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Abstract— The total time to execute an application, the energy con-
sumed, and the flexibility to manage a large set of applications are among
the most important performance parameters used to measure the quality
of a computing system. Superior architectures with flexible reconfigurable
arrays lead to innovation beyond the limits of traditional silicon. The in-
corporation of on-chip reconfigurable computing elements generally im-
proves execution time. However, the amount of energy consumed to deliver
the required level of performance is an important consideration, to prolong
the battery life in portable and mobile devices. In this paper, we have pro-
posed and designed a novel scalable array architecture and explored the
performance and energy trade-offs for various applications by scaling var-
ious system parameters like hardware resources, operational granularity,
and voltage supply. The scalable coprocessor design for mapping Discrete
Cosine Transform (DCT) is implemented with 8 taps resulting in an area
of 0.0024��� at ����� technology. The coprocessor to run 16 taps of
convolution function results in an area of 0.0099��

�, while a 256 tap
convolution function is designed at an area cost of 0.1585��

�. When the
MPEG decode application is executed in the proposed architecture, with
the DCT function computed in the scalable coprocessor, the total execu-
tion time is reduced to around 24%, and the energy consumed is reduced
to around 28% of that consumed in the base architecture without a co-
processor. Further, as the coprocessor’s supply voltage is scaled down
from 1.8 to 1.0 volts at ����� technology, the relative total execution time
varied only slightly (from 23.65% to 24.78%), while resulting in consider-
able reduction in the energy consumed (from 28.12% to 23.8%). For the
FIR application, energy consumption reduced up to 36% when hardware
resources are scaled and up to another 12% when voltage is scaled, while
execution time reduced up to 50% when hardware resources are scaled and
increased up to 15% when voltage is scaled. The study also reveals inter-
esting performance patterns for various applications ike CJPEG, MPEG
decode/encode, FIR, and IIR, depending on the their characteristics.

I. INTRODUCTION

To bring adaptability, scalability, and performance effectiveness
to the hardware computing systems in processing a wide range of
applications, one of the recent trends has been to integrate both
spatial reconfigurable compute engines and temporal structures,
like general purpose processor (GPP) elements, into a single chip.
The compute-intensive portion of an application is mapped onto
the spatial compute engine so that the data flows directly from
source to sink, as shown in Figure 1(a). For the remaining portions
of the application that are rarely repetitive and are not compute-
intensive, configuring the reconfigurable hardware for every small
segment of computations becomes a bottleneck, and the reconfig-
urable device may get bogged down. Hence, such portions of code
are preferred to be processed in the temporal structure as shown
in Figure 1(b). In fact, current field programmable gate array
(FPGA) architectures have started embedding one or more RISC
based GPP cores in the reconfigurable fabric.

The portions of the application that are not compute-intensive
are decomposed to the granularity of a typical micro-instruction,
and are processed in the temporal GPP engine. The compute-
intensive portions are decomposed into configurations of a partic-
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Fig. 1. A system-on-chip (SOC) with spatial and temporal elements.

ular granularity, and such configurations are executed in the re-
configurable spatial hardware. Though the total amount of hard-
ware resources placed on chip is fixed, the amount of hardware
resources available for a particular task is not known a priori in a
multitasking environment where the system-on-chip (SOC) is ex-
pected to simultaneously execute multiple processes/threads. The
total application execution time depends on the ability of the sys-
tem to decompose a configuration to a desired granularity in real-
time based on the available amount of hardware and its flexibility
to map such configuration. The smaller the amount of on-chip
reconfigurable hardware that is available, the smaller will be the
configuration granularity. In such case, there will be more config-
urations of the hardware, and so longer execution time. The larger
the configuration size that can be accelerated in hardware, the bet-
ter the overall execution time.

Further, current day processors are required to deliver higher
performance even while keeping the levels of power dissipation at
a minimum, due to the necessity of prolonging the battery life in
mobile and portable devices. Reduction in total energy consump-
tion in processing an application can be achieved if an optimum
combination of computation time and average power consumed is
obtained. The dynamic voltage scaling technique involves a known
fact that reduction in supply voltage to the CMOS circuit will lead
to reduced power consumption, as the power is a quadratic func-
tion of voltage. But then, the delay in the CMOS circuit scales
inversely with voltage thus leading to slower computing frequen-
cies and hence longer execution time. In this paper, we adopt the
technique of dynamic voltage scaling to study the performance and
energy trade-offs in the application-specific architectures that are
proposed, and evaluate an optimum supply voltage value for an
ideal combination of power and computation time to reduce the
overall energy consumed. In the proposed architecture, the volt-
age supply and the frequency of the RISC based main processor
is kept constant, while the supply voltage and hardware resource
availability in the coprocessor is scaled to study the variation in
total energy consumed and the application execution time.

The contributions of the paper are as follows. The paper pro-
poses and designs a novel scalable array architecture, at circuit
and microarchitecture level, to map functions of DCT/IDCT and

Proceedings of the 19th International Conference on VLSI Design (VLSID’06) 
1063-9667/06 $20.00 © 2006 IEEE 



convolution, that are core compute-intensive functions in various
multimedia applications. The paper then implements the scalable
coprocessor design in the processor microarchitecture simulation
tool set and evaluates the variation in total execution time and the
energy consumed with the scaling of hardware resources available
for the application, and the voltage in the coprocessor. The pa-
per brings forth the trade-offs involved in the execution time and
energy based on the characteristics of various multimedia appli-
cations, and lays foundation to devise mechanisms for the com-
puting system to dynamically scale system parameters such as
hardware composition, application operational granularity, volt-
age, frequency, and power based on various factors like hardware
resource availability, software system support, and effects on per-
formance of concurrent applications.

The rest of the paper is organized as follows. Section II dis-
cusses the related work. In Section III, the organization of pro-
posed architecture is discussed, with the microarchitecture design
details of the scalable reconfigurable elements. In Section IV, we
provide an overview of the architecture simulator used to imple-
ment the proposed architecture. Section V presents the study of
trade-offs involved in total execution time and energy consumed
with scaling of hardware resources and voltage in the proposed ar-
chitecture. Section VI concludes the discussion with some insights
into future work.

II. RELATED WORK

The first known attempts to use the memory elements for com-
putation are that of by Kautz [1] and Stone [2]. Subsequently, the
approach of lookup table based computation was accepted, and re-
searchers started to look into building scalable computing systems
using such reconfigurable computing elements. Attention has also
been drawn towards the significance of a reconfigurable coproces-
sor coupled with a GPP [3], [4]. In just over a decade, such de-
signs have proceeded from niche to mainstream [5]. In the ear-
liest models of reconfigurable computing architectures, fine grain
reconfigurable devices, like FPGAs, were connected as a cluster
of computing elements controlled by a GPP. The FPGAs were lo-
cated off chip, thereby making communication between the micro-
processor and the FPGAs a performance bottleneck. Subsequently,
instead of using the FPGAs, the reconfigurable computing commu-
nity preferred to use coarse grain reconfigurable arrays with datap-
ath widths greater than one bit [6]- [21], since the fine-grained ar-
chitectures are much less efficient due to a huge routing area over-
head. Goldstein �� �� [8] proposed Piperench, a pipelined reconfig-
urable fabric architecture to accelerate streaming multimedia ap-
plications. Ye �� �� [9] developed Chimaera, a micro-architecture
that integrates a reconfigurable functional unit (RFU) into the
pipeline of a dynamically scheduled superscalarprocessor. Razdan
�� �� [10] explored ways to incorporate hardware-programmable
resources and described a compilation/synthesis system that au-
tomatically exploits the resources to improve the performance of
general purpose applications. The Garp architecture [11] combines
reconfigurable hardware with a standard MIPS processor on the
same die to exploit the better features of both. Wittig �� �� [12] de-
veloped a processor architecture called OneChip, which combines
a fixed-logic processor core with reconfigurable logic resources.
Using the programmable components, the performance of speed-
critical applications was improved by customizing OneChip’s ex-
ecution units, or flexibility was added to the glue logic interfaces
of embedded applications. Kim �� �� [22] proposed and devel-
oped a reconfigurable functional computing cache that operates as
a conventional cache memory or a specialized computing unit de-
pending on the application requirements.

III. SCALABLE ARRAY ARCHITECTURE

The proposed scalable array architecture is built by incorporat-
ing a coarse grain reconfigurable processing element that is tightly
coupled with a GPP, with minimal area over head. The reconfig-
urable coprocessor consists of a two dimensional array of multi-
bit output lookup tables (LUTs), where a few rows of LUTs can be
formed to process one tap of computation of a specialized function.

The Discrete Cosine Transform (DCT) and convolution algo-
rithms are common compute-intensive functions in signal and im-
age processing applications for pattern recognition, edge detec-
tion, etc. Mapping these two algorithms to a hardware fabric
can substantially improve the execution time of common multime-
dia applications like MPEG decode/encode, CJPEG from UCLA
Mediabench [23], and FIR/IIR from the TMS320C6000 bench-
marks [24]. Image processing applications can be decomposed
such that these compute-intensive functions can be mapped to and
accelerated in a reconfigurable hardware fabric. Further more,
these compute-intensive functions can be decomposed to be imple-
mented as multiple configurations of the multiply-and-accumulate
(MAC) and distributed arithmetic (DA) operations. Figure 2 shows
an LUT array based design that integrates both the convolution
function and the DCT/IDCT function into one circuit. One stage
of convolution, consisting of a multiplier and an adder, is imple-
mented using three rows of LUTs. The first row implements an
8-bit constant coefficient multiplier to generate two 4x8 partial
products. The second row (excluding 16x16 ROM) implements
the addition of the partial products. The third row implements a
24-bit adder to accumulate up to 256 taps of FIR filter. Similarly,
implementation of one tap of DCT/IDCT is realized using a 16x16
ROM and one LUT row (the third LUT row in Figure 2). In both
the functions, the carry select adder scheme is used to implement
a faster addition operation, thus minimizing the propagation delay
for the entire operation. Thus, the routing structure for computa-
tion consists of only the registers, bus lines and 2-to-1 multiplexers
to enable the data flow between rows of LUTs. An application spe-
cific integrated circuit (ASIC) design yields a faster processing of
a function. However, to process multiple functions we then have
to incorporate multiple ASIC cores on the chip leading to ineffi-
cient of silicon real estate. It is noted that, the two functions are
implemented in a single reconfigurable hardware circuit without
additional overhead in the area and the computation delay. Thus,
a reconfigurable coprocessor can be designed to process a class
of multiple functions that have similar characteristics, and it may
also be easy to incorporate the coprocessor tightly coupled with
the main processor and the cache hierarchy.

Further, with such a design it is possible for the system to dy-
namically choose the number of taps a function can be processed in
the hardware depending on various parameters like resource avail-
ability and power consumption. Besides, in a system with ability
to run multiple concurrent applications, it is possible to run multi-
ple applications simultaneously with portions of hardware shared
depending on the applications’ computational needs.

A. Computation Delay and Power Consumption

Dynamic voltage scaling (DVS) [25] is one of the popular tech-
niques that have been employed in microprocessors for significant
reductions in the power consumption. The DVS technique scales
the supply voltage, and consequently the frequency of operation,
thus controlling the overall throughput. We performed an analysis
of variation in the delay and power consumed in one step of DCT
and convolution functions, as the supply voltage is scaled from 1.8
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Fig. 2. Scalable hardware circuit with integration of convolution and DCT/IDCT. Convolution uses all the components except 16x16 ROM.
DCT/IDCT uses a 16x16 ROM and third LUT row.

to 1.0 volts. Static complementary CMOS design was used for the
design using ����� technology, and Cadence tool set was used for
laying out the schematic, and to measure the area, delay and power
dissipation. The variation in the circuit delay and power consumed
in one stage of convolution is shown in Figure 3. It is observed
that when supply voltage is scaled from 1.8 to 1.0 volts, power
consumed in one tap of the convolution function decreases 8.72
times (from 11.6 mW to 1.33 mW) while the delay increases 2.5
times (from 1.1 ns to 2.8 ns). One tap of the convolution function
is measured to occupy a silicon area of 0.000619���. The figure
shows a similar analysis performed to obtain the characteristics for
the DCT/IDCT function. With respect to the voltage scaling, it was
observed that the power consumed in one tap decreases from 4.95
mW to 0.57 mW, while the delay doubles from 0.39 ns to 0.79 ns.
The implementation of one tap takes an area of 0.000308���.

Convolution (FIR): voltage scaling
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Fig. 3. Effects of voltage scaling in circuit for one tap of convolution
and DCT/IDCT functions.

IV. ARCHITECTURE SIMULATOR FOR PROPOSED DESIGN

For simulation purposes, the proposed architecture is imple-
mented by making appropriate modifications in the Simplescalar
tool set [26]. The source code of the simplescalar tool set is mod-
ified to incorporate the coprocessor design and the microarchitec-
ture is modified accordingly to enable the communication between
the main processor and the coprocessor. There are three steps in-
volved in performing a computation in the coprocessor – config-

uration, loading input, and storing output. All these steps require
only one class of instructions, similar to load/store operations in
the base processor. To perform these operations, new instructions
named as ��	
�� instructions are added. The format of the ��	
��
instructions is same as the conventional load/store instructions ex-
cept for the target field. The detailed format of the ��	
�� instruc-
tions is described in our earlier work [27].

With the current instruction format, it can be assumed that four
different functions can be implemented in the coprocessor. How-
ever, depending on the reconfigurability of the coprocessor, this
can be modified. It has to be noted that, as the reconfigurability of
the coprocessor increases to implement many functions, the per-
formance and power consumption degrades due to the increased
interconnection and routing structure density. In this paper, we
have initially designed the coprocessor in two flavors (DCT/IDCT
and convolution) as an LUT based array to process core compute
intensive functions. In the latter portion of the paper, the advantage
of such design comes to see as we integrate both the functions into
one design without much overhead in area and computation delay.
The individual instruction operations are explained briefly in the
next subsection.

A. Mechanism for the computation in coprocessor

In an out-of-order wide-issue processor, any instruction which
does not have a dependency with preceding instructions can be
issued and executed at any time if the required resources are avail-
able. In addition, in a speculative execution, the next instruction
stream in a code sequence can be executed speculatively. The out-
of-order issue and execution may also happen among ��	
�� in-
structions when there is no explicit dependency between ��	
��

instructions. However, the ��	
�� instructions that load input data
to the coprocessor for execution, and the ��	
�� instructions that
store results from computation in coprocessor, must not be issued
and executed until the coprocessor has been configured. A spec-
ulative execution mechanism may issue the ��	
�� instructions in
any order. To avoid this type of exception, a special two-bit copro-
cessor state register is included. The two-bit state information is
organized as follows.

� 00 : non-configuration/end-computation - coprocessor is in
idle mode;
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� 01 : CONF - coprocessor is in configuration mode i.e., the
configuration data is currently being loaded into the copro-
cessor;

� 10 : CONF-DONE - end of configuration of coprocessor,
ready to execute data anytime;

� 11 : EXE - coprocessor is in execution mode
All the ��	
�� instructions must access the coprocessor state

register according to the FID field in the microcode and then check
the current state with its CMD field. If it is an allowed state, the
��	
�� instructions can be issued. Otherwise, the ��	
�� instruc-
tions are stalled until the corresponding state is resolved.

The configuration of coprocessor from a cache module simply
implies loading all the contents of LUTs required to construct a
computing unit. A normal cache read with a small modification
directs specific data into the designated LUT. The required con-
figuration data for the coprocessor resides in a reserved memory
(address) space in main memory. The configuration is loaded
into main memory when the system boots up. The correspond-
ing ��	
�� instruction that starts configuration of the coprocessor
sets the corresponding state register. The subsequent ��	
�� in-
structions load the configuration lines to the coprocessor without
changing its state.

The ��	
�� instructions that send input data to the coprocessor
for execution simply queue the data into an input buffer (IBUF)
dedicated to the coprocessor. The IBUF provides data in-order for
the coprocessor unit. If no slot in IBUF is available, the follow-
ing instructions including conventional instructions fetched from
memory are stalled until IBUF is again available. By queuing the
data from ��	
�� instructions into IBUF in-order, the input data to
be processed is provided to the coprocessor in a correct order. This
is like a reorder buffer mechanism for input data of the coprocessor
unit to remove the impact of out-of-order execution.

A whole function in an application may not be mapped to a co-
processor as a computing unit at one time. For instance, in an FIR
filter, if the number of taps for the filtering coefficients is larger
than the number of physical taps implemented in the coprocessor,
we configure the first set of taps in the coprocessorand then recon-
figure it partially for the next set of coefficients at run-time.

After a computation is completed in the coprocessor, the output
data is queued into an output buffer (OBUF). The OBUF is a sim-
ple FIFO register file since the queued data is already in-order. The
output data in OBUF is stored into memory by the ��	
�� store
instructions. The ��	
�� terminate execution instruction sets the
coprocessor state into the non-configuration/end-execution mode
after finishing an entire computation. This setting is done in com-
mit stage to avoid mis-execution of pending ��	
�� instructions. If
the same computation with the current configuration is performed
in the near future, the coprocessor state is not changed, and the
state register is set to ”10” to be ready for next execution.

V. PERFORMANCE OF SCALABLE ARRAY ARCHITECTURE

To evaluate variations in overall execution time and energy con-
sumption, we implemented a coprocessor with DCT and convolu-
tion functions, in a wide-issue processor pipeline using the Sim-
plescalar tool set [26]. For the main processor, we simulated a 4-
wide out-of-order issue processor with 32 KB L1 I-cache (2-way
1 cycle), 32 KB L1 D-cache (4-way 1 cycle), 256 KB L2 cache
(4-way 6 cycle), 100-cycle memory latency, and with other de-
fault parameters in the tool. The source code of the Simplescalar
tool set is modified to incorporate the coprocessor design, and the
microarchitecture is modified accordingly to enable the communi-
cation between main processor and coprocessor. The performance

of the proposed architecture is assessed based on the number of
cycles it takes to execute each application as compared to a con-
ventional GPP without a coprocessor. This also includes the num-
ber of cycles required to configure the coprocessor. For example,
to configure a coprocessor with 8 taps of DCT/IDCT function, it
takes a total of 256 cycles, since each line in an LUT row can
be configured in one cycle. We ran the simulations for MPEG de-
code/encode, CJPEG, FIR, and IIR applications, for more than one
billion instructions each, in the base architecture. Then the same
portion for each application is run in the proposed architecture.
It is to be noted that, the core function is mapped and computed
in the coprocessor in the proposed architecture, while it is com-
puted in the main processor itself in the base architecture. The
coprocessor design for mapping DCT/IDCT is implemented with
8 taps and requires an area of 0.0024���, 16 taps of convolution
function takes an area of 0.0099���, and 256 taps of convolution
takes an area of 0.1585��� in ����� technology. To estimate the
power dissipated in the proposed architecture, we used architec-
tural power simulator of Wattch [28]. Wattch is a power estimation
model built over the Simplescalar tool. It measures the utilization
of various processor components, and during the simulation feeds
these utilization numbers into a high-level power model to estimate
the energy behavior of the processor. The power measurements
made for the coprocessor designs, as discussed in earlier sections,
are incorporated with the necessary modifications in the tool. It is
to be noted that, for estimating power consumption in the copro-
cessor the number of taps implemented is taken into account.

It is observed that, when the core function is executed in the
reconfigurable coprocessor, the total number of instructions exe-
cuted, the number of load and store instructions and the number of
accesses to L1 data and instruction caches have reduced. From the
estimation of energy consumedfor the application execution, in the
following sections of the paper we show that the effect of power
dissipation overhead due to additional coprocessor on the chip is
offset by the reduced power consumption in the main processor
due to its reduced utilization. In other words, due to a significant
reduction in the overall execution time of the application, it will
result in savings in overall energy consumption.

A. Results and Analysis

The proposed architecture is evaluated for total execution time
and overall energy consumption for an application with the scaling
of hardware resources and supply voltage in the coprocessor. Fig-
ure 4 shows the relative total execution time and the relative over-
all energy consumed for the execution of MPEG decode, MPEG
encode, CJPEG, abd IIR applications. The chart shows the val-
ues relative to those computed in the base processor architecture
without a coprocessor. It can be seen that, when the MPEG de-
code application is executed in the proposed architecture with the
DCT/IDCT function computed in the coprocessor, the total execu-
tion time is around 24% of the time taken to execute the application
in the base processor. Also, the energy consumed is around 27.5%
of that consumed in the base architecture. This large speed-up is
due to the significant acceleration of the DCT/IDCT function in
the coprocessor, and the significant fraction of the core function
in the application. Hence, it is observed that the overall speed-
up is largely proportional to the fraction of the core function, in
the entire application, that is mapped to the coprocessor. Fur-
ther, it can be observed that as the voltage is scaled down from
1.8 to 1.0 volts at ����� technology, the relative total execution
time increases slightly (from 23.65% to 24.78%), while resulting
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Fig. 4. Relative to the base processor, variation of total application execution time and energy consumption for MPEG decode, MPEG
encode, CJPEG, and IIR applications w.r.t supply voltage scaling.

in considerable amount of reduction in the energy consumed (from
28.12% to 23.8%).

When the MPEG encode application is executed in the proposed
architecture with the DCT/IDCT function computed in the copro-
cessor, the total execution time is around 88% of the time taken
to execute the application in the base processor. Also, the energy
consumed is around 88.2% of that consumed in the base architec-
ture. This smaller reduction in execution time is due to the fact
that the MPEG encode application has a small fraction of the core
function to be mapped to the coprocessor, and hence the code that
is computed in the main processor is predominant. For the same
reason, it can be observed from the Figure 4, that as the voltage is
scaled down from 1.8 to 1.0 volts, the relative total execution time
and the overall energy consumed do not change much. For the
CJPEG application, the voltage scaling leads to considerable gain
in overall energy consumed, even while keeping the performance
gain almost the same. The figure also shows the relative execu-
tion time and the energy consumed when the IIR application is
executed in the proposed architecture, with the 16 taps of the con-
volution function designed in the coprocessor. It can be inferred
that, with this application, the voltage scaling does not lead to any
gain in overall energy consumed, though it considerably reduces
the performance gain.

For FIR application with 16 taps of convolution, the voltage
scaling does not lead to any gains in overall energy consumed,
though it reduces the performance gain, as shown in Figure 5. For
FIR application with 256 taps of convolution function, it is ob-
served that as a large number of taps are implemented in the co-
processor (with corresponding increase in area and power), a large
amount of speedup is achieved, with the total application execu-
tion time reduced to around 25%. Also, as the voltage is scaled,
there is a noticeable gain in the energy consumed and a reduction
in the performance gain.

Overall, it can be observed that total energy consumption in ex-
ecuting an application in the proposed architecture is smaller as
compared to that in the base processor. This is mainly due to the
reduced energy consumption in the main processor due to the sig-
nificantly reduced activity in all the on-chip components of the
processor. And, the most important fact is that the reduction in
overall energy consumption is achieved along with a higher per-
formance in executing the multimedia applications.

VI. CONCLUSIONS AND FUTURE WORK

The amount of energy consumed to deliver the required level of
performance is an important consideration, to prolong the battery
life in portable and mobile devices. In this paper, we proposed a
novel scalable array architecture and explored the execution time
and energy trade-offs for various applications by scaling hardware
resources, operational granularity, and voltage supply. Keeping in
pace with the current requirement of power-aware architectures,
we showed that the coprocessor based system architecture deliv-
ers higher performance while providing with significant savings in
energy dissipation in computing various multimedia applications.
When the MPEG decode application was executed in the proposed
architecture, the total execution time was reduced to around 24%,
and the energy consumed was reduced to around 27.5% of that
consumed in the base architecture. Further, the scaling of voltage
resulted in considerable reduction in the energy consumed (from
28.12% to 23.8%), while total execution time increased slightly
(from 23.65% to 24.78%). A similar study of the performance and
energy characteristic behavior of other multimedia programs like
MPEG encode, CJPEG, FIR, and IIR was also conducted. Overall,
it was observed that the gain in performance and energy consumed
are dependent on the application characteristics and the amount of
hardware resources utilized in the coprocessor.
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Fig. 5. Relative to base processor, variation of total application exe-
cution time and energy consumption for FIR application, with scaling
of hardware resources and supply voltage.

Based on the characteristics of various applications, the fu-
ture work will design and develop scalable hardware systems with
hardware/software codesign, that can simultaneously run multiple
applications, and optimize multiple critical performance parame-
ters for each application. Appropriate techniques/algorithms will
be developed to dynamically scale the hardware resource usage,
supply voltage, operational granularity, etc., and will be imple-
mented at the hardware level (with appropriate control logic in
the main processor), or at the software level (with assistance from
compiler or/and the operating system), depending on the character-
istics of the application and the composition of computing system.
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