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Abstract-  Fingerprint recognition is one of the most  common  

techniques used for biometric identification. Currently 
fingerprint technology is suitable to recognize users with high 
accuracy and low execution times using microprocessors able to 
solve algorithms with high-computational cost. However, the 
microprocessor’s cost could make the use of fingerprint biometric 
conditional on specific applications. This paper presents the 
implementation of a whole minutiae extraction fingerprint 
algorithm using a Spartan-3 FPGA, as an appropriate solution for 
portable devices and for the low-cost consumer market. The 
internal architecture of the proposed embedded system is based 
on a soft-core microprocessor and several dedicated coprocessors 
designed in order to accelerate the resolution of the algorithm. 
Experimental results show as minutiae of fingerprint are obtained 
in 988 ms when an image of 256x256 pixels is analyzed.      

I. INTRODUCTION 

Security is becoming an important challenge for usual 
activities that require high confidence levels such as access 
control, cash terminal or internet banking among others. The 
security of these systems is traditionally based on guarantying 
the user’s identity by using identification cards or passwords, 
prior to give access to confidential information, relevant places 
or restricted resources. However, this identification method 
presents several disadvantages, basically due to its inherent 
risk of loss or robbery. Identification systems based on 
biometric features lack of these problems, since the user’s 
identity is determined based on physiological or behavioral 
characteristics unique for each person.  Fingerprint is one of 
the most widespread identification techniques allowing high-
medium confidence rates. Additionally, the small-size and low-
cost of sensors used in capture devices has contributed to 
increase its commercial use [1][2].   

A fingerprint can be seen as a set of interleaved ridges and 
valleys on the surface of the finger. As Fig. 1 shows, the 
capture device returns an image, usually with 256 grey-levels, 
which consists of dark (ridges) and bright (valleys) lines. The 
most widespread fingerprint matching approach relies on the 
fact that the uniqueness of a fingerprint can be determined 
detecting prominent singular points known as minutiae, which 
are represented either by bifurcation or termination of ridges.         

Nowadays the research effort in fingerprint algorithms is 
focused on improving their performances, basically increasing 
the reliability and reducing the error rates. Usually the 
implementation is based on a high-performance 
microprocessor, such as a desk computer, able to work at 
frequencies in the GHz range [3]. The algorithm runs on a 
microprocessor that sequentially executes the routines involved 

in the fingerprint processing. Recent advances in the field of 
microelectronics have improved the microprocessor 
computational power which allows algorithms to run with high 
accuracy without increasing the execution times. However, in 
applications related to the low-cost consumer market the 
device cost could determine the viability of the final product. 
Low-cost microprocessors, more suitable in the consumer’s 
device market, are generally too slow for applications requiring 
intensive computations such as those involved in minutiae 
fingerprint extraction.  

A dedicated coprocessor allows designers to accelerate the 
processing time in those applications whose implementation 
can be carried out using high-speed parallel processing or 
several pipeline stages. There are several examples that show 
as dedicated coprocessor performances can overcome those 
offered by microprocessors in fingerprint processing [4]-[7]. 
However, coprocessors require a major design effort, 
especially for algorithms based on floating point computations 
or when sequential operations hamper the application of 
parallelism. In these cases a software implementation on 
microprocessor is likely better than in dedicated hardware.  

The underlying concept of a hardware-software co-design is 
to take advantage from both hardware and software 
implementations. The system architecture consists in a low-
cost microprocessor, which executes sequential or simple 
operations, and several hardware coprocessors that speed-up 

 

Fig. 1.  Acquired fingerprint image. 
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the tasks responsible of the high execution times. Moreover, 
these architectures can be implemented in low-cost devices like 
FPGAs (Field Programmable Gate Arrays) with the additional 
benefits related to this technology such as short time-to-market 
and NRE (Non-Recurring Engineering) cost.   

There are several publications related to FPGA 
implementations of fingerprint processing. Reference [4] was 
one of the first published works dealing with this issue. The 
authors presented a special-purpose hardware accelerator based 
on FPGA technology able to reach a matching speed of the 
order of 105 matches per second. The paper explores the 
advantages of parallelism showing as it is possible to obtain 
performances close to ASIC at affordable price. Subsequently, 
other papers were published using more advanced FPGA.  For 
example in [5], it is presented a Hw/Sw architecture 
implemented on Virtex II and consists of a general purpose 
embedded 32-bit microprocessor and hardware accelerators  
The minutiae extraction algorithm proposed reaches a 55% 
execution time reduction when compared to a traditional 
software implementation. However, the total execution time is 
about 4 s. More recently, in [6] was published a hardware 
accelerator for fingerprint analysis based on Maio’s algorithm, 
obtaining a significant improvement against its software 
implementation based on ARM microprocessor. In [7], only 
part of a whole fingerprint algorithm, devoted to improve the 
quality of fingerprint images, was implemented in an 
embedded system consists in a microprocessor and a hardware 
accelerator that allows a resolution of the algorithm four times 
faster than the only software execution.  

This paper presents a hardware-software co-design of a 
whole fingerprint algorithm implemented in a Xilinx low-cost 
Spartan 3 FPGA. The main contribution of this paper is that the 
proposed system is able to process a fingerprint image 
obtaining a minutiae pattern in less than 1 s.  The architecture 
is based on Microblaze soft-core microprocessor and three 
hardware accelerators designed to speed-up the fingerprint 
processing time.   

 

II. MINUTIAE EXTRACTION ALGORITHM 

The minutiae extraction algorithm processes the fingerprint 
image in several stages in order to find the singular points 
related to bifurcation and termination of ridges.  The number of 
stages and the processing involved in each one differs slightly 
depending on the algorithm employed, being in our case six 
stages that are briefly described in this section. 

A. Normalization 
The first step in fingerprint analysis is to standardize the 

pixel intensity by adjusting the range of grey-level values to a 
determined mean and variance [8]. This step is important since 
facilitates the processing of subsequent stages where a typical 
threshold that depends on the intensity and contrast of the 
image is used. Let I(x,y) the grey-level value at pixel (x,y), and 
Mo  and Vo the desired mean and variance. The normalized 
image IN(x,y) is obtained as follows: 
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where M and V are the estimated mean and variance of I(x,y).  
 

B. Segmentation 
The aim of segmentation is to separate the foreground from 

the background areas. The foreground is associated with the 
region that contains information of interest with ridges and 
valleys. The background area does not contain valid 
information and it corresponds to the region outside the 
borders of the fingerprint. As it can be seen in Fig. 2.a the 
background presents a very low grey-scale variance, whereas 
due to the presence of ridges and valleys the foreground 
exhibits a high variance. The method based on variance 
thresholding is employed to perform the segmentation [9]. The 
variance V of a pixel (x,y) is defined as: 
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being I(x,y) the pixel intensity, M and N the size of the block 
used to calculated the variance, and Exy the average mean of 
the intensity associated with this block: 
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If the variance result of a block is lower than a threshold, the 
pixel and its surrounding neighbors in a window of size W x L 
are segmented. The segmentation of the surrounded area is 
carried out assuming that grey-level of pixels belonging to a 
small window W x L have a similar intensity. Using this 
simplification the computational cost is substantially reduced 
without affecting the accuracy of subsequent stages.  

After this processing the resulting image (in our case images 
of 256x256 pixels) usually presents several insolated clusters 
of pixels which segmentation needs a specific processing. The 
elimination of these clusters, in order to obtain a more compact 
image, can be achieved by applying two morphological 
transforms known in computer vision as opening and closing, 
leading to the final result shown in Fig 2.b. 

C. Ridge extraction 
The outcome of this stage is a binary image where the value 

of each pixel could be 0 or 1. Pixel set to 0 corresponds to a 
foreground ridge, whereas pixel set to 1 is associated with a 
background valley. The first step consists of an enhancement 
of the image by obtaining a better definition between the ridges 
and valleys. For that each pixel of the image is convolved with 
a Gabor filter. Gabor filters are employed because they have 
frequency and orientation selective properties. A two-
dimensional Gabor filter consists of a sinusoidal wave with a 
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particular orientation and frequency modulated by a Gaussian 
envelope: 
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φ+φ−=φ cosysinxy                            (6) 
By selecting a Gabor filter tuned at the spatial frequency of 

the ridges and a properly orientation its response can be 
optimized in order to maximize the ridge-valley structure by 
reducing the noise of the image. Before filtering, it is necessary 
to estimate the orientation φ of the ridges contained in the 
fingerprint. The orientation image is calculated with the 
improved Rao algorithm method described in [8]. The 
calculation of angle φ is carried out in a window of size N x M 
centered at pixel (i,j). For each pixel of the window the 
gradients ( )j,ix∂  and ( )j,iy∂  are calculated (in our case using 
the Sobel operator) and its orientation is found by applying the 
following expression: 
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In order to speed-up the processing time the orientation of 
the central and surrounding pixels in a block W x L are 
considered identical. The result of the orientation is 
approximated by one of a set of 16 discrete angle values 
between -90º and 90º. After the filtering, the image is binarized 
by comparing the resulting grey-level value with a threshold 
(see Fig 2.c). 

                         
a)                                                                                          b) 

                                    
c)                                                                                          d) 

Fig. 2.  Stages involved in the fingerprint signature extraction: a) Original fingerprint, b) Segmented fingerprint, c) Ridge 
extraction and d) Thinning and minutiae extraction 
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D. Thinning 
Thinning is performed prior to minutiae extraction. The 

thinning process consists of a set of iterative morphological 
operations that reduces the width of ridges until they are one 
pixel wide. The Zhang-Suen was the parallel thinning 
algorithm used to perform this stage. The processing is 
based on the evaluation of the 8 adjacent neighbors to a 
central pixel that determines whether this central pixel is 
deleted. However, after applying this algorithm the thinned 
image presents some diagonal lines that have a wide pixel 
higher than 1, producing a visual aspect similar to a stair.  
This effect can be eliminated by applying a second 
algorithm that offers a better definition that facilitates the 
extraction of minutiae (see [11] for a wider explanation). 

E. Minutiae Extraction 
The minutiae extraction is a very simple task that can be 

carried out by examining the connectivity of the pixels in 
the thinned image. A pixel with a connectivity of 1 
corresponds to an ending minutiae; a connectivity of 3 leads 
to a bifurcation, whereas otherwise is not a significant pixel.  

F. Post-processing stage 
After running the minutiae extraction it is necessary a 

post-processing stage that eliminates false minutiae. The 
presence in the thinned image of undesired spikes and 
breaks leads to many spurious minutiae that are detected 
and removed based on heuristics methods [8].   

III. ALGORITHM PROFILING AND HARDWARE-SOFTWARE 
PARTITIONING 

The whole minutiae extraction algorithm described in 
section II was programmed and tested using a data base of 
168 fingerprints images related to 21 users (8 samples for 
each user). The algorithm was executed on an Intel Centrino 
1.7 GHz high-performance microprocessor obtaining the 
average execution times for a single fingerprint image 
shown in table I. The table also shows the execution times 
on Microblaze, since this is the microprocessor used in the 
proposed embedded architecture.  

TABLE I 
EXECUTION TIMES OF MINUTIAE EXTRACTION ALGORITHM  

Stage Execution Time on 
1.7GHz Intel Centrino 

Execution time on 
Microblaze at 40MHz 

Normalization 4 ms 306 ms 

Segmentation 168 ms 1535 ms 

Ridge extraction 300 ms 12022 ms 

Thinning 186 ms 1281 ms 

Minutiae extraction 9.5 ms 124 ms 

Post-processing 0.5 ms 64 ms 

Total Execution 
Time  668 ms 15336 ms 

 
TABLE II 

PARAMETERS AND VALUES USED IN THE ALGORITHM  

Stage Parameters 

Normalization Mean=100, Variance=125 

Segmentation M=8, N=8, W=3, L=3 

Ridge extraction M=9, N=9, W=4, L=4 

 
The size of blocks and the main values for parameters 

used in the calculations of each stage are shown in table II. 
On the other hand, the root square of (1) has been 
substituted by a faster linear expression, obtained from the 
Taylor series of the same function truncated to the first term 
of the series ( )( ).a2axax −+≅   

As it can be seen segmentation, ridge extraction and 
thinning are by far the stages with the higher execution time 
requiring about the 97% of the processing time when 
executed on Intel or Microblaze. Moreover, the 
computations involved in these stages can be accelerated 
using parallel processing and pipeline schemes. Thus, taking 
into account such as considerations the embedded system is 
composed of a Microblaze processor and three coprocessors 
to speed-up the three higher time-consumption stages. The 
rest of the stages, normalization, minutiae extraction and 
post-processing, have a very low computational cost being 
executed by software on the microprocessor.   

IV. COPROCESSORS ARCHITECTURE 

The coprocessors have been designed in order to work 
with an external SRAM memory. This SRAM is necessary, 
since the size of the internal FPGA memory is too small to 
allocate the original and the successive processed 
fingerprint images obtained when algorithm is executed.  

Microblaze is based on a Harvard architecture that 
consists of two different buses. The LMB (Local Machine 
Bus) is the faster bus, which connects the microprocessor to 
an internal on-chip memory usually used to targeted 
program instructions. The OPB (On chip Peripheral Bus) is 
a slower bus, normally employed to access input/output 
peripherals such as SRAM memory controller [12].  

The internal hardware structure of the whole system is 
depicted in Fig. 3.  As figure shows, both microprocessor 
and hardware coprocessors share the external SRAM 
through a SRAM memory controller whose input signals are 
managed by a multiplex that drives these signals to the 
coprocessors or the microprocessor. The CS signal is 
activated when an address belonging to the memory map of 
the SRAM memory is presented on the OPB bus. In such 
case, depending on the two least significant bits of the OPB 
address, the control of the lines is transferred to 
coprocessors. Otherwise, CS is set to 0 and the input signals 
of the memory controller are directly connected to OPB bus.  

1923



  
TABLE III 

AREA AND CRITICAL PATH FOR EACH COPROCESSOR  

Coprocessor Area  (CLB’s slices) Maximum clock speed 

Segmentation 1274 63 MHz 

Ridge extraction 1964 52 MHz 

Thinning 196 101 MHz 

SRAM controller 73 147 MHz 

 
Table III shows the coprocessors and SRAM memory 

controller synthesis results using Leonardo Spectrum for a 
Spartan 3 FPGA.    

V. RESULTS 

The coprocessors have been designed using VHDL 
hardware description language. The implementation of the 
whole system was carried out employing the development 
tools of Xilinx and the architecture were synthesized for a 
Spartan 3 XC3S2000 with a clock frequency of 40MHz. 
The external SRAM memory used to store data and images 
were the asynchronous CY7C1062AV33-12BGC.  

Table IV shows the execution times for the stages solved 
by software and those implemented in dedicated hardware. 
The execution times of the stages running on Microblaze are 
identical to those shown in Table I. Approximately 
hardware and software take the 50% of the total time 
leading to an overall execution time of 988 ms. Other 
remarkable result is that thinning and segmentation 
coprocessors are faster than their software implementations 
on Intel, even working at a clock frequency almost 43 times 
slower. In these two cases the internal structure of these 
algorithms is very suitable to obtain an optimized hardware 
implementation.    

 
 

 

 
TABLE IV 

HARDWARE-SOFTWARE EXECUTION TIMES FOR MINUTIAE EXTRACTION 
ALGORITHM  

Stage 
Execution time 
on Microblaze 

at 40MHz 

Coprocessors 
resolution 

time 

%  acceleration 
Hw versus Sw 

execution 

Normalization 306 ms -- -- 

Segmentation 1535 ms 130,1 ms 91.5 % 

Ridge extraction 12022 ms 327,4 ms 97.2 % 

Thinning 1281 ms 36,3 ms 97.1 % 

Minutiae 
extraction 124 ms -- -- 

Post-processing 64 ms -- -- 

Execution time 
on Sw or Hw 494 ms 493,8 ms -- 

Total Execution 
Time  987,8 ms 

 
As it was mentioned on section III, segmentation, ridge 

extraction and thinning represent the 97% of the total 
execution time on Microblaze. So it’s clear that these stages 
are suitable candidates to be implemented in hardware due 
to their computational cost. However, depending on the 
design criterion it is possible as well to design in hardware 
additional stages. Under a point of view of acceleration the 
most efficient solution is a hardware implementation of all 
stages. In contrast, this solution entails a higher design 
effort along with increasing the area occupied by the 
embedded system. The design effort can be relief 
purchasing a set of cores provided by various vendors. The 
coprocessor can be carried out as a top design unit built by 
convenient instantiation of these basic cores. However this 
time design reduction involves increasing the final price. 
Thus, the decision about the optimal partitioning depends on 
a set of design constraints that take into account hardware 
and software implementations trade-off. In our particular 
case, the main goal was to reduce the total execution time 
below 1 second with the minimum number of hardware 
coprocessors and with maximum reduction of the design 
effort.  

VI. CONCLUSIONS 

A hardware-software co-design of a fingerprint minutiae 
extraction algorithm was presented. The architecture of the 
presented system is based on an embedded low-cost 
microprocessor and several coprocessors units that speed-up 
the execution time of the whole algorithm. The results show 
as the proposed system is able to solve all the stages 
involved in a fingerprint algorithm in 988 ms, presenting 
similar performances to those offered by high-performance 
and cost microprocessors. These performances can be 

Fig. 3.  Scheme for the embedded architecture. 
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obtained if the system is implemented with internal 
dedicated coprocessors specifically designed to solve those 
stages that present the higher-computational cost.  
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