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Abstract. A self-reconfiguring platform is reported that enables an FPGA to
dynamically reconfigure itself under the control of an embedded microproces-
sor. This platform has been implemented on Xilinx Virtex II ��� and Virtex II
Pro �	� devices. The platform’s hardware architecture has been designed to be
lightweight. Two APIs (Application Program Interface) are described which ab-
stract the low level configuration interface. The Xilinx Partial Reconfiguration
Toolkit (XPART), the higher level of the two APIs, provides methods for reading
and modifying select FPGA resources. It also provides support for relocatable
partial bitstreams. The presented self-reconfiguring platform enables embedded
applications to take advantage of dynamic partial reconfiguration without requir-
ing external circuitry.

1 Introduction

This paper presents a self-reconfiguring platform, henceforth refered to as SRP, for
Xilinx Virtex II 
�� and Virtex II Pro 
�� devices. This paper extends and describes in
more detail work first presented in a special session at DATE 2003[1].

Dynamic reconfiguration and self-reconfiguration are two of the more advanced
forms of FPGA reconfigurability. Dynamic reconfiguration implies that an active array
may be partially reconfigured, while ensuring the correct operation of those active cir-
cuits that are not being changed. Self-reconfiguration extends the concept of dynamic
reconfigurability. It assumes that specific circuits on the logic array are used to con-
trol the reconfiguration of other parts of the FPGA. Clearly the integrity of the control
circuits must be guaranteed during reconfiguration, so by definition self-control is a
specialized form of dynamic reconfiguration.

Both dynamic reconfiguration and self-reconfiguration rely on an external recon-
figuration control interface to boot an FPGA when power is first applied or the device
is reset. Once initially configured, self-control requires an internal reconfiguration in-
terface that can be driven by the logic configured on the logic array. On Xilinx Virtex
II and Virtex II Pro parts, this interface is called the internal configuration access port
(ICAP)[2].

The hardware component of (SRP) is composed of the ICAP, control logic, a small
configuration cache, and an embedded processor. The embedded processor can be Xil-
inx’s MicroBlaze 
�� , which is a 32-bit RISC soft microprocessor core[3]. The hard-
core PowerPC on the Virtex II Pro can also be used as the embedded processor. The



embedded processor provides intelligent control of device reconfiguration at runtime.
The integration of this functionality is especially attractive for embedded systems. This
lightweight approach maximizes flexibility while minimizing additional external cir-
cuitry.

The software component of SRP defines two APIs. The lower level one is the ICAP
API. The ICAP API provides access to the configuration cache and controls reading and
writing the cache to the device. The higher level API is Xilinx Partial Reconfiguration
Toolkit(XPART). XPART is derived from the JBits API work[4]. Like the JBits API
it abstracts the bitstream details providing seemingly random access to select FPGA
resources. XPART also contains methods for relocating partial bitstreams.

SRP opens up a number of interesting possibilities. Firstly it gives more reconfig-
uration options to the designer. Adding SRP to a system allows an application to get
reconfiguration data from any peripheral and partially reconfigure the device. For ex-
ample if the system has a network connection partial bitstreams could be pulled off the
network. Secondly the embedded processor could manipulate the data before reconfig-
uring the device. This could permit custom encryption or compression of bitstreams.
Thirdly the XPART API enables fine grain reconfiguration control over select FPGA
resources. This allows tuning of MGTs (multi-gigabit transceiver) , or constant folding
achieved by modifying LUTs. Finally it is envisioned that a subsystem like SRP could
play an important role in an embedded operating system running on a platform FPGA.
SRP could help the OS manage hardware tasks. It could provide the capability to swap
tasks in and out of hardware. It would also allow these tasks to be relocated to different
regions on the device[5].

The paper is arranged as follows: Section 2 reviews previous work relating to SRP.
Section 3 looks at the details of the ICAP and the reconfiguration mechanisms of the
Virtex line of FPGAs. This provides the background necessary for an appreciation of
the SRP hardware and software infrastructure that are described in sections 4 and 5.
Sections 5.1 and 5.2 describe the APIs in the software layers. Section 6 presents future
work and concludes the paper.

2 Related work

Dynamic reconfiguration implies that an active array may be partially reconfigured,
while ensuring the correct operation of those active circuits that are not being changed.
Much research has been done on dynamic reconfiguration which shows it can be used
to reduce circuit complexity, increase performance and simplify system design[6].

Self-reconfiguration is a special case of dynamic reconfiguration where the config-
uration control is hosted within the logic array that is being dynamically reconfigured.
The part of the array containing the configuration control remains unmodified through-
out execution. A formal definition of self-reconfiguration is presented in [7]. There are
several desirable features of such an arrangement. Firstly the control logic is as close to
the logic array as possible, thus minimizing the latencies associated with accessing the
configuration port. Secondly, fewer discrete devices are required, reducing the overall
system complexity[8].



For a device to support self-reconfiguration it must be dynamically reconfigurable.
A second desirable, but not required, characteristic is the device provides internal access
to the configuration port. This way, the configuration stream does not have to exit the
chip and use board level resources to gain access to the configuration port. The Xilinx
XC6200 family of devices first provided both of these features, newer devices from Xil-
inx such as the Virtex II and Virtex II Pro families are both dynamically reconfigurable
and provide access to the configuration port to internal logic.

The first references to self-reconfiguration using FPGAs in the literature was in [9]
where a small amount of static logic is added to a reconfigurable device in order to pro-
duce a self-reconfiguring processor. The Flexible URISC[10] defined an abstract model
of virtual circuitry that had self-configuring capability. A pattern-matching algorithm
was used to investigate the viability of systems that exhibit self-control of reconfigura-
tion management[8]. A number of applications mapped using self-reconfiguration have
been shown to improve performance over existing approaches[9][11].

Xilinx application note 662 describes a method for using self-reconfiguration on a
Virtex II Pro device to update MGT (multi-gigabit transceiver) parameters[12]. These
attributes must be modified to optimize the MGT signal transmission prior to and after
a system has been deployed in the field. The work presented in this paper extends the
framework described in Xilinx application note 662 to enable a general purpose self-
reconfiguring platform.

The XPART software layer is derived from Xilinx’s JBits API work. XPART pro-
vides a lightweight, minimal set of JBits API features implemented in the C language.
XPART also provides some basic functionality for supporting relocatable modules. A
relocatable module is a partial bitstream that can be relocated to multiple places on
the FPGA. This functionality has also been called Dynamic Hardware Plugins(DHP)
and was used for implementing multiple networking applications in hardware for high-
performance programmable routers[13]. The methods that XPART provide are very
similar to PARBIT (PARtial BItfile Transformer)[14]. The tool JBitsDiff also provides
the ability to create relocatable modules directly from bitstreams[15]. The added benefit
XPART provides is these functions can run on an embedded processor.

3 Virtex I/II/II Pro Configuration Architecture

SRAM based FPGAs are configured by loading application specific data into configu-
ration memory. All Virtex 
�� series devices (Virtex I, Virtex II and Virtex II Pro) have
their configuration memory segmented into frames. These devices are partially recon-
figurable and a frame is the smallest unit of reconfiguration. There are multiple frames
per CLB column. For example Virtex devices have 48 frames per CLB column. Frames
are one bit wide and differ in length depending on the number of CLB rows in the de-
vice. For example an XC2V40 has 832 bits per frame and an XC2V1000 has 3392 bits
per frame.

Virtex II and Virtex II Pro devices have an internal reconfiguration access port
(ICAP) which can be controlled by internal FPGA logic. The ICAP interface is a subset
of the SelectMAP 
�� interface. Figure 1 shows a comparison between the two interfaces.
The ICAP interface has fewer signals than the SelectMAP interface because it does not



have to do full configurations and it does not have to support different configuration
modes. It also differs in that the SelectMAP bi-directional D port is split into an I data
port and an O data port. One other item to note is the functionality provided by the
ICAP CE pin is equivalent to the SelectMAP CS pin.

The eight bit data I port on the ICAP allows faster reconfiguration than serial modes
of reconfiguration. The maximum frequency that the SelectMAP and ICAP interfaces
can be clocked at without checking the BUSY signal is 66MHz[16].

Virtex I/II/II Pro FPGAs require a pad frame be added to the end of the configuration
data. This pad frame flushes out the reconfiguration pipeline. Therefore to write one
frame to the device it is necessary to clock in two frames, the data frame plus a pad
frame. Thus the minimal time to reconfigure over ICAP a single XC2V40 frame at
66MHz is 3.2us. It would take 13us to reconfigure a single XC2V1000 frame at 66MHz.
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Fig. 1. SelectMap vs ICAP

4 The SRP Hardware Architecture

SRP’s hardware component is composed of the ICAP, some control logic, a small con-
figuration cache, and an embedded processor. These peripherals communicate over the
CoreConnect 
�� Open Peripheral Bus (OPB)[17]. Figure 2A shows a block diagram of
the current hardware subsystem implementation.

In this implementation a 32 bit register is used to interface to the ICAP port. Fig-
ure 2A shows how this register is mapped to the ICAP signals. The control logic for
reading and writing data to the ICAP is implemented in a low level software driver. This
driver defines methods for reading and writing to the ICAP interface register. There are
also methods for reading and writing blocks of data to the ICAP. This methodology is
similar to the XVPI register JBits SDK used to access the SelectMAP interface[18].

The BlockRAM (BRAM) shown is Figure 2A is used to cache configuration data.
To keep the SRP hardware as lightweight as possible only one BRAM is used. One
Virtex II BRAM can store 16K bits of data. Since the largest Virtex II Pro device, the



XC2VP125, has a frame length of 11K bits, one BRAM can easily store a whole frame
of even this largest Virtex II Pro device.

This hardware system has been implemented on both Virtex II and Virtex II Pro
devices. On the Virtex II device the MicroBlaze soft processor was used. On Virtex II
Pro the embedded PowerPC was targeted. The Xilinx Embedded Developer Kit (EDK)
and Xilinx 5.1i ISE tools were used to build these hardware platforms.

The next generation of the hardware system will provide much better performance.
Figure 2B shows this system. This will be achieved via a few changes. Firstly the ICAP
control logic will move from being in software (hardware drivers) to being implemented
directly in hardware. This move also means there will be less communication over the
system bus. Secondly, the configuration cache BRAM will be moved inside the ICAP
control peripheral. This will allow the dual ported nature of the BRAM to be exploited.
One port of the BRAM will be exposed to the system bus. The other port will be ac-
cessed by the ICAP control logic. This way the ICAP control logic will not take up
system bus cycles to transfer data to and from the configuration cache. The embedded
processor will still be able to access the configuration cache BRAM over the system
bus. Thirdly, the ICAP control peripheral will be a master peripheral. This way the pe-
ripheral will be able to fetch configuration data directly from external memory without
requiring the processor be involved. Lastly, we plan to implement the peripheral as a
Xilinx IPIF (IP Interface) peripheral. IPIF peripherals can interface to both the OPB
and the faster PLB (Processor Local Bus).
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Fig. 2. Curent and Planned SRP Hardware Architecture

5 The SRP software architecture

The software components of SRP are designed in layers. Figure 3 shows the different
software layers. The software layers are divided into hardware dependent and hardware
independent parts. This division is enabled by the ICAP API. This API defines methods



for transferring data between the configuration cache implemented in BRAM and the
active configuration memory. It also provides methods for accessing the configuration
cache.

We have created two implementations of the ICAP API. The first uses the SRP hard-
ware described in the previous section to enable embedded applications to readback or
modify the active configuration of the FPGA. The second implementation emulates the
active configuration store and the configuration cache entirely in software. This emu-
lated version of the ICAP API can then be compiled for a Windows or Unix workstation.

The Xilinx Partial Reconfiguration Toolkit (XPART) is built on top of the ICAP
API. Thus XPART is hardware independent and can be compiled for an embedded
system, or for a Windows or Unix system. This portability also applies to applications
that use XPART and/or the ICAP API.

One advantage of this portability is one can do a degree of debug on a standard
workstation before moving to the target embedded platform. It is also possible to use
XPART on a workstation, manipulate partial bitstreams, then write them to the com-
puter’s hard drive instead of the physical FPGA device.

Application Code

XPART

ICAP API

Device Drivers

Emulated
ICAP API

Level 0

Level 1

Level 2

Level 3

Embedded Microprocessor External (Window/Unix)

Hardware 
Independent

Hardware
Dependent

Fig. 3. SRP Software Layers

5.1 The ICAP API

The ICAP API defines methods for accessing configuration logic through the ICAP
port. The main methods move data between the configuration cache (BRAM) and the
active configuration memory (the device). Other methods allow the processor to read
and write to the configuration cache. Finally the setDevice() method indicates which
device is being targeted. This method allows the designer to retarget their application
to a different device by changing one line in the code. All Virtex II and Virtex II Pro
family members are supported. Table 1 gives an outline of the methods in the ICAP
API.



Routines Description

setDevice() Indicates the target device.
storageBufferWrite() Writes data to the configuration storage buffer
storageBufferRead() Reads data from the configuration storage buffer
deviceWrite() Transfers specified number of bytes from storage buffer to ICAP IN
deviceRead() Transfers specified number of bytes from ICAP OUT to storage buffer
deviceAbort() Aborts the current operation
deviceReadFrame() Reads one or more frames from the device into the storage buffer
deviceWriteFrame() Writes one or more frames to the device from the storage buffer
setConfiguration() Loads a configuration from memory
getConfiguration() Writes current configuration to memory

Table 1. The ICAP API

5.2 XPART - Xilinx Partial Reconfiguration Toolkit

The Xilinx Partial Reconfiguration Toolkit (XPART) has been built on top of the ICAP
API. The purpose of this toolkit is to allow embedded processors to modify resources
and relocate modules. Currently this toolkit has four methods. Table 2 gives an overview
of these methods.

XPART provides functions for on the fly resource modification. This is done through
the getCLBBits() and setCLBBits() methods. These methods abstract the bitstream and
provides seemingly random access to selected resources. Currently XPART has the ca-
pability to read or modify all Virtex II CLB logic and routing resource. It currently does
not have access to IOB, DCM, MGT, BRAM or other non CLB resources.

The strategy employed is to do a read/modify/write of configuration data. The fol-
lowing lists the steps that setCLBBits() would perform to update a resource like a LUT:

1. Calculate the target frame
2. Find LUT bits in target frame
3. read target frame from device and put in storage buffer using deviceReadFrame()
4. Modify the LUT bits in the storage buffer using writeStorageBuffer()
5. Reconfigure the device with new LUT bits using deviceWriteFrame()

The memory elements that define the content of a LUT in Virtex II are all located in
one frame. This is not true with all resources. Some resources have their configuration
bits scattered across multiple frames. The setCLBBits() and getCLBBits() methods are
optimized so they will not have to read or write the same frame twice during the same
call. Figure 4 shows sample code that updates the content of a LUT.

XPART provides some basic functionality for supporting relocatable modules. A
relocatable module is a partial bitstream that can be relocated to multiple places on the
FPGA. XPART provides two methods for dealing with relocatable modules. The two
methods are setCLBModule() and copyCLBModule(). The setCLBModule() method
works on regular partial bitstreams that contains information about all of the rows in
the included frames. It works by modifying the header of the partial reconfiguration
packet. Figure 5A illustrates the setCLBModule() command.



#include <XPART.h>
#include <LUT.h> /* Bitstream resource library for LUTs */

int main(int argc, char *args[]) {
char* value;
int error, i, row, col, slice;
setDevice(XC2VP7); // Set the device type

... [initialize row,col,slice and value to desired values] ...

error = setCLBBits(row, col, LUT.RES[slice][LE_F_LUT], value, 16);
return error;

} /* end main() */

Fig. 4. Code to update LUT contents

The copyCLBModule() function copies any sized rectangular region of configura-
tion memory and writes it to another location. The copied region contains just a subset
of the rows in a frame. This allows the designer to define dynamic regions that have
static regions above or below it. Figure 5B shows an illustration of copyCLBModule().

The copyModule() function employees a read/modify/write strategy like the re-
source modification functions. This technique enables changing select bits in a frame
and leaving the others bits to their current configured state. The Virtex II provides glitch-
less configuration logic, meaning if a bit stays the same between two configurations no
glitch will occur. For example a frame may be modified that contains a routing resource.
If the value of the bits controlling that routing resource remain the same between the
old and new configurations, no glitch will occur on that routing resource.

Routines Description

getCLBBits() Reads back the state of a selected CLB resource.
setCLBBits() Reconfigures the state of a selected CLB resource.
setCLBModule() Place the module at a particular location on the device
copyCLBModule() Given a bounding box copy it to a new location on the device

Table 2. XPART Methods

6 Future work and conclusions

Several extensions and applications of the system are in progress. As noted earlier we
are working on a more efficient implementation of our SRP hardware architecture. In the
current implementation the ICAP control logic is implemented in software via device
drivers. This implementation requires 10ms to modify a LUT value on an XC2V1000
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Fig. 5. Illustration of Module Methods

device with MicroBlaze running at 50MHz. The next version of the SRP hardware
should allow us to clock configuration data into and out of the device at the maximum
no handshake frequency of 66MHz. Modifying one LUT on the XC2V1000 will take
13us for the read, negligible time for the modify, and 13us for the write for a total of
approximately 26us. This is over two orders of magnitude faster than the existing SRP
hardware architecture.

We are currently using SRP to develop a reconfiguration controller for a high I/O
reconfigurable crossbar switch[19]. The original reconfiguration controller was imple-
mented using external logic and memory. The data for the reconfiguration controller
was generated offline using JBits SDK. SRP should allow us to implement the recon-
figurable crossbar and controller on the same chip.

In conclusion, we have described a self-reconfigurable platform. SRP is an intel-
ligent subsystem for lightweight reconfiguration of Xilinx Virtex II and Virtex II Pro
FPGAs in embedded systems. The system enables self-reconfiguration under software
control within a single FPGA. SRP has a layered hardware and software architecture
that permits a variety of different interfaces to maximize flexibility and ease-of-use.
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