
Fine-Grain reconfigurable platform: FPGA hardware design
and software toolset development

I Pappas1, V Kalenteridis1, N Vassiliadis1, H Pournara1, K Siozios2, G Koutroumpezis2, K Tatas2,
S Nikolaidis1, S Siskos1, D J Soudris2 and A Thanailakis1

1Electronics and Computers Div., Department of Physics, Aristotle University of
Thessaloniki, 54006 Thessaloniki, Greece
2VLSI Design and Testing Center, Department of Electrical and Computer
Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
E-mail: ilpap@auth.gr,vkale@skiathos.physics.auth.gr

E-mail: ksiop@ee.duth.gr

Abstract. A complete system for the implementation of digital logic in a fine-grain reconfigurable
platform is introduced. The system is composed of two parts: The fine-grain reconfigurable hardware
platform (FPGA) on which the logic is implemented and the set of CAD tools for mapping logic to the
FPGA platform. A novel energy-efficient FPGA architecture is presented (CLB, interconnect network,
configuration hardware) and simulated in STM 0.18µm CMOS technology. Concerning the tool flow,
each tool can operate as a standalone program as well as part of a complete design framework, composed
by existing and new tools.

1. Introduction
FPGAs have recently benefited from technology process advances to become significant alternatives
to ASICs. An important feature that has made FPGAs, particularly attractive is a logic mapping and
implementation flow similar to the ASIC design flow (from VHDL or Verilog down to the
configuration bitstream) provided by the industrial sector [1][2].
In this paper, an energy efficient FPGA architecture is presented at both CLB and interconnection
network level. The design is mostly focused on minimizing energy dissipation, without significantly
degrading delay and area. Additionally, a complete tool-supported design flow for mapping logic on
the FPGA is also presented starting from a VHDL circuit description down to the FPGA configuration
bitstream. Section 2 describes the proposed structure for CLB, interconnect network and configuration
architecture. Section 3 presents the proposed design flow. Finally, conclusions and future work are
discussed in section 4.

2. FPGA architecture
In this section the FPGA architecture, which can be configured using the developed toolset, is
presented. The main design constraint is the energy minimization under delay constraints, while
keeping a reasonable silicon area.

2.1. CLB architecture
The design of the CLB architecture is crucial to the CLB granularity, performance, and power
consumption. The proposed FPGA is cluster-based [3], and consists of a collection of Basic Logic

Institute of Physics Publishing Journal of Physics: Conference Series 10 (2005) 352–356
doi:10.1088/1742-6596/10/1/086 Second Conference on Microelectronics, Microsystems and Nanotechnology

352© 2005 IOP Publishing Ltd

Elements (BLEs), which are interconnected by a local network. Figure 2a shows the structure of a
Basic Logic Element (BLE), which is formed by a Look-Up Table (LUT), a D-F/F and a 2-to-1
multiplexer, while in figure 2b a cluster of BLEs form the CLB. After an exhaustive exploration
[9][10], it has been resulted that the selected features of the CLB which lead to minimization of energy
consumption are:
a) Cluster of 5 BLEs, b) 4-inputs LUT per BLE, c) One double edge-triggered Flip-Flop per BLE, d)
One Gated Clock signal per BLE and CLB, e) 12 inputs and 5 outputs provided by each CLB f) All 5
outputs can be registered g) A fully Connected CLB resulting to 17-to-1 multiplexing in every input of
a LUT, h) One asynchronous Clear signal for whole CLB and i) One Clock signal for whole CLB.

 (a) (b)

Figure 1. a) Basic Logic Element (BLE) b) Proposed cluster-based CLB

2.2 CLB Interface
Another critical issue for the FPGA performance is the CLB I/O pin positioning around the CLB
perimeter. It has been shown that the full perimeter versus top/bottom pin positioning results in the
better performance.

Further exploration was attempted to specify the exact best positioning. Our experiement flow used
some of the MCNC benchmarks circuits. We tried the same architectures with different pins
positioning. Fig. 2 shows a Rounded Pins Positioning in which I/Os pins are distributed everly around
the CLB perimeter and Biased Pins Positioning in which Outputs indicated only at the right of the
CLB. Our exploration showed that the Rounded Pins Positioning results in more routable FPGA and
therefore better area, speed and power efficiency

 Figure 2. a) Rounded Pins Positioning b) Bias Pins Positioning

2.3. Interconnect architecture
Alternative interconnection architectures were examined and their performances in terms of speed,
energy consumption and area were determined and evaluated. A detailed exploration was performed
for the switch block types, the length of the segments, the connectivity factors (FC, FS) and for the
population factor [11]. In addition at the circuit design the best type and size of routing switch as well
as the optimum width and spacing between metal wires have been determined in order to optimize
energy dissipation without degrading speed and area of the system [9][10].

353

Based on the above experimental results the proposed network architecture characteristics are: a)
segment length L1 b) Full population for Connection and Switch boxes c) cF =1 for the input and the
output connection boxes d) Disjoint Switch box with sF =3, e) pass transistor with size ten times the
minimum width as routing switch f) minimum width, double-spacing for the metal wires. In addition
based on the application requirements the number of tracks in the routing channel was selected to be
20 and the array dimensions 8X8 CLBs. Finally, for the communication with the FPGA, 24 I/O pads
were placed on each side of the FPGA. Each pad contains three I/O pins and each pin can connect to
each one of the routing tracks with a configurable pass transistor.

2.4. Configuration Architecture
The proposed configuration architecture consists of the following components: the memory cell,
where the programming bits are stored, the local storage element for each tile (a tile consists of one
CLB, CB input-output, SB and the decoder which controls the configuration procedure of all the
FPGA.

The memory cell is based on a typical 6T memory cell with all transistors having minimum size.
This cell is provided with a reset mechanism to disable the switch to which it is connected by
preventing the short-circuit currents that can occur in an FPGA if it is operated with unknown
configuration states at start-up. Moreover since there is no need for high performance from the
memory cell, neither the pre-charging technique nor a sense amplifier was used, resulting in energy
savings. The energy consumption and the delay during the write procedure are shown in Table 1.

Table 1. Memory Cell Delay and Energy Consumption

Transition Energy(fJ) Delay(ps)

1→0
0→1

17.23
9.45

80.54
88.7

The configuration element consists of 480 memory cells because the tile requires 465 configuration

bits, so there is an array of 30 columns and 16 rows. The 16 memory bits of a row compose a “word”.
During the write procedure the configuration bits are written per “word” because we have a 16-bit
write configurations bus. A 5-to-30 decoder is used in order to control which “word” will be written
each time. The 5-inputs of the decoder are connected to the address bus. The decoder was
implemented by using 5-input NAND and 2-inputs NOR gates because of the small number of the
inputs. There is also a chip select signal. The NOR gates are used in order to idle the decoder when the
chip select has value “0”. A pre-decoding technique was not used because of the increased area and
energy consumption that it produces.

The write procedure can take part only in one storage element each time. All the other storage
elements must be idle. That is why we use the chip select signal, which is managed by a 7-to-90
decoder. The whole FPGA needs 70 storage elements for a 8x8 array of CLBs (64 storage elements
one for each tile, plus 6 storage elements for the periphery switch boxes and I/O pads). Additionally
the configuration architecture supports partial reconfiguration. This means that each tile can be
selected to be configured individually while the rest of the FPGA can be in process mode.
The configuration specifications are summarized as: a) 4.2KB size b) 16-bits data bus c) 12-bits
address bus d) 1.4ns delay for writing a row of 16 memory cells e) 2100 cycles for entire 8×8 array
configuration, f) partial reconfiguration.

2.5. FPGA Physical Implementation
A prototype full-custom FPGA was design in a 0.18µm STM process technology. The prototype
features:

• 8x8 array size (320 LUTs, 320 FFs, 96 I/Os)
• 1.8 volts supply voltage

354

• 4.86x 5.28 mm2 area
• 6 metal layer assignment

• Metal 1 : Short connections, Power supply
• Metal 2 : Short, intra-cluster, inter-cluster connections, buses, ground supply
• Metal 3 : Intra-cluster, Main interconnections
• Metal 4 : Clock signal, Configuration
• Metal 5 : Configuration
• Metal 6 : Configuration

• 2.94µsec configuration time
• RAM configuration
• Partial reconfiguration

 Figure 3. FPGA Physical Implementation

3. Proposed Design Flow
Equally important to an FPGA platform is a tool set, which supports the implementation of digital
logic on the proposed FPGA. Therefore, such a design flow was realized. The input is the RTL-VHDL
circuit description, while the output of the CAD flow is the bitstream file that can be used to configure
the FPGA. Three different types of tools comprise the flow: i) non-modified existing tools, ii)
modified existing tools, iii) and new tools. A brief description of the tools that compose the design
flow is given below: a) VHDL Parser: performs syntax checking of VHDL input files b) DIVINER:
is used as a synthesizer of RTL VHDL language c) DRUID: this tool is used to modify the EDIF [8]
output file that is produced during the synthesis step, so that is can be used by the following tools of
the design flow d) E2FMT: translates EDIF format to BLIF [6] e) SIS: is used for mapping the logic
described in generic components (such as gates and arithmetic units) into the elements of the proposed
fine-grain reconfigurable architecture [7] f) T-Vpack: reads in a BLIF format netlist of a circuit that
has been technology-mapped to LUTs and flip-flops, packs the LUTs and flip-flops into the desired
FPGA logic block, and outputs a netlist in VPR’s netlist format [4] g) DUTYS: creates the
architecture file of the FPGA that is required by T-VPack and VPR. h) VPR: is responsible for
placement and routing of the target circuit in the FPGA i) Power Model: estimates power
consumption j) DAGGER: generates the configuration bitstream for the fine-grain reconfigurable

355

hardware architecture. In addition there is a number of attractive features that characterize these tools
which are technology independence, portability, modularity, compactness and easy of use [9][10].

3.1 Graphical User Interface
The Graphical User Interface (GUI) provides the designer with the opportunities to easily use all (or
some of the tools) that are included in the proposed design flow. It consists of six independent stages:
i) the File Upload, ii) the Synthesis, iii) the Format Translation, iv) the Power Estimation, v) the
Placement and Routing and vi) the FPGA Program stage. Until now, there is no other academic
implementation of such a complete graphical design chain. The main GUI advantage is the fact that it
is friendly to the non-experienced designer who does not need to be familiar with the Linux OS. It is
possible to run it from a local PC or through the Internet/Intranet, and the source code can be easily
modified in order to add more tools. Regardless of the execution (locally or through the network) the
proposed interface runs on the web-browser, and can program an FPGA that is attached to the user’s
PC.

4. Conclusions
This paper demonstrated the first complete system for implementing digital logic on a fine-grain
reconfigurable platform. It includes the design of both the FPGA architecture and the complete design
flow (from VHDL to bitstream) consisting entirely of academic tools, which allows the mapping of
logic on the presented novel FPGA architecture. The presented FPGA architecture was designed and
implemented in STM 0.18µm CMOS technology and future plans include redesign at 0.13. The
obtained simulation results prove the attractive features of the proposed architecture. On the other
hand, in contrast to commercial CAD systems, the proposed design flow can accomplish a FPGA
design and is publicly available and very friendly to the non-experienced designers. Among our future
plans is also the extension of some of the existing tools like SIS and T-VPack.

5. Acknowledgement
This work was partially supported by the project IST-34379-AMDREL which is funded by the
European Commission.

6. References
[1] http://direct.xilinx.com/bvdocs/publications/ds003.pdf
[2] http://www.altera.com/products/devices/dev-index.jsp
[3] Betz V, Rose J and Marquardt A 1999 Architecture and CAD for Deep Submicron FPGAs

(Kluwer Academic Publishers)
[4] http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html
[5] Betz V and Rose J 1997 IEEE Custom Integrated Circuits Conference pp.551-554
[6] Weste N and Eshraghian K 1993 Principles of CMOS VLSI Design: A Systems Perspective

(Addison-Wesley)
[7] http://www.vlsi.ee.duth.gr/amdrel
[8] Betz V and Rose J 1999 International Symposium on Field Programmable Gate Arrays

Monterey CA pp.59-68
[9] Kalenteridis V, Pournara H, Siozos K, Tatas T, Vassiliadis N, Pappas I, Koutroumpezis G,

Nikolaidis S, Siskos S, Soudris D

and Thanailakis A 2004 J. Microprocessors and

Microsystems
[10] Kalenteridis V, Pournara H, Siozos K, Tatas K, Pappas I, Nikolaidis S, Siskos S, Soudris D J

and Thanailakis A 2004 11th Reconfigurable Architectures Workshop RAW (Santa Fi New
Mexico, USA, 26-27 April 2004)

[11] Vassiliadis N, Nikolaidis S, Siskos S and Soudris D J 2003 13th International Workshop
PATMOS 2003 (Turin Italy September 2003) pp. 607-16

356

