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Abstract. Dynamically reconfigurable systems have the potential of realising
efficient systems as well as providing adaptability to changing system
requirements. Such systems are suitable for future mobile multimedia systems
that have limited battery resources, must handle diverse data types, and must
operate in dynamic application and communication environments. We propose
an approach in which reconfiguration is applied dynamically at various levels
of a mobile system, whereas traditionally, reconfigurable systems mainly focus
at the gate level only. The research performed in the CHAMELEON project 1 aims
at designing such a heterogeneous reconfigurable mobile system. The two main
motivations for the system are 1) to have an energy-efficient system, while 2)
achieving an adequate Quality of Service for applications.

1. Introduction

We are currently experiencing an explosive growth in the use of handheld mobile
devices, such as cell phones, personal digital assistants (PDAs), digital cameras,
global positioning systems, and so forth. Advances in technology enable portable
computers to be equipped with wireless interfaces, allowing networked
communication even while on the move. Personal mobile computing (often also
referred to as ubiquitous computing) will play a significant role in driving technology
in the next decade. In this paradigm, the basic personal computing and
communication device will be an integrated, battery-operated device, small enough to
carry along all the time. This device will be used as a replacement of many items the
modern human being carries around. It will incorporate various functions like a pager,
cellular phone, laptop computer, diary, digital camera, video game, calculator and
remote control. To enable this, the device will support multimedia tasks like speech
recognition, video and audio. Whereas today�s notebook computers and personal
digital assistants (PDAs) are self contained, tomorrow�s networked mobile computers
are part of a greater computing infrastructure. Furthermore, consumers of these
devices are demanding ever-more sophisticated features, which in turn require
tremendous amounts of additional resources.

                                                            
1 This research is supported by the PROGram for Research on Embedded Systems &

Software (PROGRESS) of the Dutch organization for Scientific Research NWO, the Dutch
Ministry of Economic Affairs and the technology foundation STW.
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The technological challenges to establishing this paradigm of personal mobile
computing are non-trivial. In particular, these devices have limited battery resources,
must handle diverse data types, and must operate in environments that are insecure,
unplanned, and show different characteristics over time [2].

Traditionally, (embedded) systems that have demanding applications � e.g., driven
by portability, performance, or cost � lead to the development of one or more custom
processors or application-specific integrated circuits (ASICs) to meet the design
objectives. However, the development of ASICs is expensive in time, manpower and
money. In a world now running on 'Internet time', where product life cycles are down
to months, and personalization trends are fragmenting markets, this inertia is no
longer tolerable. Existing design methodologies and integrated circuit technologies
are finding it increasingly difficult to keep pace with today's requirements. An ASIC-
based solution would require multiple design teams running simultaneously just to
keep up with evolving standards and techniques.

Another way to solve the problems has been to use general-purpose processors,
i.e., trying to solve all kinds of applications running on a very high speed processor. A
major drawback of using these general-purpose devices is that they are extremely
inefficient in terms of utilising their resources.

To match the required computation with the architecture, we apply in the
CHAMELEON project an alternative approach in order to meet the requirements of
future low-power hand-held systems. We propose a heterogeneous reconfiguration
architecture in combination with a QoS driven operating system, in which the
granularity of reconfiguration is chosen in accordance with the computation model of
the task to be performed. In the CHAMELEON project we apply reconfiguration at
multiple levels of granularity. The main philosophy used is that operations on data
should be done at the place where it is most energy efficient and where it minimises
the required communication. Partitioning is an important architectural decision, which
dictates where applications can run, where data can be stored, the complexity of the
mobile and the cost of communication services. Our approach is based on a dynamic
(i.e. at run-time) matching of the architecture and the application. Partitioning an
application between various hardware platforms is generally known as
hardware/software co-design. In our approach we investigate whether it is possible
and useful to make this partitioning at run-time, adapting to the current environment
of the mobile device.

The key issue in the design of portable multimedia systems is to find a good
balance between flexibility and high-processing power on one side, and area and
energy-efficiency of the implementation on the other side. In this paper we give a
state-of-the-art report of the ongoing CHAMELEON project. First we give an overview
of the hardware architecture (section 2) and the design flow (section 3) and after that a
typical application will be presented in the field of wireless communication (section
4).

1.1. Reconfiguration in Mobile Systems

A key challenge of mobile computing is that many attributes of the environment vary
dynamically. Mobile devices operate in a dynamically changing environment and
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must be able to adapt to a new environment. For example, a mobile computer will
have to deal with unpredicted network outage or should be able to switch to a
different network, without changing the application. Therefore it should have the
flexibility to handle a variety of multimedia services and standards (like different
video decompression schemes and security mechanisms) and the adaptability to
accommodate the nomadic environment, required level of security, and available
resources. Mobile devices need to be able to operate in environments that can change
drastically in short term as well as long term in available resources and available
services. Some short-term variations can be handled by adaptive communication
protocols that vary their parameters according to the current condition. Other, more
long-term variations generally require a much larger degree of adaptation. They might
require another air interface, other network protocols, and so forth. A software defined
radio that allows flexible and programmable transceiver operations is expected to be a
key technology for wireless communication. Reconfigurable systems have the
potential to operate efficiently in these dynamic environments.

Until recently only a few reconfigurable architectures have been proposed for
wireless devices. There are a few exceptions, for example, the Maia chip from
Berkeley [1][4]. Most reconfigurable architectures were targeted at simple glue logic
or at dedicated high-performance computing. Moreover, conventional reconfigurable
processors are bit-level reconfigurable and are far from energy efficient.

However, there are quite a number of good reasons for using reconfigurable
architectures in future wireless terminals:
•  New emerging multimedia standards such as JPEG2000 and MPEG-4 have many

adaptivity features. This implies that the processing entities of future wireless
terminals have to support the adaptivity needed for these new standards.

•  Although reconfigurable systems are known to be less efficient compared to
ASIC implementations they can have considerable energy benefits. For example:
depending on the distance of the receiver and transmitter or cell occupation more
or less processing power is needed. When the system can adapt - at run-time - to
the environment significant power-saving can be obtained [7].

•  Standards evolve quickly; this means that future systems have to have the
flexibility and adaptivity to adapt to slight changes in the standards. By using
reconfigurable architectures instead of ASICs costly re-designs can be avoided.

•  The cost of designing complex ASICs is growing rapidly, in particular the mask
costs of these chips are very high. With reconfigurable processors it is expected
that less chips have to be designed, so companies can save on mask costs.

Dynamically reconfigurable architectures allow to experiment with new concepts
such as software-defined radios, multi-standard terminals, adaptive turbo decoding,
adaptive equalizer modules and adaptive interference rejection modules.

Reconfigurability also has another more economic motivation: it will be important
to have a fast track from sparkling ideas to the final design. Time to market is crucial.
If the design process takes too long, the return on investment will be less.
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2. Heterogeneous Reconfigurable Computing

In the CHAMELEON project we are designing a heterogeneous reconfigurable System-
On-a-Chip (SOC). This SOC contains a general-purpose processor (ARM core), a bit-
level reconfigurable part (FPGA) and several word-level reconfigurable parts (FPFA
tiles; see Section 2.3) (see Figure 1).

 F ARM FPGA 

FPFA tiles 

Figure 1: Chameleon heterogeneous architecture

We believe that in future 3G/4G terminals heterogeneous architectures are needed.
The main reason is that the efficiency (in terms of performance or energy) of the
system can be improved significantly by mapping application tasks (or kernels) onto
the most suitable processing entity. Basically we distinguish three processor types in
our heterogeneous reconfigurable system: bit-level reconfigurable units, word-level
reconfigurable units, and general-purpose programmable units. The programmability
of the architecture enables the system to be targeted at multiple applications. The
architecture and firmware can be upgraded at any time (even when the system is
already installed). In the following sections we will discuss the three processing
entities in more detail.

2.1. General-Purpose Processor

While general-purpose processors and conventional system architectures can be
programmed to perform virtually any computational task, they have to pay for this
flexibility with a high energy consumption and significant overhead of fetching,
decoding and executing a stream of instructions on complex general-purpose data
paths. The energy overhead in making the architecture programmable most often
dominates the energy dissipation of the intended computation. However, general-
purpose processors are very good in control type of applications; e.g. applications
with frequent control constructs (if-then-else or while loops).

2.2. Bit-Level Reconfigurable Unit

Today, Field Programmable Gate Arrays (FPGAs) are the common devices for
reconfigurable computing. FPGAs present the abstraction of gate arrays, allowing
developers to manipulate flip-flops, small amounts of memory, and logic gates.
Currently, many reconfigurable computing systems are based on FPGAs. FPGAs are
particularly useful for applications with bit-level operations. Typical examples are
PNcode generation and Turbo encoding.
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2.3. Word-Level Reconfigurable Units

Many DSP-like algorithms (like FIR and FFT) call for a word-level (reconfigurable)
datapath. In the CHAMELEON project we have defined a word-level reconfigurable
datapath, the so called Field-Programmable Function Array (FPFA) [3] [8].

It consists of multiple
interconnected processor tiles.
Within a tile multiple data
streams can be processed in
parallel in a VLIW manner.
Multiple processes can coexist
in parallel on different tiles.
Each processor tile contains
five reconfigurable ALUs, 10
local memories, a control unit
and a communication unit.
Figure 3 shows a FPFA tile
with the five ALUs. Each
FPFA can execute a fine grain
computational intensive
process. We call the inner
loops of a computation, where
most time is spent during
execution, computational

kernels. A computational kernel
can be mapped onto an FPFA
tile and interfaces with the less

frequently executed sections of the algorithm that may run on the general-purpose
processor.
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Figure 3: FPFA tile with five ALUs.

FPFAs have resemblance to FPGAs, but have a matrix of word-level
reconfigurable units (e.g. ALUs and lookup tables) instead of Configurable Logic
Blocks (CLBs). Basically the FPFA is a low power, reconfigurable accelerator for an
application specific domain. Low power is mainly achieved by exploiting locality of
reference. High performance is obtained by exploiting parallelism.
The ALUs on a processor tile are tightly interconnected and are designed to execute
the (highly regular) inner loops of an application domain. ALUs on the same tile share
a control unit and a communication unit. The ALUs use the locality of reference

 

a 
f1 f2 

f3 

b c d 

Z1 

mm XX

mm YY

mm EE

a c d b 

a c b d Z1 

c d E E
0 

Z2 W  

mm OO
c d 

OUT2 OUT1 

level 1 

level 2 

level 3 

0 

mm SS

O1 O2 

Figure 2: Structure of one ALU of the FPFA
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principle extensively: an ALU loads its operands from neighbouring ALU outputs, or
from (input) values stored in lookup tables or local registers. Each memory has 256
20-bit entries. A crossbar-switch allows flexible routing between the ALUs, registers
and memories. The ALUs are relatively complex (see Figure 2), for instance they can
perform a multiply-add operation, a complex multiplication or a butterfly operation
for a complex FFT in one cycle.

2.4. Implementation Results

The FPFA has been designed and implemented. The FPFA architecture is specified in
a high-level description language (VHDL). Logic synthesis has been performed and a
one FPFA tile design fits on a Xilinx Virtex XCV1000. In CMOS .18 one (un-
optimized) FPFA tile is predicted to have an area of 2.6 mm2 and it can run at least at
23 MHz. In this technology we can have approx. 20 FPFA tiles in the same area as an
embedded PowerPC. For the prototype we probably will use CMOS .13 technology.
Several often-used DSP algorithms for SDR have been mapped successfully onto one
FPFA tile: e.g. linear interpolation, FIR, correlation, 512-point FFT and Turbo/SISO
decoding. Of course, these are only a few of the algorithms that the FPFA should be
able to handle.

3. CHAMELEON System
Modeling

The design of the above-mentioned
architecture is useless without a
proper tool chain supported by a
solid design methodology. At
various levels of abstraction,
modern computing systems are
defined in terms of processes and
communication (or, at least, syn-
chronisation) between processes.
Many applications can be
structured as a set of processes or
threads that communicate via
channels. These threads can be
executed on various platforms (e.g.
general purpose CPU, FPFA,
FPGA, etc).
We use a Kahn based process
graph model, which abstracts
system functionality into a set of
processes represented as nodes in

a graph, and represents functional dependencies among processes (channels) with
graph edges. The functionality of a process graph will be referred to as task. This
model emphasizes communica-tion and concurrency between system processes. Edge

FARM FPGA

FPFA tiles

Application (C/C++)
e.g. 3G software defined radio

Trade-off energy / QoS
Run-time optimization

Application as a set
of communicating
processes

Mapping and scheduling of
tasks on a
heterogeneous architecture

Figure 4: Chameleon design flow
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and node labeling are used to enrich the semantics of the model. For instance, edge
labels are used to represent communication band-width requirements, while state
labels may store a measure of process computational requirements. Process graph
models may include hierarchical models, which describe systems as an assembly of
tasks. The root of such a hierarchy of tasks is called the application.

The costs associated with a process graph in the context of reconfiguration can be
divided into communication costs between the processes, computational costs of the
processes and initialization costs of the task. The costs can be expressed in energy
consumption, resource usage, and aspects of time (latency, jitter, etc).

The mapping of applications (a set of communicating tasks) is done in two phases.
In the first phase (macro-mapping) for each task the most- (or near) optimal
processing entity is determined. This phase defines what is processed where and
when. This phase is supported by a number of profiling tools. In the second phase
(micro-mapping) for each task a detailed mapping is derived to the platform of
choice.

3.1. Macro-mapping

In practice, most complex systems are realized using libraries of components. In a
reconfigurable system, application instantiation consists first of all of finding a
suitable partition of the system specification into parts that can be mapped onto the
most appropriate resources of the system (processors, memories, reconfigurable

entities). Because of the dynamics of the mobile
environment we would like to perform the
macro-mapping at run-time. In Section 4 we will
show an example how macro-mapping can be
used to save energy.

The traditional allocation of system functions
into hardware and software during the design
phase is already a complex task, doing it
dynamically at run time, in response to the
changed environment, available resources, or
demands from the user, is an even more
challenging task. The search of the 'best'
mapping is typically a very hard problem, due to
the size of the search space. Moreover, the costs
associated with the mapping cannot be ignored.
Macro-mapping and algorithm selection assumes
the existence of a library with multiple
implementations for the computation of some
(commonly used) processes or adequate profiling
tools. Furthermore, it is assumed that the
characteristics (e.g. energy consumption and
performance) of the library elements on a given
architecture are known beforehand.Figure 5: DFGC of a C statement
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3.2. Micro-mapping

Once the designer has decided what to map where, the micro-mapping comes into
play. This is normally done at design-time, as this is a quite time-consuming
operation. We assume that all processes are written in C. The mapping of C processes
to the general-purpose processor is straightforward; we use the standard GNU tools
for that. In this paper we concentrated on mapping C tasks to the FPFA.
We first translate C to a Control Data-Flow Graph (CDFG). In this graph control
(order of execution) and data are modeled in the same way. As an example Figure 5
shows the automatically generated CDFG graph of a simple C statement (IF (A<5)
A=2; ELSE A=3;). The bold arrows in the figure indicate the State-Space of the
architecture, where the State-Space denotes the mathematical representation of the C
memory model. Store and fetch are operations on the State-Space. We have defined
several behavior-preserving transformations on these graphs e.g. constant
propagation, loop unrolling and removing of intermediate variables. The FPFA tile
can also be described in terms of a CDFG graph; the architecture graph. With the
help of these transformations we can derive a �simple� CDFG that is suitable for
mapping onto an architecture graph. In general the mapping of algorithm graphs to an
architecture graph is NP complete. Fortunately, the size of the algorithms tasks is
usually quite small (no more than two nested loops). We have performed several
mappings by hand, and currently we are implementing a method to automate this process.

4. Sample Application: Reconfiguration in a Wireless Terminal

In this section we show how a reconfigurable architecture and macro-mapping can be
used to save energy in wireless terminals. As said before, in a mobile multimedia
system many trade-offs can be made concerning the required functionality of a certain
mechanism, its actual implementation, and values of the required parameters.

In contrast to ASIC implementations reconfigurable architectures offer the
possibility to tune the settings of a software-defined radio (SDR) at run-time to the
current wireless environment, even in continuously changing conditions. In this way
overkill is avoided, which can be translated in a reduction in energy consumption for
a mobile, or savings in the necessary computing resources for a base station.

To support this run-time adaptive behavior, trade-offs between different parameter
sets should be made to determine the most optimal set for the current situation. We
introduced a control system, which is based on a model that selects at run-time a set
of parameters that minimizes the cost, while satisfying the requested quality.

In our initial approach, we reduce the set of performance indicators for a SDR to
two: the quality and the required effort. Figure 6 depicts the relationship between the
quality and the required effort. The dots represent a certain setting of the system in the
quality/cost space. Due to the dynamic external environment of a SDR, the wireless
link conditions change constantly and therefore the quality of the output of the SDR
will change. In Figure 6, this implies that the dots will move in horizontal direction as
a function of time. If the conditions of the external environment become worse, then a
dot will move to the right and if the conditions become better, the dots will move to
the left.



                                                                Dynamic Reconfiguration in Mobile Systems           179

 

goal 

risky  
zone 

quality 
limit 

higher computation  
costs 

Bad 
quality 

panic 
zone 

safe  
zone 

Good 
quality 

Figure 6: Quality vs cost trade-off

Given a specific application, a certain minimum quality limit will apply. A quality
worse than this quality limit is not acceptable. Furthermore, a certain area left of the
quality limit will be considered as a risky zone in the sense that the system is not
allowed to stay too long in this area.

Therefore, when an optimal setting is determined, the optimization goal for the
quality is left of the risky zone to maintain a certain �safety margin�, because
otherwise a quality violation may occur, when the external environment changes only
slightly. The optimal parameter setting in Figure 6 is the first dot on the left side of
the goal line: it has the lowest costs (e.g. energy consumption) that satisfies the
required quality of service. The quality limit is mainly dictated by the application and
cannot be changed. For a specific application, the �goal� line is at a fixed distance
from the quality limit. Currently, the design of most SDR ensures that worst-case
situations are handled well, which provides overkill in 'normal' situations. So, these
SDRs operate almost always in the left most part of the safe zone that is mentioned in
Figure 6. The added value of our approach is that we provide a run-time optimization
to minimize the operation costs.

4.1. Example in Detail

Our control system will be demonstrated with a wideband code division multiple
access (WCDMA) RAKE receiver [5], in combination with a turbo decoder [6], as

Figure 7: Rake receiver Turbo decoder combination
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shown in Figure 7. This combination can be used in an UMTS terminal or base
station. For an in-depth discussion about the simulation of this system, see [7]. The
quality is expressed in bit error rate (BER) and the costs are expressed in number of
operations needed for the datapath (excluding control costs). In our current
implementation input samples are 6 bits wide and 5 fingers can be executed in one
single tile. The main part of the Turbo-decoder, (SISO module) can also be executed
in one tile. We built a control system that adapts the system at run-time to the
dynamic external environment. The goal is to operate with minimum use of resources
and energy consumption, while satisfying an adequate quality of service. The control
system is based on a model, which selects the most optimal configuration based on
off-line gathered information and on-line measurements.

Figure 8 shows simulation results of the behaviour of the control system, when the
number of users decreases. In this situation, the external environment becomes better.
The five graphs in this figure represent (top - down): the quality of the output of the
RAKE receiver expressed in BER, the costs of the RAKE receiver expressed in
number of operations, the number of simultaneously transmitting users, the number of
fingers of the RAKE receiver and the spreadingsfactor used by the RAKE receiver.
On the horizontal axis the sequence number of the transmitted block is shown. Blocks
contain 1000 bits.

As can be seen from the figure, the number of fingers and the spreadingsfactor are
decreased as soon as possible, whereas the quality is maintained below the BER
quality limit of 0.18. Note that the costs for the worst-case situation are much higher
than the average costs, which indicates a considerable energy saving.

4.2. Evaluation

Compared to a system that is optimized for the worst-case situation, substantial
savings can be achieved. In our simulations, savings of a factor three were no
exception. The control system presented here has been applied to a specific
RAKE/turbo case. The data required by the control system were: the quality limit

Figure 8: Simulation results

 Quality

#fingers

SF

Cost

#users



                                                                Dynamic Reconfiguration in Mobile Systems           181

(application dependent), the width of the risky zone (application dependent), and per
parameter the: the range and the estimated gain when a parameter changes. The
control system can be used as a general framework. For example, the turbo decoder
can very easy be replaced by another kind of forward error decoder (e.g. Viterbi). The
presented control system has a number of attractive properties: it is able to handle an
unpredictable time-variant changing environment with a lot of parameters, it is simple
and therefore possible to compute at run-time, it is suitable for a dynamically
reconfigurable mobile terminal with scarce energy resources, it is fast enough (within
tenths of ms) to react to a fast changing environment.

5. Conclusion

Reconfigurable systems are suitable for the dynamic application and communication
environment of wireless multimedia devices. Reconfigurable systems provides
flexibility to design new equipment that can adapt to changing standards and
algorithms once/year, add new features once/month or adaptively modify the
algorithm once/millisecond based on the contents of the data stream.

Central in our approach is the matching between granularity of computation and
architecture. This by necessity leads to a heterogeneous reconfigurable system that
spans many levels of the system. A hierarchical system model is used in which
Quality of Service and energy consumption play a crucial role. This model is used to
dynamically partition tasks of an application such that an energy efficient
configuration is established while achieving a sufficient Quality of Service of the
running applications.
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