
FPGA Implementation of a Minutiae Extraction
Fingerprint Algorithm

Mariano López1 and Enrique Cantó2

1 Technical University of Catalonia, Avda. Victor Balaguer s/n, 08800 Vilanova i la Geltru, Spain, lopezg@eel.upc.edu
2 Rovira Virgili University, Avda. Països Catalans 26, 43007 Tarragona, Spain, ecanto@etse.urv.es

Abstract- Fingerprint recognition is one of the most common

techniques used for biometric identification. Currently
fingerprint technology is suitable to recognize users with high
accuracy and low execution times using microprocessors able to
solve algorithms with high-computational cost. However, the
microprocessor’s cost could make the use of fingerprint biometric
conditional on specific applications. This paper presents the
implementation of a whole minutiae extraction fingerprint
algorithm using a Spartan-3 FPGA, as an appropriate solution for
portable devices and for the low-cost consumer market. The
internal architecture of the proposed embedded system is based
on a soft-core microprocessor and several dedicated coprocessors
designed in order to accelerate the resolution of the algorithm.
Experimental results show as minutiae of fingerprint are obtained
in 988 ms when an image of 256x256 pixels is analyzed.

I. INTRODUCTION

Security is becoming an important challenge for usual
activities that require high confidence levels such as access
control, cash terminal or internet banking among others. The
security of these systems is traditionally based on guarantying
the user’s identity by using identification cards or passwords,
prior to give access to confidential information, relevant places
or restricted resources. However, this identification method
presents several disadvantages, basically due to its inherent
risk of loss or robbery. Identification systems based on
biometric features lack of these problems, since the user’s
identity is determined based on physiological or behavioral
characteristics unique for each person. Fingerprint is one of
the most widespread identification techniques allowing high-
medium confidence rates. Additionally, the small-size and low-
cost of sensors used in capture devices has contributed to
increase its commercial use [1][2].

A fingerprint can be seen as a set of interleaved ridges and
valleys on the surface of the finger. As Fig. 1 shows, the
capture device returns an image, usually with 256 grey-levels,
which consists of dark (ridges) and bright (valleys) lines. The
most widespread fingerprint matching approach relies on the
fact that the uniqueness of a fingerprint can be determined
detecting prominent singular points known as minutiae, which
are represented either by bifurcation or termination of ridges.

Nowadays the research effort in fingerprint algorithms is
focused on improving their performances, basically increasing
the reliability and reducing the error rates. Usually the
implementation is based on a high-performance
microprocessor, such as a desk computer, able to work at
frequencies in the GHz range [3]. The algorithm runs on a
microprocessor that sequentially executes the routines involved

in the fingerprint processing. Recent advances in the field of
microelectronics have improved the microprocessor
computational power which allows algorithms to run with high
accuracy without increasing the execution times. However, in
applications related to the low-cost consumer market the
device cost could determine the viability of the final product.
Low-cost microprocessors, more suitable in the consumer’s
device market, are generally too slow for applications requiring
intensive computations such as those involved in minutiae
fingerprint extraction.

A dedicated coprocessor allows designers to accelerate the
processing time in those applications whose implementation
can be carried out using high-speed parallel processing or
several pipeline stages. There are several examples that show
as dedicated coprocessor performances can overcome those
offered by microprocessors in fingerprint processing [4]-[7].
However, coprocessors require a major design effort,
especially for algorithms based on floating point computations
or when sequential operations hamper the application of
parallelism. In these cases a software implementation on
microprocessor is likely better than in dedicated hardware.

The underlying concept of a hardware-software co-design is
to take advantage from both hardware and software
implementations. The system architecture consists in a low-
cost microprocessor, which executes sequential or simple
operations, and several hardware coprocessors that speed-up

Fig. 1. Acquired fingerprint image.

1920978-1-4244-1666-0/08/$25.00 '2008 IEEE

the tasks responsible of the high execution times. Moreover,
these architectures can be implemented in low-cost devices like
FPGAs (Field Programmable Gate Arrays) with the additional
benefits related to this technology such as short time-to-market
and NRE (Non-Recurring Engineering) cost.

There are several publications related to FPGA
implementations of fingerprint processing. Reference [4] was
one of the first published works dealing with this issue. The
authors presented a special-purpose hardware accelerator based
on FPGA technology able to reach a matching speed of the
order of 105 matches per second. The paper explores the
advantages of parallelism showing as it is possible to obtain
performances close to ASIC at affordable price. Subsequently,
other papers were published using more advanced FPGA. For
example in [5], it is presented a Hw/Sw architecture
implemented on Virtex II and consists of a general purpose
embedded 32-bit microprocessor and hardware accelerators
The minutiae extraction algorithm proposed reaches a 55%
execution time reduction when compared to a traditional
software implementation. However, the total execution time is
about 4 s. More recently, in [6] was published a hardware
accelerator for fingerprint analysis based on Maio’s algorithm,
obtaining a significant improvement against its software
implementation based on ARM microprocessor. In [7], only
part of a whole fingerprint algorithm, devoted to improve the
quality of fingerprint images, was implemented in an
embedded system consists in a microprocessor and a hardware
accelerator that allows a resolution of the algorithm four times
faster than the only software execution.

This paper presents a hardware-software co-design of a
whole fingerprint algorithm implemented in a Xilinx low-cost
Spartan 3 FPGA. The main contribution of this paper is that the
proposed system is able to process a fingerprint image
obtaining a minutiae pattern in less than 1 s. The architecture
is based on Microblaze soft-core microprocessor and three
hardware accelerators designed to speed-up the fingerprint
processing time.

II. MINUTIAE EXTRACTION ALGORITHM

The minutiae extraction algorithm processes the fingerprint
image in several stages in order to find the singular points
related to bifurcation and termination of ridges. The number of
stages and the processing involved in each one differs slightly
depending on the algorithm employed, being in our case six
stages that are briefly described in this section.

A. Normalization
The first step in fingerprint analysis is to standardize the

pixel intensity by adjusting the range of grey-level values to a
determined mean and variance [8]. This step is important since
facilitates the processing of subsequent stages where a typical
threshold that depends on the intensity and contrast of the
image is used. Let I(x,y) the grey-level value at pixel (x,y), and
Mo and Vo the desired mean and variance. The normalized
image IN(x,y) is obtained as follows:

()

()

My)I(x, if
V

M)y,x(IV
M

My)I(x, if
V

M)y,x(IV
M

)y,x(I
2

o
o

2
o

o

N













<
−⋅

−

≥
−⋅

+
= (1)

where M and V are the estimated mean and variance of I(x,y).

B. Segmentation
The aim of segmentation is to separate the foreground from

the background areas. The foreground is associated with the
region that contains information of interest with ridges and
valleys. The background area does not contain valid
information and it corresponds to the region outside the
borders of the fingerprint. As it can be seen in Fig. 2.a the
background presents a very low grey-scale variance, whereas
due to the presence of ridges and valleys the foreground
exhibits a high variance. The method based on variance
thresholding is employed to perform the segmentation [9]. The
variance V of a pixel (x,y) is defined as:

()∑ ∑
−= −=

−++
⋅

=
2

M

2
Mi

2
N

2
Nj

2
xyE)jy,ix(I

NM
1)y,x(V (2)

being I(x,y) the pixel intensity, M and N the size of the block
used to calculated the variance, and Exy the average mean of
the intensity associated with this block:

∑ ∑
−= −=

++
⋅

=
2

M

2
Mi

2
N

2
Nj

xy)jy,ix(I
NM

1E (3)

If the variance result of a block is lower than a threshold, the
pixel and its surrounding neighbors in a window of size W x L
are segmented. The segmentation of the surrounded area is
carried out assuming that grey-level of pixels belonging to a
small window W x L have a similar intensity. Using this
simplification the computational cost is substantially reduced
without affecting the accuracy of subsequent stages.

After this processing the resulting image (in our case images
of 256x256 pixels) usually presents several insolated clusters
of pixels which segmentation needs a specific processing. The
elimination of these clusters, in order to obtain a more compact
image, can be achieved by applying two morphological
transforms known in computer vision as opening and closing,
leading to the final result shown in Fig 2.b.

C. Ridge extraction
The outcome of this stage is a binary image where the value

of each pixel could be 0 or 1. Pixel set to 0 corresponds to a
foreground ridge, whereas pixel set to 1 is associated with a
background valley. The first step consists of an enhancement
of the image by obtaining a better definition between the ridges
and valleys. For that each pixel of the image is convolved with
a Gabor filter. Gabor filters are employed because they have
frequency and orientation selective properties. A two-
dimensional Gabor filter consists of a sinusoidal wave with a

1921

particular orientation and frequency modulated by a Gaussian
envelope:

 ()


























σ
+

σ

−
π=φ φφ

φ 2
y

2

2
x

2 yx
2
1expfx2cos)f,,y,x(G (4)

φ+φ=φ sinycosxx (5)

φ+φ−=φ cosysinxy (6)
By selecting a Gabor filter tuned at the spatial frequency of

the ridges and a properly orientation its response can be
optimized in order to maximize the ridge-valley structure by
reducing the noise of the image. Before filtering, it is necessary
to estimate the orientation φ of the ridges contained in the
fingerprint. The orientation image is calculated with the
improved Rao algorithm method described in [8]. The
calculation of angle φ is carried out in a window of size N x M
centered at pixel (i,j). For each pixel of the window the
gradients ()j,ix∂ and ()j,iy∂ are calculated (in our case using
the Sobel operator) and its orientation is found by applying the
following expression:











=φ

)j,i(V
)j,i(V

arctg
2
1)j,i(

x

y

 (7)
being

∑ ∑
+=

−=

+=

−=

∂∂=
2
Niu

2
Niu

2
Mjv

2
Mjv

yxx)v,u()v,u(2)j,i(V (8)

∑ ∑
+=

−=

+=

−=

∂∂=
2
Niu

2
Niu

2
Mjv

2
Mjv

2
y

2
xy)v,u()v,u()j,i(V (9)

In order to speed-up the processing time the orientation of
the central and surrounding pixels in a block W x L are
considered identical. The result of the orientation is
approximated by one of a set of 16 discrete angle values
between -90º and 90º. After the filtering, the image is binarized
by comparing the resulting grey-level value with a threshold
(see Fig 2.c).

a) b)

c) d)

Fig. 2. Stages involved in the fingerprint signature extraction: a) Original fingerprint, b) Segmented fingerprint, c) Ridge
extraction and d) Thinning and minutiae extraction

1922

D. Thinning
Thinning is performed prior to minutiae extraction. The

thinning process consists of a set of iterative morphological
operations that reduces the width of ridges until they are one
pixel wide. The Zhang-Suen was the parallel thinning
algorithm used to perform this stage. The processing is
based on the evaluation of the 8 adjacent neighbors to a
central pixel that determines whether this central pixel is
deleted. However, after applying this algorithm the thinned
image presents some diagonal lines that have a wide pixel
higher than 1, producing a visual aspect similar to a stair.
This effect can be eliminated by applying a second
algorithm that offers a better definition that facilitates the
extraction of minutiae (see [11] for a wider explanation).

E. Minutiae Extraction
The minutiae extraction is a very simple task that can be

carried out by examining the connectivity of the pixels in
the thinned image. A pixel with a connectivity of 1
corresponds to an ending minutiae; a connectivity of 3 leads
to a bifurcation, whereas otherwise is not a significant pixel.

F. Post-processing stage
After running the minutiae extraction it is necessary a

post-processing stage that eliminates false minutiae. The
presence in the thinned image of undesired spikes and
breaks leads to many spurious minutiae that are detected
and removed based on heuristics methods [8].

III. ALGORITHM PROFILING AND HARDWARE-SOFTWARE
PARTITIONING

The whole minutiae extraction algorithm described in
section II was programmed and tested using a data base of
168 fingerprints images related to 21 users (8 samples for
each user). The algorithm was executed on an Intel Centrino
1.7 GHz high-performance microprocessor obtaining the
average execution times for a single fingerprint image
shown in table I. The table also shows the execution times
on Microblaze, since this is the microprocessor used in the
proposed embedded architecture.

TABLE I
EXECUTION TIMES OF MINUTIAE EXTRACTION ALGORITHM

Stage Execution Time on
1.7GHz Intel Centrino

Execution time on
Microblaze at 40MHz

Normalization 4 ms 306 ms

Segmentation 168 ms 1535 ms

Ridge extraction 300 ms 12022 ms

Thinning 186 ms 1281 ms

Minutiae extraction 9.5 ms 124 ms

Post-processing 0.5 ms 64 ms

Total Execution
Time 668 ms 15336 ms

TABLE II

PARAMETERS AND VALUES USED IN THE ALGORITHM

Stage Parameters

Normalization Mean=100, Variance=125

Segmentation M=8, N=8, W=3, L=3

Ridge extraction M=9, N=9, W=4, L=4

The size of blocks and the main values for parameters

used in the calculations of each stage are shown in table II.
On the other hand, the root square of (1) has been
substituted by a faster linear expression, obtained from the
Taylor series of the same function truncated to the first term
of the series ()().a2axax −+≅

As it can be seen segmentation, ridge extraction and
thinning are by far the stages with the higher execution time
requiring about the 97% of the processing time when
executed on Intel or Microblaze. Moreover, the
computations involved in these stages can be accelerated
using parallel processing and pipeline schemes. Thus, taking
into account such as considerations the embedded system is
composed of a Microblaze processor and three coprocessors
to speed-up the three higher time-consumption stages. The
rest of the stages, normalization, minutiae extraction and
post-processing, have a very low computational cost being
executed by software on the microprocessor.

IV. COPROCESSORS ARCHITECTURE

The coprocessors have been designed in order to work
with an external SRAM memory. This SRAM is necessary,
since the size of the internal FPGA memory is too small to
allocate the original and the successive processed
fingerprint images obtained when algorithm is executed.

Microblaze is based on a Harvard architecture that
consists of two different buses. The LMB (Local Machine
Bus) is the faster bus, which connects the microprocessor to
an internal on-chip memory usually used to targeted
program instructions. The OPB (On chip Peripheral Bus) is
a slower bus, normally employed to access input/output
peripherals such as SRAM memory controller [12].

The internal hardware structure of the whole system is
depicted in Fig. 3. As figure shows, both microprocessor
and hardware coprocessors share the external SRAM
through a SRAM memory controller whose input signals are
managed by a multiplex that drives these signals to the
coprocessors or the microprocessor. The CS signal is
activated when an address belonging to the memory map of
the SRAM memory is presented on the OPB bus. In such
case, depending on the two least significant bits of the OPB
address, the control of the lines is transferred to
coprocessors. Otherwise, CS is set to 0 and the input signals
of the memory controller are directly connected to OPB bus.

1923

TABLE III

AREA AND CRITICAL PATH FOR EACH COPROCESSOR

Coprocessor Area (CLB’s slices) Maximum clock speed

Segmentation 1274 63 MHz

Ridge extraction 1964 52 MHz

Thinning 196 101 MHz

SRAM controller 73 147 MHz

Table III shows the coprocessors and SRAM memory

controller synthesis results using Leonardo Spectrum for a
Spartan 3 FPGA.

V. RESULTS

The coprocessors have been designed using VHDL
hardware description language. The implementation of the
whole system was carried out employing the development
tools of Xilinx and the architecture were synthesized for a
Spartan 3 XC3S2000 with a clock frequency of 40MHz.
The external SRAM memory used to store data and images
were the asynchronous CY7C1062AV33-12BGC.

Table IV shows the execution times for the stages solved
by software and those implemented in dedicated hardware.
The execution times of the stages running on Microblaze are
identical to those shown in Table I. Approximately
hardware and software take the 50% of the total time
leading to an overall execution time of 988 ms. Other
remarkable result is that thinning and segmentation
coprocessors are faster than their software implementations
on Intel, even working at a clock frequency almost 43 times
slower. In these two cases the internal structure of these
algorithms is very suitable to obtain an optimized hardware
implementation.

TABLE IV

HARDWARE-SOFTWARE EXECUTION TIMES FOR MINUTIAE EXTRACTION
ALGORITHM

Stage
Execution time
on Microblaze

at 40MHz

Coprocessors
resolution

time

% acceleration
Hw versus Sw

execution

Normalization 306 ms -- --

Segmentation 1535 ms 130,1 ms 91.5 %

Ridge extraction 12022 ms 327,4 ms 97.2 %

Thinning 1281 ms 36,3 ms 97.1 %

Minutiae
extraction 124 ms -- --

Post-processing 64 ms -- --

Execution time
on Sw or Hw 494 ms 493,8 ms --

Total Execution
Time 987,8 ms

As it was mentioned on section III, segmentation, ridge

extraction and thinning represent the 97% of the total
execution time on Microblaze. So it’s clear that these stages
are suitable candidates to be implemented in hardware due
to their computational cost. However, depending on the
design criterion it is possible as well to design in hardware
additional stages. Under a point of view of acceleration the
most efficient solution is a hardware implementation of all
stages. In contrast, this solution entails a higher design
effort along with increasing the area occupied by the
embedded system. The design effort can be relief
purchasing a set of cores provided by various vendors. The
coprocessor can be carried out as a top design unit built by
convenient instantiation of these basic cores. However this
time design reduction involves increasing the final price.
Thus, the decision about the optimal partitioning depends on
a set of design constraints that take into account hardware
and software implementations trade-off. In our particular
case, the main goal was to reduce the total execution time
below 1 second with the minimum number of hardware
coprocessors and with maximum reduction of the design
effort.

VI. CONCLUSIONS

A hardware-software co-design of a fingerprint minutiae
extraction algorithm was presented. The architecture of the
presented system is based on an embedded low-cost
microprocessor and several coprocessors units that speed-up
the execution time of the whole algorithm. The results show
as the proposed system is able to solve all the stages
involved in a fingerprint algorithm in 988 ms, presenting
similar performances to those offered by high-performance
and cost microprocessors. These performances can be

Fig. 3. Scheme for the embedded architecture.

1924

obtained if the system is implemented with internal
dedicated coprocessors specifically designed to solve those
stages that present the higher-computational cost.

ACKNOWLEDGMENT

Authors thank financial support from Ministerio de
Educación y Ciencia de España, under grant TEC2006-
12365-C02-02.

REFERENCES
[1] D. Maltoni, D. Maio, A.K. Jain and S Prabhakar, Handbook of

fingerprint Recognition, Springer Verlag, 2003
[2] A. K. Jain, R. Bolle and S. Pankanti, Biometrics: Personal

identification in networked society, Kluwer Academic publishers,
1999.

[3] Fingerprint Verification Competition 2006 (FVC2006). Available:
http://bias.csr.unibo.it/fvc

[4] N. Ratha, D. Rover and A.K. Jain, “Fingerprint Matching on Splash
2,” FPGAs in a Custom Computing Machine, D. Buell, J. Arnold and
W Kleinfolder (eds.) IEEE Computer Society Press, 1996, pp. 117-
140.

[5] S. Yang, K. Sakiyama and I. Verbauwhebe, “A Compact and
Efficient Fingerprint Verification System for Secure Embedded
Devices,” IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP 2005), March 2005, pp. 609-612.

[6] E. Canto, N. Canyelles, M. López, M. Fons and F. Fons,
“Coprocessor of the ridge line following fingerprint algorithm”, XIX
Conference on Design of Circuits Integrated Systems, Bordeaux
(France), 2004., pp. 139-143 .

[7] M. Lopez, E. Cantó and M. Fons, “Hardware-software co-design of a
fingerprint image enhancement algorithm,” 32nd Annual Conference
of the IEEE Industrial Electronics, Paris, France, Nov. 2006.

[8] L. Hong, Automatic personal identification using fingerprints, Ph.
Dissertation, Michigan State University, June 1998.

[9] L. Hong, Y. Wan and A. K. Jain, “Fingerprint image enhancement”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
20, nº 8, 1998, pp. 777-789.

[10] T. Y. Zhang, C.Y. Suen, “A Fast Parallel Algorithm for Thinning
Digital Patterns”, Communications of the ACM, pp.236-239, Vol. 27,
Num. 3, March 1984

[11] C.M. Holt, A. Stewart,M. Clint, R.H. Perrot, “An Improved Fast
Parallel Thinning Algorithm”, Communications of the ACM, pp.156-
160, Vol. 30 Iss. 2, 1987.

[12] Xilinx Inc., “Microblaze processor reference guide”, June, 2004.

1925

