used to stand for a various addition-reductions,and although no value is given here, it needs to be declared to be aprefix operator> %prefix +/List catenation and its inverse~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Catenation of lists, written ++/ in the paper, is implemented by theprimitive concat = foldr (++) [] for speed> %prefix ++/> (++/) :: [[a]] -> [a]> (++/) = concatIt is inverted by two functions, `by' and `into': (by n xs) is used onlyif #xs is divisible by n, and returns a list of lists of length n whichwhen concatenated return xs> by :: num -> [a] -> [[a]]> by n xs = [], if xs = []> = take n xs : by n (drop n xs), if #xs >= nand (into n xs) is used only if #xs is divisible by n, and returns a listof length n of lists which when concatenated return xs> into :: num -> [a] -> [[a]]> into n xs = by (#xs $div n) xsInstances of by and into will be represented by the \++ operator (whichis written as the inverse of ++/ in the paper) here introduced by> %prefix \++Fourier transform~~~~~~~~~~~~~~~~~The Fourier transform of xs is obtained by summing xs_i.w^(i.j); thetransform is implemented by (dft (+/) ($igma)) where (n $igma) is afunction that represents multiplication by the n-th root of unity,and ((+/) xs) represents the sum of the elements of xs.> dft :: ([a] -> a) -> (num -> a -> a) -> ([a] -> [a])> dft (+/) ($igma) xs = (((+/) *) . (((n $igma) /\) /\) . (n $copy)) xs> where n = #xs> (*) = map



and the fast transform is obtained by a divide-and-conquer strategyapplied to composite width vectors, falling back on the use of dft inthe other cases> fft :: ([a] -> a) -> (num -> a -> a) -> ([a] -> [a])> fft (+/) ($igma) = f> where f xs = f' xs, if prime (#xs)> = f'' xs, otherwise> f' = dft (+/) ($igma)> f'' xs = ((++/) . (|/|) . (f *) .> (((n $igma) /\) /\) .> (|/|) . (f *) . (|/|) . (\++)) xs> where n = #xs> (\++) = into (factor n)> (*) = mapHere, the factor of n chosen for division of xs is (factor n) which isthe largest factor of n less than its square root, that is> factor n = (last . divides n . belowroot n) [1..n]> where divides n = filter ((= 0) . (n $mod))> belowroot n = takewhile ((<= n) . sq)> where sq x = x * xand n is prime iff this factor is one.> prime n = factor n = 1(I know it could be made more efficient, but I was writing for clarity!)You might try to replace the term ((|/|) . (f *) . (|/|)), according tothe paper, by (fft (((+/) *) . (|/|)) ((*) . ($igma))), and indeedvft :: ([a] -> a) -> (num -> a -> a) -> ([a] -> [a])vft (+/) ($igma) = fwhere f xs = f' xs, if prime (#xs)= f'' xs, otherwisef' = dft (+/) ($igma)f'' xs = ((++/) . (|/|) . (f *) .(((n $igma) /\) /\) .f''' . (\++)) xswhere n = #xs(\++) = into (factor n)(*) = mapf''' = vft vsum vsigmawhere vsum = ((+/) *) . (|/|)where (*) = mapvsigma = (*) . ($igma)where (*) = map



would work were it not for the fact that the recursive call leads to anill-founded type recursion: the arguments of the recursive call of vftoblige it to have a type([[a]] -> [a]) -> (num -> [a] -> [a]) -> ([[a]] -> [[a]])You can make a definition which uses this algorithm for one factorisationand then falls back on the earlier algorithm:> vft :: ([a] -> a) -> (num -> a -> a) -> ([a] -> [a])> vft (+/) ($igma) = f> where f xs = f' xs, if prime (#xs)> = f'' xs, otherwise> f' = dft (+/) ($igma)> f'' xs = ((++/) . (|/|) . (f *) .> (((n $igma) /\) /\) .> f''' . (\++)) xs> where n = #xs> (\++) = into (factor n)> (*) = map> f''' = fft vsum vsigma> where vsum = ((+/) *) . (|/|)> where (*) = map> vsigma = (*) . ($igma)> where (*) = mapThe large number of bindings of (*) are again an artefact of the typechecking, since the uses have different types.A symbolic example~~~~~~~~~~~~~~~~~~The arithmetic in the example is going to be over formal polynomials ina given root of unity, that root being the smallest one to be used in agiven program. The polynomial -- necessarily of finite degree -- isrepresented by a list of its coefficients, in decreasing order of powerof the root.> poly a == [a]Multiplication of such a polynomial by the given root of unity movesthe coefficient of the highest power of the root to the end of the list-- as the coefficient of unity in the result -- and shifts the othercoefficients left by one place.> shift :: [a] -> [a]> shift (x:xs) = xs ++ [x]If p divides #xs, then (p $sigma xs) represents xs times the p-thprincipal root of unity: this is achieved by shifting the coefficients



by one p-th of their length.> ($igma) :: num -> poly a -> poly a> (p $igma) = (++/) . shift . into pThe sum of two formal polynomial values is the pointwise sum of thecoefficients; since each of these coefficients will be represented by alist of terms, they can just be concatenated to represent addition. Thesum of a list of polynomials can either be implemented by a fold of azipwith, or more conveniently for the present purposes by the equivalent> (+/) :: [poly a] -> poly a> (+/) = ((++/) *) . (|/|) where (*) = mapDemonstration code~~~~~~~~~~~~~~~~~~To demonstrate the symbolic Fourier transform code, it will be exercisedon polynomials, of degree less than n, over lists of integers; thepresence of the number i in the j-th coefficient of a polynomial (indexedof course from the right-hand end) will be taken to represent a formalvariable x_i times the j-th power of w -- a formal n-th root of unity.> index == num> coeff == [index]A vector of length n, of formal polynomials of degree less than n, willbe laid out by translating each of the polynomials into strings andlaying them out one to a line.> showvec :: [poly coeff] -> string> showvec = layn . map showpolyEach polynomial is represented by displaying the terms with non-zero(non-empty) coefficients, and punctuating with `+' signs.> showpoly :: poly coeff -> string> showpoly = stringfold " + " . map showterm . index> where index xs> = [ (x,i) | (x,i) <- zip(reverse xs,[0..]); x ~= []]Each term is represented by the coefficient times `w' to a power.> showterm :: (coeff, num) -> string> showterm (x,i) = showcoeff x, if i = 0> = bracket showcoeff x ++ ".w^" ++ show i, if i > 0> where bracket f x = f x, if #x = 1> = "(" ++ f x ++ ")", if #x > 1Each coefficient is represented as a list of variables punctuated with`+' signs. The call of `sort' arranges that the variables appear in



order of index -- it happens that no variable will appear twice in anycoefficient, but in principle this function could collect themultiplicity of a variable and pass it to `showvar'.> showcoeff :: coeff -> string> showcoeff = stringfold "+" . map showvar . sortEach variable is represented by `x' followed by its index.> showvar :: index -> string> showvar i = "x" ++ show iThe function `stringfold' inserts the representation of an operator inthe places in the representation of an expression corresponding to areduction of that operator.> stringfold :: string -> [string] -> string> stringfold op = foldr1 (infix op)> where infix op l r = l ++ op ++ rThe input to which an n-point transform will be applied is to representa list of n polynomials, the i-th of which represents x_i (as thecoefficient of unity in a formal polynomial of degree n-1).> input :: num -> [poly num]> input n = [ nulls ++ [[i]] | i <- [1..n] ] where nulls = copy (n-1) []Execution of the example code~~~~~~~~~~~~~~~~~~~~~~~~~~~~~For example, the input for an eight-point transform is demonstrated by? (showvec . input) 81) x12) x23) x34) x45) x56) x67) x78) x8The specification applied to this input returns? (showvec . dft (+/) ($igma) . input) 81) x1+x2+x3+x4+x5+x6+x7+x82) x1 + x2.w^1 + x3.w^2 + x4.w^3 + x5.w^4 + x6.w^5 + x7.w^6 + x8.w^73) x1+x5 + (x2+x6).w^2 + (x3+x7).w^4 + (x4+x8).w^64) x1 + x4.w^1 + x7.w^2 + x2.w^3 + x5.w^4 + x8.w^5 + x3.w^6 + x6.w^7



5) x1+x3+x5+x7 + (x2+x4+x6+x8).w^46) x1 + x6.w^1 + x3.w^2 + x8.w^3 + x5.w^4 + x2.w^5 + x7.w^6 + x4.w^77) x1+x5 + (x4+x8).w^2 + (x3+x7).w^4 + (x2+x6).w^68) x1 + x8.w^1 + x7.w^2 + x6.w^3 + x5.w^4 + x4.w^5 + x3.w^6 + x2.w^7as do the similar expressions in fft and vft.For what it is worth, on a Sun3 the costs are approximately:(showvec.dft(+/)($igma).input) 8 66 CPU seconds, 166 000 reductions(showvec.fft(+/)($igma).input) 8 4.8 seconds, 9 600 reductions(showvec.vft(+/)($igma).input) 8 5.0 seconds, 9 400 reductionsNB: these costs will not scale as O(n^2) and O(n.log n) because directimplementation of ((w /\) /\) requires O(n^4) applications of `w'each of which might cost O(n). In a practical implementation itwould be necessary to do something more sensible.


