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ABSTRACT

This book presents an overview of the guidelines and strategies for transitioning an image

or video processing algorithm from a research environment into a real-time constrained en-

vironment. Such guidelines and strategies are scattered in the literature of various disciplines

including image processing, computer engineering, and software engineering, and thus have

not previously appeared in one place. By bringing these strategies into one place, the book is

intended to serve the greater community of researchers, practicing engineers, industrial profes-

sionals, who are interested in taking an image or video processing algorithm from a research

environment to an actual real-time implementation on a resource constrained hardware plat-

form. These strategies consist of algorithm simplifications, hardware architectures, and software

methods. Throughout the book, carefully selected representative examples from the literature

are presented to illustrate the discussed concepts. After reading the book, the readers are exposed

to a wide variety of techniques and tools, which they can then employ for designing a real-time

image or video processing system of interest.

KEYWORDS

Real-time image and video processing, Real-time implementation strategies, Algorithmic sim-

plifications for real-time image and video processing, Hardware platforms for real-time image

and video processing, Software methods for real-time image and video processing
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Preface

The relentless progression of Moore’s Law coupled with the establishment of international

standards for digital multimedia has served as the catalyst behind the ubiquitous dissemination

of digital information in our everyday lives in the form of digital audio, digital images, and more

recently, digital video. Nowadays, entire music libraries can be stored on portable MP3 players,

allowing listening to favorite songs wherever one goes. Digital cameras and camera-equipped

cell phones are enabling easy capturing, storing, and sharing valuable moments through digital

images and video. Set-top boxes are being used to pause, record, and stream live television signal

over broadband networks to different locations, while smart camera systems are providing peace

of mind through intelligent scene surveillance. Of course, all of these innovative multimedia

products would not have materialized without efficient, optimized implementations of practical

signal and image processing algorithms on embedded platforms, where constraints are placed

not only on system size, cost, and power consumption, but also on the interval of time in which

processed information must be made available. While digital audio processing presents its own

implementation difficulties, the processing of digital images and video is challenging primarily

due to the fact that vast amounts of data must be processed on platforms having limited

computational resources, memory, and power consumption. Another challenge is that the al-

gorithms for processing digital images and video are developed and prototyped on desktop PCs

or workstations, which are considered to be, in contrast to portable embedded devices, resource

unlimited platforms. Adding to this the fact that the vast majority of algorithms developed to

process digital images and video are quite computationally intensive, one requires to resort to

specialized processors, judicious trade-off decisions to reach an accepted solution, or even aban-

doning a complex algorithm for a simpler, less computationally complex algorithm. Noting that

there are many competing hardware platforms with their own advantages and disadvantages, it

is rather difficult to navigate the road from research to reality without some guidelines. Real-

Time Image and Video Processing: From Research to Reality is intended to provide such guidelines

and help bridge the gap between the theory and the practice of image and video processing

by providing a broad overview of proven algorithmic, hardware, software tools and strategies.

This book is intended to serve the greater community of researchers, practicing engineers, and

industrial professionals who deal with designing image and video processing systems and are

asked to satisfy strict system design constraints on performance, cost, and power consumption.
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1

C H A P T E R 1

Real-Time Image and Video

Processing Concepts

1.1 INTRODUCTION

The multidisciplinary field of real-time image and video processing has experienced a tremen-

dous growth over the past decade, as evidenced by a large number of real-time related articles

that have appeared in various journals, conference proceedings, and books. Our goal by writing

this book has been to compile in one place the guidelines one needs to know in order to take an

algorithm from a research environment into an actual real-time constrained implementation.

Real-time image and video processing has long played a key role in industrial inspection

systems and will continue to do so while its domain is being expanded into multimedia-based

consumer electronics products, such as digital and cell-phone cameras, and intelligent video

surveillance systems [20, 55, 150]. Of course, to understand such complex systems and the tools

required to implement their algorithms, it is necessary to start with the basics.

Let us begin by examining the underlying concepts that form the foundation of such

real-time systems. Starting with an analysis of the basic types of operations that are commonly

encountered in image and video processing algorithms, it is argued that the real-time processing

needs can be met through exploitation of various types of parallelism inherent in such algorithms.

In what follows, the concept of “real-time” as it pertains to image and video processing systems

is discussed and followed by an overview of the history of these systems and a glance at some of

the emerging applications along with the common types of implementation trade-off decisions.

This introductory chapter ends with a brief overview of the other chapters.

1.2 PARALLELISM IN IMAGE/VIDEO
PROCESSING OPERATIONS

Real-time image and video processing systems involve processing vast amounts of image data in

a timely manner for the purpose of extracting useful information, which could mean anything
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2 REAL-TIME IMAGE AND VIDEO PROCESSING: FROM RESEARCH TO REALITY

from obtaining an enhanced image to intelligent scene analysis. Digital images and video are

essentially multidimensional signals and are thus quite data intensive, requiring a significant

amount of computation and memory resources for their processing [15]. For example, take

a typical N × M digital image frame with P bits of precision. Such an image contains N ×
M × P bits of data. Normally, each pixel can be sufficiently represented as 1 byte or 8 bits, the

exception being in medical or scientific applications where 12 or more bits of precision may be

needed for higher levels of accuracy. The amount of data increases if color is also considered.

Furthermore, the time dimension of digital video demands processing massive amounts of data

per second. One of the keys to real-time algorithm development is the exploitation of the

information available in each dimension. For digital images, only the spatial information can be

exploited, but for digital videos, the temporal information between image frames in a sequence

can be exploited in addition to the spatial information.

A common theme in real-time image/video processing systems is how to deal with their

vast amounts of data and computations. For example, a typical digital video camera capturing

VGA-resolution quality, color video (640 × 480) at 30 fps requires performing several stages of

processing, known as the image pipeline, at a rate of 27 million pixels per second. Consider that in

the near future as high-definition TV (HDTV) quality digital video cameras come into the mar-

ket, approximately 83 million pixels per second must be processed for 1280 × 720 HDTV quality

video at 30 fps. With the trend toward higher resolution and faster frame rates, the amounts of

data that need to be processed in a short amount of time will continue to increase dramatically.

The key to cope with this issue is the concept of parallel processing, a concept well known

to those working in the computer architecture area, who deal with computations on large data

sets. In fact, much of what goes into implementing an efficient image/video processing system

centers on how well the implementation, both hardware and software, exploits different forms of

parallelism in an algorithm, which can be data level parallelism (DLP) or/and instruction level

parallelism (ILP) [41, 65, 134]. DLP manifests itself in the application of the same operation

on different sets of data, while ILP manifests itself in scheduling the simultaneous execution of

multiple independent operations in a pipeline fashion.

To see how the concept of parallelism arises in typical image and video processing al-

gorithms, let us have a closer look at the operations involved in the processing of image and

video data. Traditionally, image/video processing operations have been classified into three

main levels, namely low, intermediate, and high, where each successive level differs in its in-

put/output data relationship [41, 43, 89, 134]. Low-level operators take an image as their

input and produce an image as their output, while intermediate-level operators take an image

as their input and generate image attributes as their output, and finally high-level operators
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Controls

High level

Intermediate level

Low level
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Pixels

Pixels

FIGURE 1.1: Image processing operations pyramid

take image attributes as their inputs and interpret the attributes, usually producing some

kind of knowledge-based control at their output. As illustrated in Figure 1.1, this hierar-

chical classification can be depicted as a pyramid with the pixel data intensive operations at the

bottom level and the more control-intensive, knowledge-based operations at the top level with

feature extraction operations in-between the two at the intermediate level. Each level of the

pyramid is briefly explained here, revealing the inherent DLP in many image/video processing

operations.

1.2.1 Low-Level Operations

Low-level operations transform image data to image data. This means that such operators deal

directly with image matrix data at the pixel level. Examples of such operations include color

transformations, gamma correction, linear or nonlinear filtering, noise reduction, sharpness

enhancement, frequency domain transformations, etc. The ultimate goal of such operations is

to either enhance image data, possibly to emphasize certain key features, preparing them for

viewing by humans, or extract features for processing at the intermediate-level.

These operations can be further classified into point, neighborhood (local), and global

operations [56, 89, 134]. Point operations are the simplest of the low-level operations since

a given input pixel is transformed into an output pixel, where the transformation does not

depend on any of the pixels surrounding the input pixel. Such operations include arithmetic

operations, logical operations, table lookups, threshold operations, etc. The inherent DLP in

such operations is obvious, as depicted in Figure 1.2(a), where the point operation on the pixel

shown in black needs to be performed across all the pixels in the input image.
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(a)

Input image Output image

Output image

Input image

Input image

Output image

(b)

(c)

FIGURE 1.2: Parallelism in low-level (a) point, (b) neighborhood, and (c) global image/video processing

operations

Local neighborhood operations are more complex than point operations in that the trans-

formation from an input pixel to an output pixel depends on a neighborhood of the input

pixel. Such operations include two-dimensional spatial convolution and filtering, smoothing,

sharpening, image enhancement, etc. Since each output pixel is some function of the input pixel

and its neighbors, these operations require a large amount of computations. The inherent paral-

lelism in such operations is illustrated in Figure 1.2(b), where the local neighborhood operation

on the pixel shown in black needs to be performed across all the pixels in the input image.

Finally, global operations build upon neighborhood operations in which a single output

pixel depends on every pixel in the input image [see Figure 1.2(c)]. A prominent example of

such an operation is the discrete Fourier transform which depends on the entire image. These

operations are quite data intensive as well.

All low-level operations involve nested looping through all the pixels in an input image

with the innermost loop applying a point, neighborhood, or global operator to obtain the

pixels forming an output image. As such, these are fairly data-intensive operations, with highly

structured and predictable processing, requiring a high bandwidth for accessing image data. In

general, low-level operations are excellent candidates for exploiting DLP.

1.2.2 Intermediate-Level Operations

Intermediate-level operations transform image data to a slightly more abstract form of infor-

mation by extracting certain attributes or features of interest from an image. This means that
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such operations also deal with the image at the pixel level, but a key difference is that the trans-

formations involved cause a reduction in the amount of data from input to output. Intermediate

operations primarily include segmenting an image into regions/objects of interest, extracting

edges, lines, contours, or other image attributes of interest such as statistical features. The goal

by carrying out these operations is to reduce the amount of data to form a set of features suitable

for further high-level processing. Some intermediate-level operations are also data intensive

with a regular processing structure, thus making them suitable candidates for exploiting DLP.

1.2.3 High-Level Operations

High-level operations interpret the abstract data from the intermediate-level, performing high-

level knowledge-based scene analysis on a reduced amount of data. Such operations include

classification/recognition of objects or a control decision based on some extracted features. These

types of operations are usually characterized by control or branch-intensive operations. Thus,

they are less data intensive and more inherently sequential rather than parallel. Due to their

irregular structure and low-bandwidth requirements, such operations are suitable candidates

for exploiting ILP [20], although their data-intensive portions usually include some form of

matrix–vector operations that are suitable for exploiting DLP.

1.2.4 Matrix–Vector Operations

It is important to note that in addition to the operations discussed, another set of operations is

also quite prominent in image and video processing, namely matrix–vector operations. Linear

algebra is used extensively in image and video processing, and most algorithms require at least

some form of matrix or vector operations, even in the high-level operations of the processing

chain. Thus, matrix–vector operations are prime candidates for exploiting DLP due to the

structure and regularity found in such operations.

1.3 DIVERSITY OF OPERATIONS IN
IMAGE/VIDEO PROCESSING

From the above discussion, one can see that there is a wide range of diversity in image and

video processing operations, starting from regular, high data rate operations at the front end

and proceeding toward irregular, low data rate, control-intensive operations at the back end [1].

A typical image/video processing chain combines the three levels of operations into a complete

system, as shown in Figure 1.3, where row (a) shows the image/video processing chain, and
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capture:
reduction detection extraction

1

FIGURE1.3: Diversity of operations in image/video processing: (a) typical processing chain, (b) decrease

in amount of data across processing chain

row (b) shows the decrease in the amount of data from the start of the chain to the end for an

N × N image with P bits of precision [126].

Depending on the types of operations involved in an image/video processing system, this

leads to the understanding that a single processor might not be suitable for implementing a

real-time image/video processing algorithm. A more appropriate solution would thus involve a

highly data parallel front end coupled with a fast general-purpose back end [1].

1.4 DEFINITION OF “REAL-TIME”

Considering the need for real-time image/video processing and how this need can be met by

exploiting the inherent parallelism in an algorithm, it becomes important to discuss what exactly

is meant by the term “real-time,” an elusive term that is often used to describe a wide variety of

image/video processing systems and algorithms. From the literature, it can be derived that there

are three main interpretations of the concept of “real-time,” namely real-time in the percep-

tual sense, real-time in the software engineering sense, and real-time in the signal processing

sense.

1.4.1 Real-time in Perceptual Sense

Real-time in the perceptual sense is used mainly to describe the interaction between a human and

a computer device for a near instantaneous response of the device to an input by a human user.

For instance, Bovik [15] defines the concept of “real-time” in the context of video processing,

describing that “the result of processing appears effectively ‘instantaneously’ (usually in a perceptual

sense) once the input becomes available.” Also, Guy [60] defines the concept of “real-time image

processing” as the “digital processing of an image which occurs seemingly immediately; without a
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user-perceivable calculation delay.” An important item to observe here is that “real-time” involves

the interaction between humans and computers in which the use of the words “appears” and

“perceivable” appeals to the ability of a human to sense delays. Note that “real-time” connotes

the idea of a maximum tolerable delay based on human perception of delay, which is essentially

some sort of application-dependent bounded response time.

For instance, the updating of an automatic white balance (AWB) algorithm running on

a digital camera need not operate every 33 ms at the maximum frame rate of 30 fps. Instead,

updating at approximately 100 ms is sufficient for the processing to seem imperceptible to a

human user when white balance gains require adjustment to reflect the surrounding lighting

conditions. Thus, as long as the algorithm takes no longer than 100 ms to complete whatever

image processing the algorithm entails, it can be considered to be “real-time.” It should be

noted that in this example, in certain instances, for example low-light conditions, it might

be perfectly valid to relax the “real-time” constraint and allow for extra processing in order

to achieve better image quality. The key question is whether an end user would accept the

trade-off between slower update rates and higher image quality. From this discussion, one can

see that the definition of “real-time” is loose because the maximum tolerable delay is entirely

application dependent and in some cases the system would not be deemed a complete failure if

the processing happened to miss the “real-time” deadline.

1.4.2 Real-time in Software Engineering Sense

Real-time in the software engineering sense is also based on the concept of a bounded response

time as in the perceptual sense. Dougherty and Laplante [42] point out that a “real-time system

is one that must satisfy explicit bounded response time constraints to avoid failure,” further explaining

that “a real-time system is one whose logical correctness is based both on the correctness of the outputs

and their timeliness.” Indeed, while any result of processing that is not logically correct is useless,

the important distinction for “real-time” status is the all-important time constraint placed on

obtaining the logically correct results.

In software engineering, the concept of “real-time” is further classified based on the

strictness attached to the maximum bounded response time into what is known as hard real-

time, firm real-time, and soft real-time. Hard real-time refers to the case where if a real-time

deadline is missed, it is deemed to be a complete failure. Firm real-time refers to the case in which

a certain amount of missed real-time deadlines is acceptable and does not constitute failure.

Finally, soft real-time refers to the case where missed real-time deadlines result in performance

degradation rather than failure. In order to manage the priorities of different tasks of a system,
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real-time operating systems have been utilized to ensure that deadlines, whether hard, firm,

or soft, are met. From a software engineer point of view, the issue of real-time is more about

predictable performance rather than just fast processing [90].

1.4.3 Real-time in Signal Processing Sense

Real-time in the signal processing sense is based on the idea of completing processing in the

time available between successive input samples. For example, in [81], “real-time” is defined as

“completing the processing within the allowable or available time between samples,” and it is stated that

a real-time algorithm is one whose total instruction count is “less than the number of instructions

that can be executed between two consecutive samples.” While in [1], “real-time processing” is

defined as the computation of “a certain number of operations upon a required amount of input data

within a specified interval of time, set by the period over which the data arrived.” In addition to

the time required for processing, the times required for transferring image data and for other

memory-related operations pose additional bottlenecks in most practical systems, and thus they

must be taken into consideration [124].

An important item of note here is that one way to gauge the “real-time” status of an

algorithm is to determine some measure of the amount of time it takes for the algorithm to

complete all requisite transferring and processing of image data, and then making sure that it

is less than the allotted time for processing. For example, in multimedia display devices, screen

updates need to occur at 30 fps for humans to perceive continuous motion, and thus any picture

enhancement or other types of image/video processing must occur within the 33 ms time frame.

It should be pointed out that, in image/video processing systems, it is not always the case that

the processing must be completed within the time afforded by the inverse frame rate, as was

seen in the above AWB update example.

1.4.4 Misinterpretation of Concept of Real-time

A common misunderstanding regarding the concept of “real-time” is that since hardware is

getting faster and more powerful each year, “real-time” constraints can be met simply by using

the latest, fastest, most powerful hardware, thus rendering “real-time,” a nonissue. The problem

with this argument is that it is often the case that such a solution is not a viable one, especially

for consumer electronics embedded systems that have constraints on their total system cost and

power consumption. For instance, it does not make sense to bundle the engineering workstation

used to develop an image processing algorithm into a digital camera just for the purpose of

running the algorithm in real-time.
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1.4.5 Challenges in Real-time Image/Video Processing

Bearing in mind the above argument, developing a real-time image/video processing system

can be quite a challenge. The solution often ends up as some combination of hardware and

software approaches. From the hardware point of view, the challenge is to determine what

kind of hardware platform is best suited for a given image/video processing task among the

myriad of available hardware choices. From the algorithmic and/or software point of view,

the challenge involves being able to guarantee that “real-time” deadlines are met, which could

involve making choices between different algorithms based on computational complexity, using

a real-time operating system, and extracting accurate timing measurements from the entire

system by profiling the developed algorithm.

1.5 HISTORICAL PERSPECTIVE

The development of digital computers, electronic image sensors coupled with analog-to-digital

converters, along with the theoretical developments in the field of multidimensional signal

processing have all led to the creation of the field of real-time image and video processing.

Here, an overview of the history of image processing is stated in order to gain some perspective

on where this field stands today.

1.5.1 History of Image/Video Processing Hardware Platforms

The earliest known digital image processing, the processing of image data in digital form by a

digital computer, occurred in 1957 with the first picture scanner attached to the National Bureau

of Standards Electronic Automatic Computer (SEAC), built and designed by the scientists at

the United States National Bureau of Standards, now known as the National Institute of Stan-

dards and Technology [86]. This scanner was used to convert an analog image into discrete

pixels, which could be stored in the memory of the SEAC. The SEAC was used for early

experiments in image enhancement utilizing edge enhancement filters. These developments,

stimulated by the search for innovative uses of the ever-increasing computation power of com-

puters, eventually led to the creation of the field of digital image processing as it is known today.

Around the same time frame, in the 1960s, developments at NASA’s Jet Propulsion

Laboratory led to the beginning of electronic imaging using monochrome charge-coupled

device enabled electronic still cameras [56]. The need for obtaining clear images from space

exploration was the driving force behind the uses of digital cameras and digital image processing

by NASA scientists.
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With such technology at hand, new applications for image processing were quickly de-

veloped, most notably including among others, industrial inspection and medical imaging. Of

course, due to the inherent parallelism in the commonly used low-level and intermediate level

operations, architectures for image processing were built to be massively parallel in order to cope

with the vast amounts of data that needed to be processed. While the earliest computers used for

digital processing of images consisted of large, parallel mainframes, the drive for miniaturization

and advancements in very large scale integration (VLSI) technology led to the arrival of small,

power-efficient, cost-effective, high-performance processor solutions, eventually bringing the

processing power necessary for real-time image/video processing into a device that could fit in

the palm of one’s hand and go into a pocket.

It used to be that when an image/video system design required a real-time throughput,

multiple boards with multiple processors working in parallel were used, especially in military and

medical applications where in many cases cost was not a limiting factor. With the development

of the programmable digital signal processor (DSP) technology in the 1980s though, this

way of thinking was about to change. The following decade saw the introduction of the first

commercially available DSPs, which were created to accelerate the computations necessary for

signal processing algorithms. DSPs helped to usher in the age of portable embedded computing.

The mid-1980s also saw the introduction of programmable logic devices such as the field

programmable gate array (FPGA), a technology that desired to unite the flexibility of software

through programmable logic with the speed of dedicated hardware such as application-specific

integrated circuits. In the 1990s, there was further growth in both DSP performance, through

increased use of parallel processing techniques, and FPGA performance to meet the needs of

multimedia devices and a push toward the concept of system-on-chip (SoC), which sought to

bring all necessary processing power for an entire system onto a single chip. The trend for SoC

design continues today [71].

In addition to these developments, a recent trend in the research community has been to

harness the massive parallel computation power of the graphics processing units (GPUs) found

in most modern PCs and laptops for performing compute-intensive image/video processing al-

gorithms [110]. Currently, GPUs are used only in desktops or laptops, but pretty soon they are

expected to be found in embedded devices as well. Another recent development that started in

the late 1990s and early 2000s is the idea of a portable multimedia supercomputer that com-

bines the high-performance parallel processing power needed by low-level and intermediate

level image/video operations with the high energy efficiency demanded by portable embedded

devices [54].
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1.5.2 Growth in Applications of Real-time Image/Video Processing

Alongside the developments in hardware architectures for image/video processing, there have

also been many notable developments in the application of real-time image/video processing.

Lately, digital video surveillance systems have become a high-priority topic of research world-

wide [6, 16, 36, 37, 40, 45, 69, 98, 149, 155]. Relevant technologies include automatic, robust

face recognition [11, 28, 92, 112, 146], gesture recognition [111, 142], tracking of human or

object movement [9, 40, 61, 68, 76, 92, 102, 151], distributed or networked video surveillance

with multiple cameras [17, 37, 53, 75], etc. Such systems can be categorized as being hard

real-time systems and require one to address some difficult problems when deployed in real-

world environments with varying lighting conditions. Along similar lines, the development of

smart camera systems [20] can be mentioned, which have many useful applications such as lane

change detection warning systems in automobiles [133], monitoring driver alertness [72], or

intelligent camera systems that can accurately adjust for focus [52, 79, 115, 116], exposure [13,

78, 108], and white balance [30, 78, 108] in response to a changing scene. Other interesting

areas of research include developing fast, efficient algorithms to support the image/video coding

standards set forth by the standards committees [22, 26, 31, 33, 48, 57, 70, 73, 82, 87, 106,

144]. In the never ending quest for a perfect picture, research in developing fast, high-quality

algorithms for processing pictures/videos captured by consumer digital cameras or cell-phone

cameras [80] is expected to continue well into the future. Of course, the developments in indus-

trial inspection [25, 34, 67, 135, 147] and medical imaging systems [18, 23, 24, 44, 136, 143,

145] will continue to progress. The use of color image data [8, 85, 107, 109], or in some cases,

multispectral image data [139] in real-time image/video processing systems is also becoming

an important area of research.

It is worth mentioning that the main sources of inspiration for all the efforts in the

applications of real-time image/video processing are biological vision systems, most notably the

human visual system. As Davies [35] puts it, “if the eye can do it, so can the machine.” This

requires using our knowledge along with the available algorithmic, hardware, and software tools

to properly transition algorithms from research to reality.

1.6 TRADE-OFF DECISIONS

Designing real-time image/video processing systems is a challenging task indeed. Given a fixed

amount of hardware, certain design trade-offs will most certainly have to be made during the

course of transitioning an algorithm from a research development environment to an actual

real-time operation on some hardware platform. Practical issues of speed, accuracy, robustness,
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adaptability, flexibility, and total system cost are important aspects of a design and in practice,

one usually has to trade one aspect for another [35]. In real-time image/video processing systems,

speed is critical and thus trade-offs such as speed versus accuracy are commonly encountered.

Since the design parameters depend on each other, the trade-off analysis can be viewed as a

system optimization problem in a multidimensional space with various constraint curves and

surfaces [35]. The problem with such an analysis is that, from a mathematical viewpoint,

methods to determine optimal working points are generally unknown, although some progress

is being made [62]. As a result, one is usually forced to proceed in an ad hoc manner.

1.7 CHAPTER BREAKDOWN

It could be argued that we are at a crossroad in the development of real-time image/video

processing systems. Although high-performance hardware platforms are available, it is often

difficult to easily transition an algorithm onto such platforms.

The advancements in integrated circuit technology have brought us to the point where it is

now feasible to put into practical use the rich theoretical results obtained by the image processing

community. The value of an algorithm hinges upon the ease with which it can be placed into

practical use. While the goal of implementing image/video processing algorithms in real-time

is a practical one, the implementation challenges involved have often discouraged researchers

from pursuing the idea further, leaving it to someone else to discover the algorithm, explore

its trade-offs, and implement a practical version in real-time. The purpose of the following

chapters is to ease the burden of this task by providing a broad overview of the tools commonly

used in practice for developing real-time image/video processing systems. The rest of the book

is organized as follows:

• Chapter 2: Algorithm Simplification Strategies

In this chapter, the algorithmic approaches for implementing real-time image/video

processing algorithms are presented. It includes guidelines as how to speed up commonly

used image/video processing operations. These guidelines are gathered from the recent

literature spanning over the past five years.

• Chapter 3: Hardware Platforms for Real-Time Image and Video Processing

In this chapter, the hardware tools available for implementing real-time image/video

processing systems are presented, starting from a discussion on what kind of hardware

is needed for a real-time system and proceeding through a discussion on the processor

options available today such as DSPs, FPGAs, media-processor SoCs, general-purpose
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processors, and GPUs, with references to the recent literature discussing such hardware

platforms.

• Chapter 4: Software Methods for Real-Time Image and Video Processing

This chapter covers the software methods to be deployed when implementing real-time

image/video processing algorithms. Topics include a discussion on software architecture

designs followed by a discussion on memory and code optimization techniques.

• Chapter 5: The Road Map

The book culminates with a suggested methodology or road map for the entire process

of transitioning an algorithm from a research development environment to a real-time

implementation on a target hardware platform using the tools and resources mentioned

throughout the previous three chapters.
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C H A P T E R 2

Algorithm Simplification Strategies

2.1 INTRODUCTION

An algorithm is simply a set of prescribed rules or procedures that are used to solve a given

problem [103, 130]. Although there may exist different possible algorithms for solving an

image/video processing problem, when transitioning to a real-time implementation, having

efficient algorithms takes higher precedence. Efficiency implies low computational complexity

as well as low memory and power requirements. Due to the vast amounts of data associ-

ated with digital images and video, developing algorithms that can deal with such amounts

of data in a computational, memory, and power-efficient manner is a challenging task, es-

pecially when they are meant for real-time deployment on resource constrained embedded

platforms.

Since algorithms are usually prototyped in development environments not suffering from

resource constraints, they often have to be “optimized” for achieving real-time performance on

a given hardware platform. While special hardware and software optimization techniques can

be used to realize a real-time version of an algorithm, in general, greater gains in performance

are obtained through simplifications at the algorithmic level [1, 124]. Such modifications or

simplifications performed at the algorithmic level help to streamline the algorithm down to its

core functionality, which not only leads to a lower computational complexity but also to lower

memory and power requirements.

Thus, the very first step in transitioning an algorithm from a research environment to a

real-time environment involves applying simplification strategies to the algorithm. It is more

effective to perform these simplifications while still working in the research development en-

vironment, which possesses a higher design flexibility over the implementation environment.

As the first step toward transitioning an algorithm to a real-time implementation, this chapter

presents the strategies to achieve algorithmic simplifications along with relevant examples from

the literature to exhibit successful applications of the strategies.
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2.2 CORE SIMPLIFICATION CONCEPTS

Examining the literature on real-time image and video processing reveals three major concepts

addressing algorithmic simplifications. These strategies include the following:

• reduction in number of operations;

• reduction in amount of data to be processed; and

• utilization of simple or simplified algorithms.

Reductions in operations and in amount of data to be processed are the most common simpli-

fication strategies for transitioning an algorithm to a real-time implementation. While there

are many different manifestations of the reduction strategies, the discussion here provides a

general classification of the strategies that are scattered throughout the literature. Each of these

concepts will be expanded upon in the following subsections.

2.2.1 Reduction in Number of Operations

Due to the enormous amount of data involved in image/video processing, every operation counts,

especially the time-consuming operations at the lower levels of the processing hierarchy. Thus,

reduction in the number of operations plays a major role in achieving real-time performance.

2.2.1.1 Pure Operation Reduction

The strategy of pure operation reduction involves applying a transformation to reduce the num-

ber of operations, which does not change the numerical outcome. If the numerical outcome is

changed, then the approach is referred to as either an approximation or a suboptimal/alternative

solution as discussed in the next subsection. Any operation that has inherent symmetries or re-

dundancies in its constituent computations is a candidate for applying this strategy. Application

of this strategy manifests itself in uncovering hidden symmetries or redundancies within the

computations, which can often be discovered by expanding the computations by hand and

carefully noting any mathematical identities or properties [1].

An example of the reduction in number of operations through inherent computation sym-

metries or redundancies can be found in sliding window operations. Oftentimes, the extraction

of local statistics via sliding windows involves a heavy amount of redundant computations that

can be reduced by formulating a recursive approach. A common technique is to keep a running

accumulator, where new results are obtained by subtracting the results of the leftmost column of

the sliding window from the accumulator, sliding the window to the right to the next position,

and adding the result of the new set of pixels in the rightmost column of the window to the
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accumulator. Another example of reduction in the number of operations arises in linear filtering

utilizing a specific filter kernel. Symmetries in kernel coefficients can be used to reduce the

amount of computations without changing the numerical outcome. Reduction of computations

can also be achieved by rearranging or regrouping the computations such that the occurrence

of the more time-consuming operations such as multiplication and division is reduced.

Throughout the literature, time-consuming operations including multiplication and di-

vision as well as other so-called “expensive” operations are considered the main targets for

reduction. These operations are regarded as “expensive” due to the fact that they usually require

more time to execute than other operations such as addition or bit-shifting. Thus, they present

obstacles to achieving real-time performance. Researchers often seek to restructure an algorithm

in such a way to reduce the amount of multiplications or divisions, sometimes even replacing

these operations with simple bit-shifting to carry out multiplications or divisions by powers

of 2. The use of computationally simple operations is one of the key steps toward achieving

real-time performance. Other times, a calculation can be cleverly factored, causing a reduction

in the number of operations [12].

2.2.1.2 Operation Reduction Through Approximations

The strategy of approximations is similar to the strategy of reduction in computations in that

approximations involve applying transformations to reduce the number of operations, but it

differs from pure computational reduction due to the presence of approximation errors. The

main objective of this strategy is to minimize errors as much as possible, thus obtaining sub-

optimal results within an acceptable interval of time. Consequently, in this strategy, one seeks

a trade-off between the accuracy of the outcome and the speed at which it is obtained. In

fact, a real-time performance is often obtained by trading off accuracy of processing with

speed of processing, where an “optimal” working point is found through experimentation.

Examples of this strategy include the use of lookup tables for computationally complex calcula-

tions, the use of a suboptimal search technique over a time-consuming, exhaustive search tech-

nique, the use of sums of absolute values over time-consuming squaring operations, and many

others.

2.2.1.3 Alternative Method

Choosing an alternative method is a strategy that involves searching for a new algorithm in

order to attain faster processing while at the same time maintaining a required level of accuracy.

This strategy is similar to the strategy of approximations, except that it is used primarily when

the algorithm is too computationally complex for any approximations or reductions to yield
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an acceptable real-time performance. Basically, this strategy involves abandoning the compu-

tationally complex algorithm in favor of one that is less computationally complex. A simpler

algorithm is often developed by careful consideration of data to be processed and properties of

the objects being sought out.

2.2.2 Reduction in Amount of Data

In addition to the reduction of operations, the reduction of data to be processed also plays a

major role toward having real-time performance. This is simply because such systems require the

processing of large amounts of data in relatively short intervals of time, and thus any reduction

in the amount of data can lead to a reduction in the processing time. This strategy involves

applying a transformation to the underlying image data for the purpose of deriving a compact

representation, which in turn speeds up subsequent stages of processing. Reduction of data

takes many forms in real-time image/video processing systems including spatial or temporal

down-sampling, spatial block partitioning, region of interest or selective processing, formulating

the algorithm in a multiresolution or coarse-to-fine processing framework, appropriate feature

extraction, etc. In all these cases, a certain subset of pixels from an image frame is processed.

2.2.2.1 Spatial Down-Sampling, Selective Processing, and Coarse-to-fine Frameworks

Spatial down-sampling involves skipping the processing of a certain amount of pixels within

a frame, while temporal down-sampling involves skipping the processing of an entire frame

within a video sequence. It should be noted that such down-sampling may not be applicable

in certain applications. Spatial block partitioning involves dividing up an image frame into

nonoverlapping or overlapping blocks, and separately processing each block. Region of interest

or selective processing involves applying complex computations only to a desired subset of the

image data, providing a speedup in processing by narrowing down the region of interest. A

multiresolution or coarse-to-fine framework involves formulating an algorithm where a rough

estimate is first obtained at a coarse resolution level and then subsequently refined at increasing

levels of resolution to allow a rapid convergence to the solution.

2.2.2.2 Compact Representation Through Appropriate Features

Selection of appropriate features to represent objects of interest helps one to cut down the amount

of extraneous information, providing a succinct representation of information which in turn

simplifies higher level operations such as Kalman filter tracking. Effective features depend on the

application and the objects involved. For instance in face detection applications, color has been

found to be an effective feature for real-time deployment. Of course, there is a computational
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burden associated with the extraction of features from image/video sequences. Hence, another

important aspect involves not only finding effective features but also fast mechanisms to compute

them.

Automatic algorithms that require less human intervention and fewer or no user-defined

thresholds or parameters are also preferred because such algorithms can adapt to different situ-

ations automatically, leading to a truly stand-alone real-time system, which is the ultimate goal

of most practical designs [6]. Clearly, the adaptation schemes should be kept computationally

simple and not burden the rest of the algorithm. In addition to this, since real-time image/video

processing systems are usually employed in real-world environments, in many cases, data pre-

processing is performed to remove unwanted disturbances such as noise to ensure generating a

reliable outcome. Similar to any other component, the preprocessing should also be as compu-

tationally efficient as possible.

2.2.3 Simplified Algorithms

In general, the fundamental idea behind real-time image/video processing systems is the uti-

lization of simple or simplified algorithms. A rule of thumb when transitioning to a real-time

implementation is to keep things as simple as possible, that is to say, look for simple solutions

using simple operations and computationally simple algorithms as opposed to complex, com-

putationally intensive algorithms, which may be optimal from a mathematical viewpoint, but

are not practical from a real-time point of view. With embedded devices now being outfitted

with vision capabilities, such as camera-equipped cell phones and digital still/video cameras, the

deployment of those algorithms which are not only computationally efficient but also memory

efficient is expected to grow. Often, algorithms are carefully analyzed in terms of their number

of operations and computational complexity, but equally important are their storage require-

ments. In essence, simple algorithms provide a means of meeting real-time performance goals

by lowering computational burdens, memory requirements, and indirectly, power requirements

as well.

2.3 EXAMPLES OF SIMPLIFICATIONS

To help illustrate the three stated algorithm simplification strategies toward achieving a real-time

implementation, the following subsections present representative examples from the literature,

which exhibit successful applications of the strategies.
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2.3.1 Reduction in Number of Operations

2.3.1.1 Pure Reduction

The strategy of pure operation reduction has been used by many researchers to simplify algo-

rithms for real-time implementation. This strategy has been primarily used for algorithms with

repetitive, well-structured computations in low-level operations, such as filtering, transforms,

matrix–vector operations, and local statistics extraction. This subsection includes several exam-

ples illustrating the strategy of pure operation reduction.

Exploiting any available symmetry in the computations involved can often lead to pure

operation reduction. For instance, in [87], the symmetry of the coefficients of linear-phase fil-

ters in the biorthogonal wavelet transform allowed streamlining the computation of the forward

and inverse transforms into a single architecture while reducing the number of expensive mul-

tiplication operations. This produced a more efficient transform computation. Other common

techniques used for reducing the number of multiplication operations in linear filtering include

making use of the separability of the kernel involved, or eliminating multiplications by ones or

zeros [99].

Computations can often be cleverly rearranged or factored to reduce the number of

operations. One example of this can be found in [106], where the symmetry in the elements of

the discrete cosine transform (DCT) matrix allowed rearranging the computations, reducing the

number of expensive multiplication as well as addition operations. As a result, a more efficient

transform was achieved through this operation reduction.

Another possible way to achieve pure operation reduction in matrix computations encoun-

tered in image/video processing algorithms is to seek out encoding schemes that can transform

a matrix into a sparse matrix. For example, in [48], an exact two-dimensional (2D) polynomial

expansion in terms of integer coefficients provided a sparse representation of the elements of

the DCT matrix. This allowed a more efficient computation by replacing expensive multipli-

cation operations with simple bit-shift and addition operations and reducing the number of

multiplications as well as additions. Another popular technique to reduce the amount of op-

erations in matrix computations involves exploiting matrix properties. For example, in [74],

a rearrangement of the equations for a 2.5D affine motion parameter estimation allowed an

efficient solution via an orthogonal matrix factorization using a Householder transformation,

thus reducing the computation operations over that of a 2D affine estimation.

Many times, an efficient computational structure derived from digital signal processing

theory can be utilized to achieve a reduction in the number of operations. For example, in [94],

a one-dimensional (1D) infinite impulse response filter provided a reduction in the number of
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expensive multiplication operations per pixel over that of a 1D finite impulse response filter

in addition to saving memory space via using a lower order filter. These changes led to an

efficient scan-line-based image enhancement at video rates. Another example of this approach

can be found in [88], where the relationship between the computation structure of discrete,

geometric moments and that of all-pole digital filters was exploited, allowing the computation

of any order geometric moment using a series of accumulators. This resulted in a significant

reduction in the number of multiplications and thus allowed real-time computation of geometric

moments.

In addition to multiplication operations, reduction in the number of comparison oper-

ations may also be useful. For instance, in [57], it was reported that the comparison opera-

tions had a greater computational cost than that of the addition and subtraction operations in

the sum-of-absolute difference (SAD) computation for determining motion vectors as part of

a block-matching method. In order to reduce the number of comparisons to determine the

minimum of the SAD error surface, the order in which the SADs were calculated was modified

from the standard scan-line order to a circular, spiraling inward order. This allowed comparing

the SAD values only twice per spiral, providing up to a 14% decrease in comparison operations

per frame with virtually no noticeable loss in image quality. Thus, changing the order by which

a computation is carried out may lead to a reduction in the number of operations.

Exploiting recursion in a computation can be quite useful toward reducing the number of

operations in certain data-intensive, low-level image processing tasks. This technique capitalizes

on the redundancies present in adjacent computations. For example, in [84], a recursion in the

computation of local variances was used to reduce the redundant computations by adding the

values of a right strip and subtracting the values of a left strip. This provided a significant

speedup from 112 to 3.28 ms, thus achieving the required real-time performance.

Similarly, in [7], a recursion in the correlation computation as part of a similarity measure

for stereo image matching was used to reduce the amount of redundant computations for adjacent

pixels in overlapping windows. A noteworthy discussion detailing the generalization of this

approach to higher dimensions can be found in [137], where the 2D sliding window recursion

equation was generalized to N-dimensional images. This recursion reduced the redundant

operations in computing local statistics and provided a speedup that was independent of the size

of the window. In [122], the strategy of recursion was applied to the computation of histogram

statistics, where the computation of local histogram statistics was performed recursively and

then generalized to N-dimensional images. This provided a remarkable speedup, 63 ms as

compared to 2 min, leading to real-time color histogram matching.
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2.3.1.2 Reduction via Approximations

When it comes to real-time implementation, sometimes sacrifices in accuracy have to be made

in order to achieve the required performance. In fact, most algorithms that are transitioned to

a real-time environment are simplified using various approximations.

Approximations are often used for reducing the computations in transform operations.

For instance, in [33], approximating the DCT computations by using up to three biorthogonal

matrices led to replacing expensive multiplication operations with bit-shifting and addition

operations. The approximation could be varied between two or three matrices, producing trade-

offs between speed and accuracy. A high-performance version was able to process one 8 × 8

image block using less than one processor clock cycle per pixel.

Approximating computations by utilizing simple operations is often used to reduce the

amount of processing time. In [131], simplifying the computations for computing the gradient

image via a nonlinear filter led to the speedup needed to achieve an efficient real-time implemen-

tation of the noise-robust image enhancement procedure. Two key algorithmic simplifications

that were made included approximating the quadratic filter using a normalized squared-gradient

computation and replacing the normalization of the filter output by a power of 2 division. The

loss in accuracy due to the division operation was kept low by considering the maximum value of

the filter output for different images in the test set. Another example that utilized this approach

can be found in [63], where approximating 2D optical flow with two, simpler 1D flow com-

putations provided a significant reduction in the processing time which allowed generating the

motion model parameters in real-time. In order to account for the loss in accuracy due to the

approximation, a fast iterative least-squares formulation was used to subsequently refine the ap-

proximation within ten iterations, providing a real-time throughput around 10–20 fps. Also, in

[66], a subpixel edge detector was simplified by approximating a critical but expensive division

operation via a simple iterative minimization procedure using integer arithmetic.

In some cases, the processing resources are so scarce that a desired computation cannot be

fully realized without some simplifying approximation. For example, in [152], the computations

required for applying a large 13 × 13 filter kernel had to be approximated by using two sequential

passes of a smaller 7 × 7 filter kernel due to a lack of processing resources supporting larger

kernels. The approximation did not have any detrimental effect on the outcome of the object

tracking system under consideration.

Discarding computations to reduce the number of expensive operations is often used as a

simple means of achieving algorithmic simplification through approximation. For instance, in

[120], the computations involved in three-dimensional (3D) nonlinear filtering operations for
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the suppression of impulsive noise were simplified by using only a certain subset of the volume

elements in the 3D filter kernel. This led to an acceptable processing speed while maintaining

sufficient noise suppression characteristics. In [73], another application of discarding compu-

tations consisting of a partial decoding of an encoded image or video sequence was discussed.

In order to provide a real-time performance for viewing MPEG-2-encoded DVD movies on

low-resolution mobile handsets, the expensive full-decode operation was approximated by keep-

ing only the DC and a certain number of AC coefficients, and discarding the rest. The number

of discarded coefficients could be varied to achieve a desired speed versus quality trade-off. As

an example, one of the presented simplifications used three AC coefficients and required only

7 multiplications and 10 additions versus 4096 multiplications and 4032 additions for the full

decoding of one block.

Oftentimes, a function evaluation is approximated as a lookup table, essentially trading

off the time spent in computations with the time spent in accessing values from the memory

space. This can help one to achieve a real-time performance. One good example of this lookup

table approach involves the computation of the entropy function. In [23], in order to reduce

the error in the approximation, a multiresolution lookup table was considered using a higher

resolution for the portion of the function that incurred a larger error.

Formulating an algorithm in an evolutionary manner may also provide different degrees

of approximation. For example, in [133], in order to have a real-time tracking algorithm for

an automobile obstacle avoidance warning system, the matching stage was approximated by

formulating it in an evolutionary manner where the matching improved by increasing the

processing time. Formulating an algorithm in this manner allows the simplification in compu-

tations to be performed according to the time made available for processing and thus ensures

an acceptable outcome while meeting hard real-time constraints.

2.3.1.3 Reduction via Alternative Methods

Sometimes an algorithm may be too computationally complex to warrant exploration of com-

putational reduction strategies. In such cases, it is often desired to develop a computationally

simple algorithm that can reduce the complexity while at the same time maintain the high level

of accuracy of the original algorithm. In [29], one good example was presented that involved

the development of an efficient line detection algorithm. In this work, it was decided to aban-

don the use of computationally expensive Hough transform techniques in favor of a simpler

algorithm by exploiting the underlying geometry of the objects under consideration. This al-

ternative, simple algorithm was based on the idea that the area formed by three colinear points
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is zero. This geometric property allowed utilizing a computationally simple means of detecting

lines in images, which led to a real-time deployment. Another example of using an alternative,

simple algorithm that achieved a real-time performance appears in [111]. In this algorithm, the

operation of fitting an ellipse to extract contour points for a human gesture tracking system was

found to be the bottleneck. It was decided to replace the original algorithm, which required an

expensive Levenberg–Marquardt-based fitting procedure, with an alternative moments-based

algorithm. This replacement produced a significant speedup in the ellipse fitting procedure.

Thus, sometimes it is beneficial to consider alternative formulations of an algorithm to address

its real-time performance bottlenecks.

2.3.2 Reduction of Data

Reduction in the amount of data to be processed plays a prominent role for bringing image/video

processing algorithms into real-time, and there are many examples given in the literature showing

how to use this strategy to simplify an algorithm toward reaching a real-time performance.

Reducing the amount of data upfront allows one to speed up subsequent stages of processing.

Also, it indirectly allows one to use more complex processing during subsequent stages of

processing.

2.3.2.1 Subsampling

One of the simplest and most effective approaches involves applying spatial or temporal sub-

sampling of the incoming image frame or video sequence. The objective here is to reduce the

amount of data to be processed and thus to obtain a speedup for subsequent stages of processing.

There are many examples involving spatial subsampling. For example, in [25], subimages were

reduced in size to 20 × 20 pixels before being subjected to classification processing in order to

meet the hard real-time performance demands of an industrial inspection system. In another

application involving obstacle detection, the input image was subsampled to reduce the size by

a factor of 2, after having been spatially low-pass filtered for reducing the effects of aliasing.

Spatial subsampling has also been found to be useful for speeding up face recognition systems on

embedded platforms. In [146], to meet the real-time performance requirements, input images

of size 320 × 240 were downscaled to 80 × 60 to help speed up the discussed face recognition

system. Similarly, in [11], input images of size 640 × 480 were downsized to 128 × 128 to help

speed up the subsequent processing.

Another benefit of spatial subsampling involves reducing the number of points to search

for object detection in industrial inspection systems. In such applications, it has been shown
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that subsampling can provide a speedup up to 25 times [34]. Naturally, temporal subsampling

can be applied to the processing of video sequences. For example, in [142], it was suggested

that a complex range or scene depth computation could be performed for every nth incoming

frame instead of every frame in order to meet the real-time requirement of a gesture tracking

algorithm. Of course, it should be pointed out that such methods do impart a certain loss in

accuracy due to the discarding of some of the original data. Hence, it is best to explore several

different subsampling intervals to determine the right balance between speed and accuracy. Also

of note here is that in some cases, spatial subsampling might not be appropriate. In such cases,

one may formulate the problem as a scalable algorithm [62]. This approach involves creating a

quality control module to manage the processing for achieving a certain level of output quality

according to the availability of system resources.

2.3.2.2 Partitioning

Another simple method of reducing the amount of data to be processed involves partitioning an

image frame into smaller subimages that can each be processed at a faster speed than the entire

image frame. This is similar to the divide-and-conquer strategy where the problem is divided

into several smaller problems that are easier to solve [103, 130]. The most popular partitioning

schemes include row-wise, column-wise, and block-wise. A good example appearing in [144]

covers the computation of the discrete biorthogonal wavelet transform (DBWT) for high-

definition TV compression. Due to the large data set involved, real-time processing was not

feasible without partitioning a frame into nonoverlapping, square subimages and calculating

the DBWT separately on each subimage. In another application discussed in [47], the image

frame was partitioned into vertical strips in order to process the image in parallel on multiple

processors. This generated a real-time implementation of the à trous wavelet transform. In

the face detection algorithm covered in [112] for an embedded device, the input image was

partitioned into nonoverlapping subimages, the size of which was chosen to balance the gain

in speed versus the accuracy of detection. In another example mentioned in [8], it was found

that partitioning the input image into subimages enabled the real-time implementation of the

most time-consuming portion of a color-quantization algorithm. Since edge artifacts could

be present between adjacent subimages, an overlapping partitioning scheme can be employed,

thus producing a trade-off between speed and artifact suppression [35]. In [31], an overlapped

block-partitioning scheme was used to correct for processing across partition borders in a wavelet

transform computation.
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2.3.2.3 Selective Processing

Selective processing is another popular data reduction method that involves narrowing down the

region of interest before applying any subsequent processing. As a result, only a certain subset

of the entire image is processed, hence the name selective processing. For example, in [125], in

locating an object of interest to subpixel accuracy, instead of applying subpixel calculations on the

entire image first and then locating the object of interest, the location was first narrowed down

to a specific area, after which appropriate computations were performed to refine this location to

subpixel precision. In this case, narrowing down the area of interest helped to reduce the amount

of data to be processed by the subpixel refinement stage, thus generating a real-time subpixel

accurate object detection. Similarly, in another application involving the use of range data for

gesture tracking [142], the range data was calculated only for selected regions of interest and

not for the entire image. Therefore, if computationally complex processing cannot be avoided

to save processing time, it is best to apply such processing only to the areas of interest and not

to the entire image.

2.3.2.4 Determining and Using Appropriate Features

Determining and using appropriate image features instead of images themselves provide an

effective way to reduce the dimensionality of image data to be processed, thus speeding up

subsequent processing stages. Here, 11 examples exhibiting this approach are mentioned, each of

which played a crucial role in achieving a real-time performance in their respective applications.

• In [40], coarse motion features were preferred over dense features since it was found

that dense features provided unnecessary tracking accuracy for the video surveillance

application under consideration while demanding too much processing time.

• In [102], marker features, which were physically placed on the objects to be tracked,

were found to be appropriate features to obtain a real-time performance in the discussed

constrained object tracking application. Such features allowed an object to be quickly

identified by its unique marker features.

• In [93], contour features were seen to provide a more compact representation over mesh

features, achieving a real-time performance in calculating deformation parameters for

a 3D face modeling application.

• In [97], Gabor wavelet features were shown to provide a better baseline feature set over

those from an eigen-decomposition method for a face detection application. The use of
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such features allowed the elimination of time-consuming pre- and postprocessing stages,

cutting down on the amount of processing and thus leading to real-time performance.

• In [151], the head contour was found to be an appropriate feature to be used for tracking

human heads that turned around, considering a lack of texture features for utilizing a

texture-based head tracking. The use of such features allowed the construction of a fast

algorithm for tracking the displacement of the contours between subsequent frames.

This in turn led to real-time throughput.

• In [9], motion and head shape features were found to be appropriate for a head detection

and tracking algorithm. The use of the circle shape to represent the shape of the head

allowed utilization of a fast Hough transform algorithm for real-time performance.

• In [155], features reflecting human visual perception or features that humans can use

to distinguish between a moving object and its shadows such as color and texture-

based features were found to be the most appropriate features for the object tracking

application under consideration.

• In [68], contour features were used to enable a real-time object tracking via capturing

the essential shape information. It was shown that contour features could be efficiently

represented using a radial-based representation, which required a small amount of

computations to update.

• In [105], distance-independent features were considered to be the right kind of features

for a real-time recognition application with objects placed at varying distances. These

features allowed objects at varying distances to be represented by a fixed amount of

pixels, which in turn helped to speed up the subsequent matching algorithm and to

achieve real-time recognition.

• In [121], DCT coefficients and motion vectors were utilized to achieve a real-time video

object segmentation using MPEG-encoded video sequences. The use of these features

allowed the construction of a feature vector that succinctly captured the frequency-

temporal characteristics of the image blocks, providing a 320:1 reduction in the amount

of data for a typical 352 × 288 color video sequence. This in turn helped to construct

an efficient algorithm for segmenting video objects without resorting to the computa-

tionally expensive full decoding.

• Color features have been found to be useful in many human detection and tracking

applications over those obtained from gray-level images. For example, in [75], color-

based features were preferred over gray-level-based features due to their robust tracking
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performance in the face of poor conditions such as sudden changes in lighting. Also, in

[92] and [28], skin color features were found to be the most appropriate for face detection

applications. To balance out the increase in the amount of data to be processed due to

the use of color information, it has been recommended to subsample color images to

allow for faster processing [75].

2.3.2.5 Dimensionality Reduction

After having determined appropriate features to use, it is often helpful to further reduce the

amount of data by applying dimensionality reduction techniques, such as principal component

analysis (PCA), linear discriminant analysis (LDA), or a Kohonen self-organizing map (SOM).

There are many examples in the literature that employ such techniques. For instance, in [27],

the Kohonen SOM neural network was used to reduce the dimension of a feature vector to help

speed up the subsequent processing, while in [76], PCA was employed for the same purpose.

In [139], a combination of PCA and LDA was used to reduce the amount of data, providing

a better separation of classes and thus easing the task of the subsequent classifier. Also, in

[109], the dimensionality of chrominance feature vectors extracted from a 2D chrominance

histogram was reduced by modeling the histogram as a multivariable Gaussian distribution and

then applying PCA to remove the correlation in the two components. This allowed the use of

1D marginal statistics of each component instead of 2D statistics.

Dimensionality reduction has also been used when dealing with color images. When

dealing with color image data, researchers have often made use of normalized 2D color spaces

as opposed to 3D color spaces to achieve real-time implementations. For instance, in the face

recognition application discussed in [28], the 2D normalized r–g color space was used, saving

computations by reducing the 3D color space by one dimension. Also, reducing a three-channel

color image to a one-channel image can sometimes serve as a means of achieving a real-time

performance through dimensionality reduction. For instance, in [141], a moment-preserving

threshold scheme was used to reduce a three-channel color image to a one-channel image by

taking into account the correlation amongst the three color channels.

2.3.2.6 Multiresolution or Coarse-to-fine Processing

The technique of casting a complex problem into an appropriate multiresolution or coarse-to-

fine processing framework can often provide a reduction in data and computation through quick

determination of a rough or low-resolution solution and its subsequent refinement at higher

resolutions.
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Optimization involving the global minimization of a parameter over some error surface

arises often in image/video processing algorithms. To overcome difficulties in reaching the

global minimum, the optimization can be performed using a multiresolution framework. The

advantage of this framework is that at lower resolutions, the error surface is smoother and

contains fewer local minima, allowing the use of fast methods to quickly find a rough solution.

This solution can then be propagated to a higher resolution with a reduced search range around

the location of the rough solution. Such a scheme reduces the amount of data used to reach

a solution. While it can provide a fast means of reaching a reasonable solution, it does not

guarantee convergence to the true global solution. Thus, this framework can be considered to

provide a fast, but suboptimal solution—which can be regarded as another example of the speed

versus accuracy trade-off often encountered in real-time image/video processing systems. One

successful example of the multiresolution framework applied to the optimization of a functional

can be found in [129], where such a framework was utilized to generate panoramic ultrasound

images in real-time.

Similar to a multiresolution framework, coarse-to-fine processing involves formulating a

problem by quickly determining a rough solution during a first processing pass and then subse-

quently refining it during a second processing pass. In [72], such a framework was developed

for an object tracking application, where a Kalman filter was used to roughly determine and

subsequently refine the position of an object of interest. The predicted location was used as a

rough estimate, and the prediction uncertainty was used to limit the search area for refinement

processing. This reduced the amount of data to be searched in every frame and thus led to

real-time performance.

2.3.3 Simple Algorithms

In order to meet real-time requirements, many researchers divide problems into stages composed

of computationally simple operations. Simple operations include the use of binary, morpho-

logical, frame differencing, and various other computationally efficient operations. Due to the

fact that such algorithms are often employed in real-world situations, they often have to be

made robust to noise sources or disturbances in the scene such as changes in lighting condi-

tions, or low-contrast scenes. The algorithm used to achieve a robust performance must also

be computationally simple, and preferably fully automatic with little human intervention in

the setting of thresholds or parameters. In the formulation of such an algorithm, a trade-off

analysis between speed and accuracy needs to be performed in order to find a balance between

achieving real-time performance and robustness to disturbances in the scene. Of course, the
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use of appropriate features that are robust to disturbances can help. It should be noted that

the construction of simple or simplified algorithms involves both the use of computational and

data reduction simplification strategies mentioned in the previous sections. Four examples are

presented next to illustrate the practical usefulness of such simple algorithms.

The tracking of objects within sequences of images has long been an important problem

in image/video processing. For example, in [61], a simple algorithm for tracking an object based

on template matching was presented. To provide a more robust operation to changes in object

shape, a rather simple extended snake algorithm was employed. First, the object was extracted

by using simple frame differencing and applying simple morphological closing on the result to

merge homogenous regions. Then, a data reduction procedure was done by using an appropriate

feature to succinctly represent the object and provide control points for the snake algorithm.

The use of simple algorithms during each stage allowed achieving robust real-time tracking.

The increase in the practical applications of face detection and recognition has increased

the interest in their real-time implementations. Such implementations are possible via the use

of simple algorithms. For instance, in [92], a simple algorithm for face detection based on

the use of skin color features was discussed. In order to make the detection algorithm robust

to regions in the background with skin-like colors, a simplified method was developed. First,

motion detection via a simple frame differencing operation was used to distinguish the hu-

man face from the background. Then, to reduce the noise in the difference image, a simple

morphological opening operation was used. Finally, a simple labeling operation was used to

determine the region where the face was located. Again, the use of simple algorithms dur-

ing the various stages of the image processing chain allowed achieving robust real-time face

detection.

Industrial inspection systems are known for their strict hard real-time deadlines, forc-

ing developers to devise algorithms with simple operations. For example, in [147], a simple

algorithm for the extraction of paper watermarks as part of a defect inspection system was

introduced. Due to the real-time constraints involved, a simple morphological white top-hat

operation was used to extract the watermarks. This simple operation was found to be not only

fast, but also robust to disturbances such as uneven illumination and low-contrast watermarks.

In this case, the morphological operations provided a means of obtaining real-time performance.

Similarly, in [135], simple defect location and feature extraction algorithms were employed to

meet the hard real-time constraints in an industrial inspection system. In order to speed up the

location detection process, the image was first binarized to find a rough estimate of the location

of the defect. This rough location was then propagated to the full-resolution image, and a region
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around this location was selected for feature extraction. A simple gray-level difference method

was used to extract texture features from the narrowed down defect region. The use of relatively

simple operations enabled the real-time detection of defects and extraction of features for the

subsequent classification.

2.4 SUMMARY

In this chapter, the three major strategies for achieving algorithmic simplifications were cov-

ered including reduction of computations, reduction of data, and simple algorithm design. In

addition, a wide range of examples from the literature was mentioned in order to further il-

lustrate the use of such strategies in actual real-time image/video processing systems. When it

comes to developing an efficient algorithm for real-time deployment, one should examine each

stage of the algorithm according to the required real-time performance constraints, carefully

seeing if any of the principles or techniques presented in this chapter can be applied to gain

an improved performance. Ultimately, it is up to the developer to determine the best balance

between speed and accuracy for the application under consideration. In summary, this chapter

has provided insights into available algorithmic simplification choices that should be considered

at the beginning of the real-time implementation process.
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C H A P T E R 3

Hardware Platforms for Real-Time

Image and Video Processing

3.1 INTRODUCTION

A great deal of the present growth in the field of image/video processing is primarily due to

the ever-increasing performance available on standard desktop PCs, which has allowed rapid

development and prototyping of image/video processing algorithms. The desktop PC develop-

ment environment has provided a flexible platform in terms of computation resources including

memory and processing power. In many cases, this platform performs quite satisfactorily for

algorithm development. The situation changes once an algorithm is desired to run in real-

time. This involves first applying algorithmic simplifications as discussed in Chapter 2, and

then writing the algorithm in a standard compiled language such as C, after which it is ported

over to some target hardware platform. After the algorithmic simplification process, there are

different possible hardware implementation platforms that one can consider for the real-time

implementation. The selection of an appropriate hardware platform depends on the responses

provided to the following questions:

• What are the important features of an image/video processing hardware platform?

• What are the advantages and disadvantages associated with different hardware plat-

forms?

• What hardware platforms have previously been used for the real-time application under

consideration?

• What kind of hardware platform is best suited for the real-time application under

consideration?

These questions will be examined in the sections that follow in this chapter.
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3.2 ESSENTIAL HARDWARE ARCHITECTURE FEATURES

As discussed in Chapter 1, practical image/video processing systems include a diverse set of op-

erations from structured, high-bandwidth, data-intensive, low-level and intermediate-level op-

erations such as filtering and feature extraction, to irregular, low-bandwidth, control-intensive,

high-level operations such as classification. Since the most resource demanding operations in

terms of required computations and memory bandwidth involve low-level and intermediate

level operations, considerable research has been devoted to developing hardware architectural

features for eliminating bottlenecks within the image/video processing chain, freeing up more

time for performing high-level interpretation operations. While the major focus has been on

speeding up low-level and intermediate level operations, there have also been architectural

developments to speed up high-level operations.

From the literature, one can see there are three major architectural features that are

essential to any image/video processing system, namely single instruction multiple data (SIMD),

very long instruction word (VLIW), and an efficient memory subsystem. The concept of SIMD

processing is a key architectural feature found in one way or another in most modern real-time

image/video processing systems [20, 35, 65]. It embodies broadcasting a single instruction to

multiple processors, which simultaneously execute the instruction on different portions of data

in parallel, thus allowing more computations to be performed in a shorter time [65]. This mode

of processing fits low-level and intermediate level operations well as they require applying the

same operation to different pixel data. Naturally, SIMD can also be used to speed up matrix–

vector operations.

The SIMD concept has been used extensively since the 1980s as evident from its

widespread use in vision accelerator boards, instruction set extensions for general-purpose pro-

cessors (GPPs), and packed data processing of digital signal or media processors. In fact, the

most common instantiation of the concept of SIMD in today’s GPPs, digital signal and me-

dia processors, is in the form of the packed data processing extension, which is also known as

subword parallelism or wordwide data optimization [32, 65, 81, 124]. These extensions have

primarily been developed to help speed up the processing of multimedia data. Since pixel data

are usually represented by 8-bits or 16-bits, and since most modern processors have 32-bit reg-

isters, packed data processing allows packing four 8-bit pixels or two 16-bit pixels into 32-bit

registers and then issuing an instruction to be performed on the individual 8-bit or 16-bit pixels

at the same time. These types of packed data instructions not only alleviate the computation

burden of low-level and intermediate-level operations, but also help to reduce memory access

bottlenecks because multiple pixel data can be read using one instruction. Packed data process-

ing is a basic form of SIMD. In general, SIMD is a useful tool for speeding up low, intermediate,
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and matrix–vector operations on modern processors. Thus, one can think of SIMD as a tool

for exploiting data level parallelism (DLP).

While SIMD can be used for exploiting DLP, VLIW can be used for exploiting instruc-

tion level parallelism (ILP) [65], and thus for speeding up high-level operations [20]. VLIW

furnishes the ability to execute multiple instructions within one processor clock cycle, all running

in parallel, hence allowing software-oriented pipelining of instructions by the programmer. Be-

sides the fact that for VLIW to work properly there must be no dependencies among the data

being operated on, the ability to execute more than one instruction per clock cycle is essential

for image/video processing applications that require operations in the order of giga operations

per second [20].

Of course, while SIMD and VLIW can help speed up the processing of diverse image/

video operations, the time saved through such mechanisms would be completely wasted if there

did not exist an efficient way to transfer data throughout the system [35]. Thus, an efficient

memory subsystem is considered a crucial component of a real-time image/video processing

system, especially for low-level and intermediate-level operations that require massive amounts

of data transfer bandwidth as well as high-performance computation power. Concepts such as

direct memory access (DMA) and internal versus external memory are important. DMA allows

transferring of data within a system without burdening the CPU with data transfers. DMA

is a well-known tool for hiding memory access latencies, especially for image data. Efficient

use of any available on-chip memory is also critical since such memory can be accessed at a

faster rate than external memory. More discussion on memory usage optimization techniques

are mentioned in Chapter 4.

One key problem with current memory subsystems is that they were originally designed

for one-dimensional data access and thus cannot properly address the spatial locality necessary

for two-dimensional or three-dimensional image data. Some researchers have dealt with this

problem by designing custom memory addressing schemes that allow for more efficient memory

access of image data, as will be seen in the examples section of this chapter. Before stating these

examples, it is useful to mention an overview of the standard processor architectures and their

advantages/disadvantages for real-time image/video processing.

3.3 OVERVIEW OF CURRENTLY AVAILABLE PROCESSORS

3.3.1 Digital Signal Processors

Digital signal processors are well known for their high-performance, low-power characteristics,

and relatively small size, which enable them to accelerate computationally intensive tasks on em-

bedded devices. While it may have been true in the past that digital signal processors (DSPs) were
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not suitable for processing image/video data in that they could not meet real-time requirements

for video rate processing, this is no longer the case with newly available high-performance DSPs

that contain specific architectural enhancements addressing the data/computation throughput

barrier.

DSPs have been optimized for repetitive computation kernels with special addressing

modes for signal processing such as circular or modulo addressing. This helps to accelerate

the critical core routines within inner loops of low- and intermediate-level image/video pro-

cessing operations. In many DSP implementations, it is observed that a large percentage of

the execution time is due to a very low percentage of the code, which simply emphasizes the

fact that DSPs are best for accelerating critical loops with few branching and control oper-

ations, which are best handled by a GPP [1]. DSPs also allow saturated arithmetic opera-

tions that are useful in image/video processing to avoid pixel wraparound from a maximum

intensity level to a minimum level or vice versa [124]. DSPs possess either a fixed-point or

a floating-point CPU, depending on the required accuracy for a given application. In most

cases, a fixed-point CPU is more than adequate for the computations involved in image/video

processing.

DSPs also have predictable, deterministic execution times that constitute a critical feature

for ensuring that real-time deadlines are met. In addition, DSPs have highly parallel architectures

with multiple functional units and VLIW/SIMD features, further proving their suitability for

image/video processing. DSPs have been designed with high memory bandwidth in mind, on-

chip DMA controllers, multilevel caches, buses, and peripherals, allowing efficient movement

of data on- and off-chip from memories and other devices. DSPs support the use of real-

time operating systems (RTOSs), which again help in guaranteeing that critical system level

hard real-time deadlines are met. Of course, DSPs are fully programmable, which adds to their

inherent flexibility to changes in algorithm updates. Modern development tools such as efficient

C code compilers and use of hardware-specific intrinsic functions have supplanted the need to

generate hand-coded assembly for all but the most critical core loops, leading to more efficient

development cycles and faster time-to-market.

Indeed, DSPs contain specific architectural features that help one to speed up repetitive,

compute-intensive signal processing routines, making them a viable option for inclusion in a

real-time image/video processing system. That is why DSPs have been used in many real-time

image/video processing systems. More recently, DSPs have been included as a core in dual-core

processor system-on-chips for consumer electronics devices such as PDAs, cell phones, digital

cameras, portable media players, etc.
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3.3.2 Field Programmable Gate Arrays

Field programmable gate arrays (FPGAs) are arrays of reconfigurable complex logic blocks

with a network of programmable interconnects [148]. The amount of gates and capabilities of

FPGAs are expected to continue to grow in future generations. FPGAs allow fully application-

specific custom circuits to be designed by using a software programming language known

as hardware description language (HDL). They provide precise execution times helping to

meet hard real-time deadlines. FPGAs can be configured to interface with various external

devices. Since they are reprogrammable devices, they are flexible in the sense that they can

be reconfigured to form a completely different circuit. Current generation FPGAs can be

either fully reconfigured or partially reconfigured, with reconfiguration times of less than 1 ms,

making it possible to have a dynamic run-time reconfiguration. This configuration is useful for

reducing system size of embedded devices. The interested reader can refer to [2, 14, 22, 83,

140] for more information on run-time reconfigurations of FPGAs for image/video processing

applications.

Due to their programmable nature, FPGAs can be programmed to exploit different types

of parallelism inherent in an image/video processing algorithm. This in turn leads to highly

efficient real-time image/video processing for low-level, intermediate-level, or high-level op-

erations, enabling an entire imaging system to be implemented on a single FPGA. In general,

FPGAs have extremely high memory bandwidth. As a result, one can use custom memory

configurations and/or addressing techniques to exploit data locality in high-dimensional data.

In many cases, FPGAs have the potential to meet or exceed the performance of a single DSP or

multiple DSPs. FPGAs can be thought of as combining the flexibility of software programma-

bility with the speed of an application-specific circuit (ASIC) within a shorter design cycle or

time-to-market. Often an FPGA implementation is the first step toward transitioning to an

ASIC, or in some cases the final product. However, there is a disadvantage associated with

FPGAs, that is, their energy or power consumption efficiency. Lately, low-power FPGAs are

becoming more available.

In essence, FPGAs have high computational and memory bandwidth capabilities that

are essential to real-time image/video processing systems. Because of such features, there has

been an increasing interest in using FPGAs to solve real-time image/video processing problems

[38]. FPGAs have already been used to solve many practical real-world, real-time image/video

processing problems, from a preprocessing component to the entire processing chain. FPGAs

have also been used in conjunction with DSPs. A current trend in FPGAs is to include a GPP

core on the same chip as the FPGA for a customizable system-on-chip (SoC) solution.
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3.3.3 Multicore Embedded System-on-Chip

In the consumer electronics market, there has been a drive toward single-chip solutions or SoCs

for portable embedded devices, which require high performance computation and memory

throughput coupled with low power consumption in order to meet the real-time image/video

processing constraints of battery-powered products such as digital cameras, digital video cam-

corders, cell-phone-equipped cameras, etc. These systems exhibit elegant designs where one can

learn how the industry has approached the battery-powered embedded real-time image/video

processing problem.

For example, consider the TMS320DM320 “digital media processor” manufactured by

Texas Instruments [159]. This is a multiprocessor chip with a reduced instruction set (RISC)

microprocessor coupled with a low-power fixed-point DSP. The RISC microprocessor serves

as the master handling system control, running a RTOS and providing the necessary processing

power for complex control-intensive operations. The DSP, acting as a slave to the RISC, is a

low-power component for performing computationally intensive signal processing operations.

The presence of a memory traffic controller allows achieving a high-throughput access to mem-

ory. In this device, the RISC and DSP are accompanied by a set of parameter customizable

application-specific processors that provide a “boost,” that is to say, they provide the extra com-

putational horsepower that is necessary to perform functions such as real-time LCD preview

(Preview Engine) and real-time computation of low-level statistics necessary for autoexposure,

autowhite balance, and autofocus (H3A Engine). The DSP along with its accelerators and ded-

icated image processing memory buffers provides a high-computation throughput and memory

bandwidth for performing various image/video processing related functions such as rendering

the final captured image through the image pipeline and running image/video compression

routines.

By examining this architecture, one can see that this SoC has been designed with a DSP

plus dedicated hardware accelerators for low-level and intermediate-level operations along with

a GPP hardware for more complex high-level operations. This is an illustrative example showing

that a complete real-time image/video processing system can be characterized as a heterogeneous

architecture with a computation-oriented front end coupled with a general-purpose processing

back end. Of course, the TMS320DM320 is just one good example of many currently available

multiprocessor embedded SoCs. In fact, as it will be seen in the examples section, the low-power,

moderate performance DSPs plus accelerators have been widely used by many research groups

in the form of DSP/FPGA hybrid systems, most likely due to cost issues associated with ASIC

development.
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An interesting recent hardware development for digital imaging is the Texas Instrument

DaVinci technology that couples an Advanced RISC Machines (ARM) processor with a high-

performance C64x DSP core [160]. This technology provides the necessary processing and

memory bandwidth to achieve a complete imaging SoC. Examples of research performed on

multicore embedded SoC for digital camera applications can be found in the references [52, 78,

79, 108, 115, 116], which cover the development and implementations of the automatic white

balancing, automatic focusing, and zoom tracking algorithms encountered in today’s digital

camera systems.

3.3.4 General-Purpose Processors

There are two types of GPPs on the market today, one geared toward nonembedded applica-

tions such as desktop PCs and the other geared toward embedded applications. Today’s desktop

GPPs are extremely high-performance processors with highly parallel architectures, contain-

ing features that help to exploit ILP in control-intensive, high-level image/video operations.

SIMD extensions have also been incorporated in their instruction sets allowing such processors

to exploit DLP and enabling moderate acceleration of multimedia operations corresponding to

low-level and intermediate-level image/video processing operations. GPPs have been outfitted

with the multilevel cache feature. This feature provides the potential of having low latency

memory accesses for frequently used data. These processors also require an RTOS in order to

guarantee a real-time execution. Desktop GPPs are characterized by their large size, requir-

ing a separate chip set for proper operation and communication with external memory and

peripherals.

Although GPPs have massive general-purpose processing power, they are extremely high-

powered devices requiring 100s of watts of power. Clearly such processors are not suitable for

embedded applications. Despite this fact, advances in desktop GPPs have allowed the standard

commercial off-the-shelf desktop PCs to be used for implementing nonembedded real-time

image/video processing systems. In [100], it is even claimed that the desktop PC is the de facto

standard for industrial machine vision applications where there is usually enough space and

power available to handle a workstation. It should be noted that such industrial inspection sys-

tems usually augment the processing power of the desktop GPP with vision accelerator boards.

These boards often furnish a dedicated SIMD image/video processor for high-performance

real-time processing not normally met by the SIMD extensions to the desktop GPP. Recently,

a paradigm shift toward multicore processor designs for desktop PCs has occurred in order to

continue making gains in processor performance.
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On the embedded front, there are also several GPPs available on the market today with

high-performance general-purpose processing capability suitable for exploiting ILP coupled

with low power consumption and SIMD-type extensions for moderately accelerating multi-

media operations, enabling the exploitation of DLP for low-level and intermediate-level im-

age/video processing operations. Embedded GPPs have been used in multicore embedded SoCs,

providing the horsepower to cope with control- and branch-intensive instructions. Both em-

bedded and desktop GPPs are supported by mature development tools and efficient compilers,

allowing quick development cycles. While GPPs are quite powerful, they are neither created

nor specialized to accelerate massively data parallel computations.

3.3.5 Graphics Processing Unit

The early 2000s witnessed the introduction of a new type of processor, the graphics processing

unit (GPU). The primary function of such processors is for real-time rendering of three-

dimensional (3D) computer graphics enabling fast frame rates and higher levels of realism

required for state-of-the-art 3D graphics in modern computer games. While the original GPUs

were fixed function accelerators, current generation GPUs incorporate more flexibility through

ever-increasing amounts of programmability with programmable vertex and texture/fragment

units that are useful for customizing the rendering of 3D computer graphics. GPUs can also be

used for accelerating computations with inherent DLP. In terms of performance, for example,

an Intel 3.0-GHz Pentium 4 GPP provides 12 GFLOPS peak floating-point computational

performance and 5.96-GB/s memory throughput, while the ATI Radeon X1800XT GPU

provides 120 GFLOPS peak floating-point performance with 42-GB/s memory throughput

[64]. This shows that GPUs can provide huge increases in GFLOPS performance and memory

throughput over those of a high-performance desktop GPP.

Due to their floating-point calculation capabilities, the increased levels of programma-

bility, and the fact that GPUs can be found in almost every desktop PC today, many researchers

have been looking into ways to exploit GPUs for applications other than the real-time ren-

dering of 3D computer graphics, an area of research referred to as general-purpose processing

on the graphics processing unit (GPGPU). GPUs have already been deployed to solve real-

time image/video processing problems including complete computer vision systems [21, 50],

medical image reconstruction in magnetic resonance imaging (MRI) and ultrasonic imaging

requiring FFT [136], stereo depth map computation [153], and subpixel accurate motion esti-

mation at video rates [82]. A recent survey paper on the state-of-the-art in GPGPU [110] also

presents several examples of how the power of GPUs has been applied to calculation-intensive
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problems in signal and image processing including identifying a 3D surface embedded in an

MRI volume image, which is considered a difficult medical image segmentation problem, image

registration, real-time simultaneous computation and visualization of motion, and tomography

reconstruction.

To understand how a GPU can be used to perform image processing, let us take a look at

its graphics pipeline [82]. The pipeline begins with a set of vertices or points in a 3D space to

define graphics primitives, followed by applying vertex shaders to allow programmable control

over vertex transformations. Once the graphics primitives have been defined, textures are then

mapped onto them to add scene details. Texture shaders, known as fragment programs or kernel

fragments, can also be applied to the textures. In the final stage, the pixels are rendered to either

a display frame buffer or an offscreen rendering buffer known as pixel buffer for further texture

processing through the graphics pipeline. Thus, image processing on a GPU can be performed

by downloading an image to the GPU as a texture structure, rendering a rectangle the size

of the image, and mapping the image as a texture structure to the rectangle, after which a

kernel fragment program can be used to process the image taking advantage of the massive

computation power of the GPU.

One key drawback of GPUs has been the data read-back throughput through the

Peripheral Component Interconnect (PCI) bus, but this is expected to be mitigated with the

introduction of the PCI Express bus standard. One important item to note is that just like

desktop GPPs, GPUs are also high-powered devices drawing 100s of watts of power. Although

low-power GPUs for embedded applications are becoming more available, it is currently not

known how well these embedded GPUs will fare in GPGPU applications. The reader is referred

to [158] for more information on GPGPU.

3.4 EXAMPLE SYSTEMS

3.4.1 DSP-Based Systems

Due to their high computation performance levels coupled with their low power consumption,

DSPs have been used extensively in embedded devices for accelerating computation heavy

components of an image/video processing algorithm in many applications such as image filtering,

video surveillance, and object recognition.

3.4.1.1 Image Filtering Operations

Image filtering operations are well suited for implementation on DSP platforms as their regular,

repetitive looping computation structure fits the DSP architecture well. Because of this, many
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attempts have been made in implementing image filtering operations on DSPs. One of the more

computationally challenging filtering problems involves the use of nonlinear filters. Such filters

are often employed for the purpose of removing impulsive-type noise while at the same time

maintaining the integrity of edges. One research group has consistently shown the usefulness

of a single-chip, high-performance DSP for performing real-time nonlinear image filtering.

Several examples of their implementation of nonlinear filtering algorithms can be found in [51,

117–120]. Due to the high computational complexity of the algorithms, high-performance,

floating-point VLIW DSPs were chosen for the implementations. While the TMS320C6701

DSP running at 167 MHz was used in [51, 117, 118], the TMS320C6711 DSP running at 150

MHz was used in [119, 120]. In [51, 118, 119], it was shown that by using the DSP platform, a

real-time video rate edge-preserving, nonlinear filtering could be achieved for Quarter Common

Image Format (QCIF) sized video sequences. In [120], the extension of the nonlinear filtering

algorithms to 3D was demonstrated using a single-chip DSP platform.

3.4.1.2 Computationally Complex Operations

Another computationally complex algorithm for which a single-chip, high-performance DSP

has been utilized is automatic color reduction in the CbCr chrominance color space using the

two-dimensional (2D) version of a multiscale clustering algorithm [107]. For this application,

the fixed-point VLIW TMS320C6201 DSP running at 133 MHz was used as the implemen-

tation platform. The performance achieved was 20 s for 256 × 256 images, showing just how

computationally demanding an algorithm could be even on a high-performance DSP.

3.4.1.3 Entire Image Processing Chains

In contrast to single-chip, high-performance DSP solutions, multichip, low-performance DSP

solutions have also been popular implementation platforms, especially for low-cost implementa-

tion of a complete image/video processing chain. One example of such a chain can be seen in [69],

where a video surveillance system for detecting people in complex outdoor environments subject

to lighting and background changes was implemented using a total of nine, low-performance

TMS320C40 DSPs connected via their data bus and communication ports. This setup was able

to achieve a satisfactory real-time performance of 15 fps for 1024 × 256 × 32-bit video.

Depending on the complexity of the algorithm involved, sometimes a single-chip DSP

platform is adequate for implementing a complete system. A good example of such a case

can be seen in [98], where the problem of real-time recognition by a small autonomous soccer

playing robot was presented. Due to the dynamic nature of the environment in which the system

was to operate, a robust operation against changing lighting conditions and partial occlusions
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at 60 fps was required. To meet these requirements, a single-chip, high-performance DSP

platform was chosen over an FPGA platform in order to have a lower power consumption, an

easier development, and a lower total cost. The Analog Devices ADSP-BF533 Blackfin DSP

was chosen furnishing 1200-M multiply-and-accumulate (MAC) operations at 600 MHz and

consuming 280-mW power. This met the requirements of having a low power consumption of

less than 500 mW and an estimated performance of 800 million MAC operations.

From the above examples, it can be seen that both a single high-performance DSP

and multiple low-performance DSPs have been used to implement image/video processing

algorithms. As mentioned earlier, only recently DSPs have been equipped with the ability to

process image/video data at video rates [160]. It is expected that the use of DSPs will continue

to grow well into the future.

3.4.2 FPGA-Based Systems

Due to their flexibility in implementing custom hardware solutions, FPGAs have been used

extensively for implementing a single component of an image or video processing system all the

way up to the entire system. The main reason often cited for using FPGAs over other platforms

is that they provide a low-cost, flexible development of high-performance, custom parallel

processors, suitable for transitioning almost any kind of image/video processing algorithm from

a development environment to a real-time implementation.

3.4.2.1 Image Filtering Operations

FPGAs have been used to implement various types of image filtering problems. An example of

2D nonlinear image filtering implemented on a field programmable logic device (FPLD) appears

in [131], where the problem of mammogram contrast enhancement in real-time was addressed.

The slow execution time in software motivated the desire to search for a hardware solution. The

FPLD was chosen as the implementation platform for its ability to achieve higher processing

performances as compared to GPPs and DSPs, and for its flexible development characteristics.

The reported results showed that this implementation allowed the filtering to be performed

within 98 ms with an 8-MHz clock and 23 ms with a 33.3-MHz clock for 512 × 512 ×
8-bit mammograms. Due to the flexibility of the FPLD, the modifications needed to have

12-bit accuracy were easy to incorporate into the system, only requiring making changes to the

filter data-path. Another example of 2D image filtering can be found in [59], where the real-

time feasibility of using fuzzy morphological filters for processing image/video sequences was

discussed. An implementation of these filters was performed using the Xilinx Virtex XCV300



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK019-03 MOBK019-Kehtarnavaz.cls May 5, 2006 13:11

44 REAL-TIME IMAGE AND VIDEO PROCESSING: FROM RESEARCH TO REALITY

FPGA achieving a performance of 179 fps for 512 × 512 images. The reported results showed

that the fuzzy morphological filters outperformed other filters.

Recently, 3D image filtering operations have been implemented on FPGA platforms.

In these implementations, custom memory access schemes combined with high-performance

memory subsystems have enabled the real-time throughput essential for 3D image processing.

One example of such an implementation can be found in [24], where real-time anisotropic

diffusion filtering was performed on 3D ultrasonic images for the removal of speckle noise.

Due to the complexity of anisotropic diffusion filtering and the large amount of data in 3D

images, the software implementation could not generate a real-time throughput. A hardware

implementation based on a single FPGA was chosen to meet the real-time requirement. The

key aspects of the architecture included a custom, efficient 3D image data access scheme called

“brick buffering,” which allowed an optimized, high-throughput access to 3D image data. The

implementation was performed on an Altera Stratix II EP260F484C3ES FPGA running at a

200-MHz clock rate with two parallel 100-MHz, 32-bit external SDRAMs for input/output.

A real-time performance of 24 iterations per second for 128 × 128 × 128 images was achieved.

Another example showing the power of an FPGA for accelerating 3D image preprocess-

ing tasks can be found in [145], where the problem of 3D median and convolution filtering

for 3D medical image processing was considered. Since software implementations could not

meet the real-time constraints, a hardware-based solution using an FPGA was considered. The

FPGA platform was chosen due to its high-performance capabilities and its flexibility. This plat-

form made it possible to implement the median filtering and convolution operations using fast

multipliers. The implementation was performed on the Xilinx Virtex II Pro 2VP125FF1696-6

FPGA achieving a performance of 95 fps for 128 × 128 × 128 images and 12 fps for 256 ×
256 × 256 images.

3.4.2.2 Low-Level Operations

Normally, a single-chip FPGA solution is used specifically for accelerating low-level operations,

passing on the results for high-level interpretation operations to a GPP. For example, in [13],

the problem of controlling the exposure time of a charge-coupled device camera in real-time was

considered using a low-level histogram-based measure. Due to the large amount of data that

needed to be processed, a hardware-based solution was deemed necessary to meet the real-time

requirement. The developed solution was a combination of an FPGA and software running on

a host PC. The FPGA was used for the histogram calculation and noise-level calculation, the

results of which were then sent to the GPP for further processing.
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Another example exhibiting the use of an FPGA for accelerating low-level operations

can be seen in [53], where the problem of estimating position and velocity of objects by a

three-camera stereo vision system was presented using area-based features. A key requirement

of the system was that it had to process images at video rates, posing the need for a dedicated

hardware to meet the real-time requirement. The FPGA technology was chosen as the hardware

part of a software/hardware-based solution. The tracking problem was broken up into several

subtasks including segmentation, correspondence, and motion estimation. The low-level image

processing operations of segmentation, noise filtering, and area measurement were implemented

on the FPGA, while the higher level operations consisting of extended Kalman filtering and

prediction were implemented in software. The utilized FPGA was Altera Flex 10-K100, which

met the real-time requirement of the PAL signal video rate.

3.4.2.3 Standard Image Processing Operations

FPGAs have also been used for implementing basic, but computationally expensive tasks en-

countered in many image/video processing applications such as edge detection, moment calcu-

lation, and Hough transform.

Regarding edge detection, in [66], a subpixel edge detection algorithm for an industrial

inspection application was presented. A single FPGA platform was chosen as the desired imple-

mentation vehicle over analog processing, a custom VLSI solution, and a hybrid FPGA/DSP

solution. A single FPGA, combined with a computationally simple algorithm, provided the

required detection rate and reduction in the computation and system cost. A Xilinx XC-4005E

FPGA was used along with a Xilinx Foundation ISE to synthesize and implement the developed

VHDL code. The implementation was able to process high-resolution 1024 line scan images

at 2000 fps using a 200-MHz clock.

Geometric moments are used extensively as key image features in many image/video

processing applications, but due to the computational complexity involved in their calcula-

tion, their real-time implementation cannot be easily achieved. The problem of computing

geometric moments in real time was considered in [88]. Since a real-time performance could

not be achieved by using standard processors, an FPGA solution was considered. The developed

algorithm was implemented on an Altera EP1K50TC144-1 FPGA, a member of the ACEX1K

FPGA family, using the MAX+PLUS II environment. The results showed that ten moments

of a 1 megapixel image could be processed within 25 ms.

FPGAs have also been used to accelerate the computationally complex Hough transform,

which forms the basis of many image/video processing algorithms. In [39], an efficient Hough
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transform implementation was presented. Noting that, in general, the Hough transform imple-

mentation requires a great deal of computation horsepower, a hardware approach was desired

and thus an FPGA implementation was chosen over an ASIC one for its implementation flex-

ibility. The Hough transform algorithm was also simplified before the implementation on the

FPGA by reducing the use of lookup tables and increasing the parallelism of the calculations.

The Virtex II Xilinx XC 250-5FG456C FPGA was chosen, which at the clock rate of 606

MHz generated four line values in parallel every 12 ns.

3.4.2.4 Compression Operations

When dealing with the compression of a huge amount of data such as HDTV data, FPGAs

can help to cope with the massive data throughput, enabling an effective means of achieving

real-time compression.

For example, in [144], the problem of computing the 2D discrete, biorthogonal wavelet

transform (DBWT) for HDTV video compression was discussed. It was noted that the com-

putation of the DBWT was the most time-consuming part of the video compression algorithm

and that software implementations were not able to meet the real-time requirement, thus re-

quiring a hardware-based solution. An FPGA was chosen as an alternative to an ASIC solution

and for its flexible architecture that allowed it to be quickly reconfigured using user-defined

adjustable compression parameters. The implementation and verification were performed on

the Celoxica RC1000-PP PCI-based FPGA development board containing a Xilinx Virtex

2000E FPGA. The implementation was able to achieve a real-time performance of 286, 139,

and 121 fps, respectively, for the three wavelet decomposition levels on 1280 × 720 resolution

input images and 127, 62, and 54 fps, respectively, for the three wavelet decomposition levels

on 1080 × 1920 resolution input images.

Another example of a real-time compression application enabled with the use of FPGA

can be seen in [106], where the problem of real-time image compression for high-speed cameras

was addressed. High-speed cameras are characterized by extremely high frame rates of the order

of thousands of frames per second. Standard image compression methods are just not capable

of keeping up with the high input data rate of these cameras, and thus the need for a hardware

solution. A compression engine was proposed using 32 parallel image compression circuits. In

total, seven FPGAs were employed in the design, one for an input buffer, one for an output

buffer, one for a master controller, and four for implementing the 32 parallel image processing

circuits. A frame rate of 2000 fps was achieved for 512 × 512 images.
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3.4.2.5 Entire Image Processing Chains

Entire image processing systems have also been implemented using FPGAs, including face

detection and tracking, inspection, stereo vision, and 3D image registration systems.

Recently, much research has been done on practical systems for face detection and track-

ing. One such system has been developed and shown to work in real-time on an FPGA device in

[112], where face detection and tracking was considered in the resource constrained environment

of an embedded mobile device. It was stated that many methods for face detection were too

resource demanding for an embedded device, requiring extremely high-performance computa-

tion power, large amounts of memory, and floating-point operations. A simplified algorithm

was developed and implemented on an Altera EP20K1000EBC652-1 FPGA. The FPGA was

chosen as the implementation vehicle for rapid prototyping, enabling a proof of concept test

before a full VLSI implementation. The achieved performance was 434 fps at a clock rate of

33 MHz.

Inspection systems often require a high-performance processing subsystem in order to

cope with the involved hard real-time constraints. An FPGA is well suited for such applica-

tions. As discussed in [67], a low-cost, high-performance system for checking multiple-choice

question sheets was developed by using a high-speed optical mark reader (OMR). OMRs are

used for processing large amounts of data in a relatively short amount of time. However, the

cost of such systems is often excessively high, limiting their widespread use. Thus, it was desired

to implement the OMR system on a single FPGA to lower the system cost while having a cus-

tomizable parallel processing capability. The system was implemented on a Xilinx SpartanIIE

XC2S300E FPGA using VHDL, and the implementation was able to process the 3456 pixel

line sensor images at a rate of 5000 fps with a 20-MHz clock. The real-time operation at

5000 fps eliminated the need for large memory storage, thus reducing the system cost.

Another computationally intensive operation involves computing the depth information

of a scene utilizing stereo image processing techniques. As shown in [7], an FPGA was used to

achieve a real-time implementation of a dense disparity map computation using a correlation-

based approach. This implementation was designed to minimize external memory accesses and

to perform parallel processing of different correlation windows. The utilized FPGA belonged

to the XCV800HQ240-6 Virtex family from Xilinx, and was able to produce a real-time

performance of 60 disparity computations per second for 320 × 240 images.

In medical imaging, practical deployment of computationally demanding 3D image pro-

cessing is of much interest. In [23], the calculation-intensive problem of 3D multimodality image
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registration, which is essential for practical deployment of image-guided medical procedures,

was considered. Past solutions to this problem involved using a supercomputer implementation,

which was not practical in a hospital setting. Thus, a custom hardware solution based on an

FPGA was used, achieving a speedup comparable to a 64 parallel processor supercomputer.

The utilization of parallel memory accesses and a parallel calculation pipeline was the key to

obtaining a considerable amount of speedup. An FPGA running at 200 MHz with 100-MHz

memory buses was used in conjunction with high-speed SDRAM and SRAMs. In addition, the

required lookup table was implemented in one 512-k memory block and all the calculations were

implemented using 32-bit fixed-point numbers. The developed architecture was able to process

50 million voxels per second, providing the real-time throughput necessary in a practically useful

image-guided medical treatment.

As one can see from the above diverse examples, FPGAs have been extensively deployed

as flexible, custom processors for solving real-time image/video processing problems primarily

due to their ability to exploit different types of parallelism inherent in an image/video processing

algorithm. However, it must be noted that, in general, most of these FPGA solutions are meant

to be accelerators that are hosted by a PC and not for embedded devices.

3.4.3 Hybrid Systems

There have also been many examples in the literature regarding hybrid systems, which include

some combination of DSP and FPGA processors. In these systems, an FPGA is often used as a

preprocessor performing the function of a parallel pixel processor for low-level and intermediate

level operations, while a DSP is used for handling intermediate and high-level operations or

other computationally simpler matrix–vector operations. Such systems have been shown to be

capable of supporting the real-time demands of an entire image/video processing chain. Eight

system examples are mentioned below to further illustrate the usefulness of a hybrid solution.

3.4.3.1 Image Segmentation Systems

An image segmentation system consists of a diverse set of operations. To meet the real-time

requirements of an image segmentation system, a hybrid FPGA and DSP solution was used

in [3] to implement the diverse set of operations involved. These operations included lev-

eling, regularization, and reconstruction. The low-level operations of minimum extraction

and lower/upper regularization were performed on an FPGA, while a TMS320C44 DSP

was used for the implementation of the high-level operations of reconstruction and fusion of

minima.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK019-03 MOBK019-Kehtarnavaz.cls May 5, 2006 13:11

HARDWARE PLATFORMS FOR REAL-TIME IMAGE AND VIDEO PROCESSING 49

Another hybrid platform for image segmentation was reported in [4] and [5], where

the segmentation problem based on thinning and crest restoration was considered. The only

difference between the two references was a change in hardware, where in [4] a Mirotech Arix

board with a Xilinx Virtex XCV300 FPGA and a TMS320C44 DSP were used, while in [5] an

XA10 Excalibur SoC with a 32-bit RISC ARM922T microprocessor core and an Apex 20KE

PLD were used. In [4], the entire segmentation chain was implemented on the FPGA, which

allowed processing of 512 × 512 images at 125 fps. In [5], the crest restoration was implemented

in software running on the ARM processor to provide more flexibility in the implementation,

but at the expense of a considerable reduction in performance, causing the entire chain to take

6 s to process one 512 × 512 image.

3.4.3.2 Industrial Inspection Systems

Industrial inspection systems are characterized by a diverse processing chain. For example, in

[135], an automatic quality control system for textile fabrics was designed. The system was

implemented by using an FPGA for the synchronization, a DSP for the high-level texture

feature extraction and neural network classification, and a host PC for the defect detection and

geometric feature extraction.

Another inspection application that was successfully implemented using a hybrid platform

was reported in [125], where the problem of locating the intersection of horizontal and vertical

crossbars with subpixel accuracy was addressed. The real-time requirement of the embedded

system was getting subpixel accurate location detection on 1024 × 1024 images at a rate of

50 fps, leaving an upper bound of 20 ms for the processing. To meet this requirement, a hybrid

architecture was employed using three Xilinx XC4000 FPGA for high data rate, low-level oper-

ations (area location, horizontal and vertical center of mass calculations), and two TMS320C44

DSPs for low data rate, high-level operations (linear regression for line calculation). The FPGAs

were chosen for their fast arithmetic and internal RAMs and ROMs, while the DSPs were cho-

sen for their four communication ports, floating-point arithmetic, DMA coprocessor, memory

buses, and 2k-word RAM and cache. To synchronize the communication between the DSPs

and the FPGAs, the DSP’s communication protocol was implemented on the FPGAs.

3.4.3.3 Video Compression Systems

Video encoding systems utilizing wavelet transform coding techniques can also benefit from a

hybrid platform. Such an approach was considered in [31], where the entire Motion-JPEG2000

video encoder was implemented on the high-performance TMS320C6416 VLIW DSP, achiev-

ing encoding speeds at full video rates of 30 fps. In this application, an FPGA was used for
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merging the digitized image data fields into one frame, for transferring of image data, and for

providing overall system control, while the encoding was implemented entirely on the DSP.

3.4.3.4 Smart Camera Systems

Emerging smart cameras consist of a diverse set of image/video processing algorithms and

are often implemented using hybrid platforms. One example of such platforms can be seen

in [17], where a smart digital video camera surveillance system was introduced consisting of

a combination of an FPGA and a multiprocessor DSP configuration. Two TMS320C6415T

DSPs were chosen, each providing up to 8000 MIPS at 1 GHz and 1 MB of internal memory.

The large amount of internal memory was necessary to achieve an efficient implementation.

The FPGA provided the necessary glue logic for interfacing the DSP units to the image sensors.

Multiple DSPs were used since no single-chip DSP solution existed to satisfy the processing

requirements, which included processing of 720 × 576 color video streams as opposed to small-

resolution CIF and QCIF images commonly utilized in camera-equipped cell phones.

Similar to smart cameras, the image processing chain of autonomous navigation systems is

also a good candidate for the utilization of a hybrid platform. For example, in [10], the problem

of real-time underwater imaging for autonomous vehicle navigation at video rates was discussed.

To address the needs for such a system, a 2D array of FPGA and DSP processors was con-

structed for pipelined, parallel processing. Each processing element consisted of a ping-pong

style memory buffer, a TMS320C51 DSP for computation, and an FPGA for communica-

tion and low-level image processing operations. For this application, the FPGA performed

the image processing tasks, while the DSP computed the angular displacement and distance

parameters.

These examples have illustrated that various combinations of FGPAs and DSPs can be

used to solve real-time image/video processing problems. In such systems, an FPGA usually

performs low-level to intermediate level operations, while a DSP handles intermediate to some

computation-oriented, high-level operations. In general, hybrid platforms are suitable for real-

time implementation of those image/video processing chains that incorporate a diverse set of

operations.

3.4.4 GPU-Based Systems

GPU-based developments in the field of real-time image/video processing are fairly new. There-

fore, only two examples from the literature are presented here including stereo depth map

computation and subpixel motion estimation.
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3.4.4.1 Stereo Vision System

The problem of computing a complete depth map for a stereo vision system was considered

in [153]. It was pointed out that while the real-time calculation of stereo depth maps was

possible with standard desktop GPPs, primarily due to advancements in clock speeds and SIMD

instruction set extensions, such an implementation taxed the system to the extent that there

were no more resources left to perform high-level, control-intensive, interpretation tasks. It was

thus decided to make use of the computation power of the GPU for off-loading the depth map

computation. This freed up resources to execute the high-level interpretation operations on the

GPP. The power of the GPU also allowed the use of advanced features, including multiresolution

matching, adaptive windowing, and cross-checking, not found in standard implementations.

The results indicated that 289 million disparity evaluations per second could be achieved on

the ATI Radeon 9800 GPU for 512 × 512 images and a 94-pixel disparity range.

3.4.4.2 Motion Estimation System

The problem of subpixel accurate motion estimation for improving the quality and efficiency

of the standard video compression schemes was considered in [82]. It was pointed out that

most of the standards for video coding recommend using subpixel accurate motion estimation

for the highest quality, the only caveat being that the interpolation operation presents a huge

computational burden. The performance goal of the system was to perform subpixel accurate

motion estimation for 720 × 576 images at 25 fps using the full search algorithm, which was

not feasible without some hardware assistance. To meet this real-time requirement, a GPU was

used to perform the interpolation and the block matching motion estimation algorithm. The

interpolation was performed using the GPU’s inbuilt bilinear interpolation function and the

motion estimation algorithm was restructured to make a better use of the available resources on

the GPU. In all, a four times speedup over a GPP implementation was achieved, the primary

bottleneck being the data read-back bandwidth between the GPU and the PC over an Advanced

Graphics Port (AGP) bus. It was stated that better performance gains could be achieved with

the newer PCI Express bus.

As observed from these two examples, GPUs have the potential to solve computationally

intensive, data parallel real-time image/video processing problems. The standard use of a GPU

is to accelerate computationally intensive operations, leaving the GPP of its host free to handle

other tasks. With GPU performance growing at an ever-increasing rate and the introduction

of faster bus architectures, such as the PCI Express, the popularity of using GPUs for solving

real-time image/video processing problems is expected to increase.
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3.4.5 PC-Based Systems

PC-based systems have also been widely used for solving real-time image/video processing

problems. Such systems are usually equipped with a camera and a frame grabber, using the PC

as a host. Four examples of such systems are mentioned next.

3.4.5.1 Object Detection System

Object detection is a computationally complex problem, requiring a high-performance pro-

cessor for practical implementations. In [152], the problem of object detection in real-time

was discussed. A point was made that while VLSI, ASIC, or FPGAs can be used to meet the

real-time constraint for video rate object detection, such solutions require a low-level hard-

ware design that is often difficult to achieve by image processing developers unfamiliar with

design techniques. Thus, it was decided to use the Datacube MaxPCI vision accelerator board

that provided the necessary parallel computation power and high data throughput to process

1000 × 1000 images at 30 fps.

3.4.5.2 Computer Vision System

A computer vision system involves many diverse operations that map well to vision accelerator

boards. For example, in [100], a generalized, scalable and modular architecture for a real-time

computer vision application based on desktop PCs was presented. The architecture consisted

of an image acquisition module and a PC-based processing module, where both modules could

be scaled to handle more cameras and higher processing demands. The system was applied

to an industrial inspection application involving quality control of TV screen manufacturing.

The implemented system made use of eight JAI CV-M10BX CCIR cameras and four Matrox

Meteor II/MC frame grabbers with the PCs equipped with dual Pentium III processors running

at 600 MHz.

3.4.5.3 Video Segmentation System

Another computationally complex problem involves real-time segmentation of video data. It

has been shown in [154] that such a system can be implemented using off-the-shelf components

without the need for high-end and expensive frame grabbers. In this reference, the problem of

image sequence segmentation based on a global camera motion compensation, a robust frame

differencing, and a curve evolution was discussed. A computationally efficient algorithm was

developed and implemented for use on a PC with a Pentium I 400-MHz processor. Video acqui-

sition was done using a 3Com Home Connect USB Web Camera, which eliminated the need for

a relatively expensive frame grabber. Of course, this was not meant to be a suitable replacement
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for higher resolution and higher frame rates. The segmentation performance achieved was 5

fps for 160 × 120 images, keeping in mind that the implementation was done on a rather slow

GPP.

3.4.5.4 Image Fusion System

Another example involving the successful use of a vision accelerator board is reported in [132],

where an adaptive image fusion algorithm was implemented to aid helicopter pilots. The

real-time requirement of processing 256 × 256 images at 25 fps for image registration and

a three-level pyramid decomposition was met using a hybrid hardware and software approach.

The system consisted of two cameras, each connected to its own Datacube MaxPCI vision

accelerator for preprocessing, a 96-MB buffer for storing images from the frame grabber, and

a separate accelerator card for image registration.

As revealed from these examples, standard desktop PCs equipped with frame grabbers

can be used to solve real-time image/video processing problems. Due to their large size and high

power consumption, however, such systems are usually used in industrial inspection settings or

those applications where size and power consumption are not critical design issues.

3.5 REVOLUTIONARY TECHNOLOGIES

Around the late 1990s, a fundamentally different approach to real-time image/video processing

systems was being developed, namely the idea of fusing the image sensor with the necessary

circuitry required for image processing. This was made possible through Complementary Metal-

Oxide Semiconductor (CMOS) imaging technology that allows image processing circuitry to

be placed on the same die as the image sensor. One of the recent developments along this line

is the SIMD pixel (SIMPil) processor [54], which is considered to be a portable multimedia

supercomputer, combining the high-performance requirement of multimedia applications with

the low power consumption demanded by embedded devices.

The SIMPil processor was used to implement the image processing pipeline found in

digital cameras. The simulation results showed that the processing for the entire pipeline for

a 1-megapixel Bayer pattern image could be executed in 1 ms on a 500-MHz SIMPil array

processor, requiring only 2.8-W power consumption. In addition to this, the utilized SIMPil

processor configuration had an estimated peak operation throughput on the order of 1.5 tera

operations per second. Given that current digital cameras use a simplified hardwired image

pipeline or a preview engine operating at a lower resolution than the full sensor resolution to

allow for real-time preview on an LCD, the SIMPil processor could easily do away with the
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need for a preview engine, and thus allow higher resolution LCD previews. With such an

on-sensor-chip image processing, the need for large image memory buffers is eliminated. This

leads to a lower system cost. Of course, such a chip would need to be paired with a GPP for

high-level operations and system-level control in order to be a complete system.

Technologies like the above impart a radical change in design and performance from

current technologies, possessing the capability to usher in a new age for achieving real-time

image/video processing.

3.6 SUMMARY

In this chapter, many topics were covered, including key architectural features such as SIMD

and VLIW, an overview of DSP, FPGA, multiprocessor SoC, GPP, and GPU platforms,

representative example systems from the literature, and future technologies.

It should be noted that each real-time image/video processing application has its own

unique needs and requirements including speed, memory bandwidth, power consumption, cost,

size, development tools, etc. [95]. Thus, to go from research to reality, it is important to first

understand the needs of the system of interest and then pair them up with the appropriate

technologies.
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C H A P T E R 4

Software Methods for Real-Time

Image and Video Processing

4.1 INTRODUCTION

Software methods make up another aspect of transitioning an image/video processing algorithm

from a research development environment to a real-time environment running on a target hard-

ware platform. More often than not, an algorithm that generates an acceptable performance

within a development environment will not, in general, generate the same acceptable perfor-

mance on the target hardware platform without any modifications. This is especially true with

portable embedded devices that are resource limited with generally lower clock rates, limited

amounts of memory, and lower power consumption than say a modern desktop PC with a

high-performance general-purpose processor (GPP). Because of such limitations, the algo-

rithm must be carefully and properly modified to fit the structure of the underlying hardware,

making efficient and effective use of available resources. Items of interest include software ar-

chitecture design, memory management, and software optimization. While Chapters 2 and 3,

respectively, addressed the algorithmic and hardware platform options for implementing real-

time image/video processing algorithms, this chapter covers the equally important software

side of their real-time implementations. Here, software means the interface between algo-

rithms and hardware. A crucial aspect of having a real-time image/video processing system is

the development of efficient software that maximizes the resources associated with the available

hardware.

4.2 ELEMENTS OF SOFTWARE PLATFORM

Just as there are many components that make up a hardware platform for real-time image/video

processing, there are also many components that make up a software platform. Programming

languages, software architecture design principles, and real-time operating systems are some of

the key components, which are discussed next.
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4.2.1 Programming Languages

For designing image/video processing systems, two types of programming languages are em-

ployed, those used for rapid prototyping and development and those used for actual deployment

in a stand-alone product. One of the difficulties of software design for real-time image/video

processing systems lies in transitioning a source code from the programming language used for

development, such as MATLAB r© or LabVIEW
TM

, to a source code used for deployment,

such as general-purpose C/C++. This section briefly covers the real-time implementation

aspects of different programming languages.

4.2.1.1 Research Environment Programming Languages

The programming languages and programming styles used for production-level real-time im-

age/video processing systems are usually quite different from those used merely for research

and development during the prototyping design phase. The most common development lan-

guages used in the research phase include some combination of MATLAB, LabVIEW, or

C/C++.

MATLAB is an interpreted, high-level programming language as opposed to a compiled

one. This means that in a MATLAB “.m” source file, each instruction, be it a command or a

variable assignment, has to be interpreted each time it is encountered during the execution of

the source code. Another programming-related feature of MATLAB is that it is not a strongly

typed language, meaning that variables can be declared without any data-type specification

since such specifications are interpreted during run-time. Of course, the main attribute of

MATLAB lies in its easily accessible matrix–vector processing capabilities as it can handle

linear algebra operations on matrix data structures without explicitly using loop constructs.

MATLAB can even be outfitted with many function libraries for virtually any type of processing

via various toolboxes. Some of the relevant toolboxes include the Image Processing Toolbox,

Signal Processing Toolbox, and Fixed-Point Toolbox.

MATLAB is mostly a text-based programming environment using scripts and func-

tions written in “.m” files, but with the Simulink r© add-on, it can be turned into a model-

based programming environment for graphical-oriented, block-based programming. Simulink,

combined with the Image and Video Processing Blockset, further eases the development of

an entire image or video processing system as compared to traditional text-based program-

ming by promoting hierarchical, modular design via functional blocks that pass data between

them through wires. Simulink also has built-in support for fixed-point data-types, which al-

lows one to explore the numerical aspects of an entire system. Simulink can also be used
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for hardware-in-the-loop type development, where the models can be compiled to run on a

target platform and data passed from MATLAB to the target for assessing the real-time ca-

pabilities of an algorithm and for fast, on-the-fly tuning of variables and parameters. All the

aforementioned features combine to make MATLAB a powerful and flexible programming

environment, providing rapid prototyping of image or video processing systems and easing

their analysis including numerical issues. While graphical modeling of a system design is quite

useful for quick prototyping, the constituent algorithms ultimately have to be converted back to

text-based source code for actual deployment. Thus, algorithms can be coded in “.m” files but

the process does not end there since MATLAB scripts are not, in general, suitable for real-time

deployment.

Since MATLAB provides a rich text-based programming environment, it has the ad-

vantage that algorithms can be rapidly coded and their functionality verified. However, the

features that enable the rapid development of algorithms also hinder their real-time imple-

mentation. The “interpretation of each instruction on-the-fly” characteristic of MATLAB

in fact leads to a slow execution of “.m” source files, especially in loops where even though

an instruction has already been interpreted in an iteration, it must be interpreted for every

iteration. Since many image/video processing algorithms involve multiple nested loops, the

overhead for interpretation of the source makes MATLAB unsuitable for real-time imple-

mentation. Although eliminating loops by modifying a MATLAB source code to take ad-

vantage of its built-in vector processing capabilities would help one to speed up simulations,

such modifications might pose difficulties when directly porting the source code over to other

general-purpose languages such as C/C++. Other strategies for speeding up MATLAB-based

simulations using “.m” files would be to either compile the source code using the MATLAB

compiler or to code time critical portions in C and link them to MATLAB using its MEX

functionalities.

When interfacing MATLAB with C, it is important to note that MATLAB accesses

image data in column-major ordering as opposed to row-major ordering commonly used in

stand-alone C-based image processing routines. Hence, any C code developed to interface with

MATLAB must carefully follow this data access convention. This inconsistency hinders the

use of MATLAB interfaced with C.

It should be noted that such modifications are only meant to speed up simulations

within the MATLAB environment and are not meant for real-time implementation. Also,

since MATLAB is not strongly typed, transitioning from a MATLAB source to a general-

purpose language for real-time deployment requires careful consideration of data-types. Using
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the Fixed-Point Toolbox can help ease the transition from a floating-point design to a fixed-

point design, but despite these features, the path from MATLAB “.m” source files to standard

general-purpose languages such as C/C++ is still quite involved considering that efficient

MATLAB vectorized code usually has to be unvectorized or C-callable signal/image process-

ing libraries have to be employed. It should be noted that tools have been developed to ease the

transition from MATLAB to C, which could essentially automate the translation of MATLAB

“.m” source files to C source files [157].

Unlike MATLAB, which was originally a text-only programming environment until

Simulink was developed, LabVIEW was designed as a graphical-oriented programming envi-

ronment from the start. LabVIEW provides powerful block-based system development. Com-

bined with toolkits such as the IMAQ Vision and Advanced Signal Processing, LabVIEW

can be used for rapid prototyping of a complete image/video processing system. The power of

LabVIEW comes from its graphical-based programming environment that allows hierarchical

and modular system design through so-called virtual instruments (VIs) and sub-VIs. LabVIEW

can also be interfaced to use image processing algorithms written in general-purpose high-level

languages such as C/C++ using the standard row-major array access convention. This feature

helps ease the transition to a text-based source code for real-time deployment. The advantage of

LabVIEW lies in the ease with which a graphic-user-interface can be used to adjust parameters

in a simulation of an image or video processing system and to visualize intermediate and final

results. LabVIEW can also be used for real-time assessment of an algorithm through hardware-

in-the-loop type of development. Thus, similar to Simulink, LabVIEW can also be used to gain

an understanding of the algorithms forming a complete system, but it is not generally meant

for real-time use in a stand-alone product.

It should be noted that in some cases, C/C++ can be used for prototyping image and

video processing algorithms, although it is usually used with MATLAB or LabVIEW or an

image processing library for easy development. In such cases, usually the data-types used for

variable declarations are not appropriate for real-time use. In many situations, floating-point

data-types must be changed to appropriate integer data-types. While coding only in C/C++
from the start is beneficial from the standpoint of not having to translate the source code to

a general-purpose, high-level language as in the case of MATLAB or LabVIEW, this also

hinders data visualization in that data almost always have to be exported and visualized by

another program. Another problem with coding in C/C++ from the start is foregoing the

benefits of programming environments, such as MATLAB and LabVIEW, which can help to

rapidly develop an algorithm.
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Therefore, in practice, it is appropriate to utilize whatever combination of MATLAB,

LabVIEW, and C/C++ for rapid development of an image or video processing system. It must

be stressed that while MATLAB and LabVIEW are great tools for research and development,

they are not meant to be used for real-time deployment in a stand-alone product. As such, it

is necessary to translate a source code developed in MATLAB or LabVIEW into a standard,

general-purpose, high-level programming language.

4.2.1.2 Real-Time Programming Languages

Depending on the underlying hardware platform, three types of programming languages can

be employed for real-time image/video processing algorithms. They include general-purpose,

high-level programming languages, hardware-description languages, and low-level assembly

languages.

By far, the most widely used language for implementing real-time image/video process-

ing algorithms on existing processors is the high-level C/C++ programming language. C is

popular simply due to the fact that almost every processor has a compiler that can compile C

source code into native machine code. That is to say, C is portable across a wide variety of

machines. Due to its portability, many signal and image processing libraries exist that are

optimized for different target platforms, easing the development of image/video processing

algorithms. One general-purpose library, not optimized for any particular system, is the li-

brary provided in the Numerical Recipes in C [123], a standard reference that can be useful

in porting MATLAB codes to C, especially for matrix-based computations [111]. C also

has an advantage in its bit-level manipulation operations, and its ability to handle standard

arrays, or arrays of objects in the case of C++, all of which are beneficial to developing

efficient image/video processing algorithms [1]. That is why after the prototyping stage in

MATLAB and/or LabVIEW, it is usually recommended to code an algorithm in C as a ref-

erence or baseline algorithm, which is then to be ported and specialized to a specific target

platform.

Of course, if the hardware platform of interest is an FPGA, many hardware description

languages (HDLs) exist for programming FPGAs, the most popular being VHDL. However,

VHDL programming is often arcane to image/video processing algorithm developers, requiring

a fundamentally different style of programming. New tools have been developed through which

one can successfully go from a system designed in MATLAB straight to an FPGA implemen-

tation [156]. Such tools have the potential to extend the benefits of an FPGA-based solution

within a faster development cycle.
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While high-level software optimization techniques can be applied to the time critical or

bottleneck portions of a C/C++ code to extract extra performance, under the assumption that

such optimizations yield unsatisfactory results, the low-level assembly language of the target

processor is required to be used in order to obtain the maximum performance. Proper use of

assembly language requires an in-depth knowledge of the architecture of the processor, and is

often time consuming to perform. Consequently, it is recommended to use assembly language

if it is absolutely necessary and only on those portions of the code that are the most time critical.

4.2.2 Software Architecture Design

While translating a source code from a research development environment to a real-time envi-

ronment is an involved task, it would be beneficial if the entire software system is well thought

out ahead of time. Considering that real-time image/video processing systems usually consist of

thousands of lines of code, proper design principles should be practiced from the start in order to

ensure maintainability, extensibility, and flexibility in response to changes in the hardware or the

algorithm [127]. Without a proper underlying structure, the entire system ends up becoming

an unmanageable collection of source codes. Thus, it is critical to utilize good software engi-

neering practices when developing a software-based real-time image/video processing system

on programmable processors.

One key method of dealing with this problem is to make the software design modular

from the start, which involves abstracting out algorithmic details and creating standard inter-

faces or application programming interfaces (APIs) to provide easy switching among different

specific implementations of an algorithm [96]. Also beneficial is to create a hierarchical, layered

architecture where standard interfaces exist between the upper layers and the hardware layer

to allow ease in switching out different types of hardware so that if a hardware component is

changed, only minor modifications to the upper layers will be needed.

Recently, there has been interest in applying the principles of object-oriented design

patterns to aid in the development of real-time image/video processing systems. These methods

help to promote software reuse and improve the ease with which new functionalities can be added

to a system with minimal effort. Noting that research on such methods is still being performed,

a proper design is expected to create a more efficient, compact, and easy to understand software

architecture while not adversely affecting the performance of the system.

4.2.3 Real-time Operating System

In a real-time image/video processing system, certain tasks or procedures have strict real-

time deadlines, while other tasks have firm or soft real-time deadlines. In order to be able
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to manage the deadlines and ensure a smoothly running system, it is useful to utilize a real-

time operating system. Real-time operating systems allow the assignment of different levels

of priorities to different tasks. With such an assignment capability, it becomes possible to

assign higher priorities to hard real-time deadline tasks and lower priorities to other firm

or soft real-time tasks. For portable embedded devices such as digital cameras, a real-time

operating system can be used to free the upper layer application from managing the timing

and scheduling of tasks, and handling file input/output operations [77]. Therefore, a real-time

operating system is an important key component of the software of any practical real-time

image/video processing system since it can be used to guarantee meeting real-time deadlines

and thus ensuring deterministic behavior to a certain extent.

4.3 MEMORY MANAGEMENT

It is widely recognized by hardware designers that yearly increases in memory performance

slowly lags behind such increases in computing performance. Since this trend shows no signs

of stopping in the near future, it becomes important to carefully consider the management of

memory resources in a real-time image/video processing system, especially when a vast amount of

data must be dealt with. Due to the overwhelming importance of proper memory management,

this section covers key concepts such as the basics of computer memory architecture, how image

data is stored in memory, and several memory management optimization strategies.

4.3.1 Memory Performance Gap

Due to the ever-increasing gap between computation performance and memory performance,

memory optimizations are becoming more critical than computation optimizations, considering

that most algorithms when first ported are more memory-limited than compute-limited [26].

Important items of interest are seeking out methods to reduce cache-miss rates, to fetch only

that portion of the entire image data that needs to be processed into the on-chip memory,

to partition data, etc. Of course, another tool used for efficient movement of data across a

system without CPU intervention is the direct memory access (DMA) feature found in modern

processor architectures.

4.3.2 Memory Hierarchy

Most modern hardware architectures are outfitted with a hierarchical memory where each level

is separated from the processor by increasing levels of access. As the access level to the processor

increases, the memory size increases while the memory access speed decreases. The structure

of a memory hierarchy is designed in such a way that to provide maximum memory access



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK019-04 MOBK019-Kehtarnavaz.cls May 9, 2006 16:52

62 REAL-TIME IMAGE AND VIDEO PROCESSING: FROM RESEARCH TO REALITY

performance or throughput for frequently used program or data sections. Usually the hierarchy

involves two cache levels, known as L1 cache and L2 cache, followed by external memories of

varying sizes and speeds. The L1 cache is placed closest to the CPU core and is usually smaller

than the L2 cache which is the next closest memory level to the CPU. Some architectures place

these two levels directly on the processor, while in other architectures caches are physically

separated from the processor. For instance, in some digital signal processors (DSPs), e.g., the

TMS320C64x, there are separate L1 program and data caches and an L2 cache. The memory

available on-chip normally provides the fastest access among various types of memories. As far as

external memory is concerned, there are mainly two types that are used for real-time embedded

systems: SRAMs and SDRAMs, where SRAMs provide lower memory access latencies and

are thus “faster” than SDRAMs.

In image/video processing applications, it is beneficial to place the image being operated

on within the on-chip memory to enable the processor to quickly access the necessary data with

minimum latencies, reducing the overhead of external memory accesses. Since it is often the

case that an entire image or video frame cannot fit within the available on-chip memory, the

processing has to be reorganized or restructured to enable an efficient implementation on the

target hardware. These issues are covered in Subsection 4.3.5 on memory optimization strategies.

4.3.3 Organization of Image Data in Memory

Considering that the handling of image data is one of the main difficulties for real-time im-

plementations, it is important to understand how image data is represented in C/C++ and

what are some commonly used methods for accessing them. In C/C++, image data is stored

in row-major format that simply means that it is stored as an array of rows; this is differ-

ent from MATLAB that stores image data in column-major format as an array of columns.

Also, C/C++ uses zero-based indexing and square brackets to access array data, as opposed to

MATLAB that uses 1s-based indexing and parenthetical brackets to access array data. Due to

performance issues, images are usually not declared or accessed as two-dimensional (2D) arrays,

but are declared and accessed using pointers that point to an address in memory where image

data is stored in row-major format. Since a pointer points to image data in memory, a proper

pointer dereferencing must be performed to access an image. Hence, the pixels of an M × N

image Img2d should be accessed as Img2D [N ∗i + j] instead of Img2D [i][ j]. This principle

can be extended to higher dimensional data as well. For instance, elements of an M × N × L

three-dimensional (3D) image Img3D can be accessed as Img3D [N ∗L ∗i + L ∗ j + k] instead

of Img3D [i][ j][k].
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4.3.4 Spatial Locality and Cache Hits/Misses

One restriction of the row-major storage format is the lack of spatial locality, meaning that pixels

that are spatially local to each other in 2D are not stored very close to each other within memory

[19, 26]. For instance, the horizontally adjacent pixels Img2D[i][ j] and Img2D[i][ j + 1] are

separated only by a few bytes in memory, whereas the vertically adjacent pixels Img2D[i][ j] and

Img2D[i + 1][ j] are separated by several bytes of pixel data in memory [19]. Consequently, the

row-major storage of image data favors horizontal or row-wise memory accesses over vertical

or columnwise memory accesses. This way there is usually no performance degradation for

accessing image data along rows. On the other hand, accessing image data along columns

poses serious performance degradations, creating ample opportunities for frequent cache misses,

especially if image data reside in external memory.

A cache miss is defined as an attempted memory access by the processor, where the

desired data is not located in the cache, forcing the processor to obtain the desired data from the

slower, external memory. As mentioned earlier, image data being processed should be placed in

the cache for increased performance not to cause cache misses noting that cache misses pose

barriers to real-time implementations. Due to the fact that many low-level and intermediate

level operations require access to neighboring pixels, this can be a grave source of performance

loss. Mechanisms should be put into place in order to increase the number of cache hits over

cache misses, where a cache hit is defined as an attempted memory access by the processor with

the consideration that the desired data is already located within the cache.

4.3.5 Memory Optimization Strategies

While memory management optimization strategies could be regarded as software optimization

strategies, a distinction is made here between the two because of the overwhelming importance

of memory performance bottlenecks as opposed to computation bottlenecks. Memory optimiza-

tions are meant to alleviate memory performance bottlenecks, while software optimizations are

meant to alleviate computation bottlenecks.

4.3.5.1 Internal Memory Versus External Memory

As mentioned previously, due to the faster access times afforded by on-chip memories, it is best

to place frequently used items within internal memory to overcome the overhead of external

memory accesses. Although it is desired to place an entire image into internal memory, it is

often the case that the entire image does not fit into the on-chip memory. In such cases, it would

be detrimental to just leave the image in external memory. Another important strategy to deal
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with this issue involves allocating a buffer section in the available internal memory, partitioning

the image data into blocks the size of the allocated buffer, and performing processing on

the smaller data blocks. Some important image data partitioning schemes include row-stripe

partitioning and block partitioning. The most commonly used partitioning scheme is the row-

stripe partitioning scheme where a few lines or rows of image data are prefetched to a buffer

within the on-chip memory to enable faster data accesses. The fetching of a few lines to internal

memory before any processing commences also has the benefit of reducing cache misses for

operations, which require 2D spatial locality, since vertically adjacent pixels would now be

located in the cache. Another partitioning scheme is to divide an image into either overlapping

or nonoverlapping blocks depending on the type of processing being performed.

In addition to placing image data in internal memory, other frequently used items should

also be placed in internal memory [70]. Since many embedded processors have internal program

and data on-chip memories, critical portions of the code and other frequently used data items

such as tables should also be considered for inclusion into on-chip memory as space permits.

The benefits of on-chip memory over that of external memory cannot be stressed enough as

efficient use and handling of image data and program code portions within on-chip memory is

often critical to achieving a real-time performance.

4.3.5.2 Efficient Movement of Data

While making efficient use of available internal memory for storing image data is important for

obtaining real-time performance, using precious CPU resources to perform the movement of

data, for instance using the memcpy function, is not recommended [113, 114]. A key peripheral

available in most modern processor architectures is the DMA controller, which can manage the

movement of data without CPU assistance, leaving it free to focus on time critical computations

rather than becoming engaged in data management. A DMA controller can usually manage

multiple DMA channels simultaneously so that multiple data transfers can occur at the same

time.

With the availability of DMA, efficient multibuffering strategies have been developed

that allow concurrent processing and movement of data. As the name implies, multibuffering

strategies make use of multiple buffers usually placed within on-chip memory to allow per-

forming concurrent processing and movement of data. Depending on the type of processing

being performed, usually three buffers are employed including buffer 1 and buffer 2 operating

in the so-called “ping-pong” manner and buffer 3 operating as an output buffer. The scheme

usually takes the form where a DMA channel is used to store a block of data in buffer 1, while
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processing proceeds on data in buffer 2 and results are placed in buffer 3. After processing on

buffer 2 has been completed, the results in buffer 3 are sent out to external memory through a

DMA channel, while processing proceeds with data in buffer 1 and another DMA channel is

used to bring in another block of image data into buffer 2. Many variations of this scheme have

been used, and some of them are detailed further in the examples section. An important and

often overlooked issue regarding memory accesses is the alignment of data. DMA transfers can

benefit from proper data alignment by maximizing the data bus throughput [91, 99].

4.3.5.3 Increasing Memory Access via Spatial and Temporal Locality

Another method of reducing slow external memory accesses is to move from an image-based

processing scheme to a pixel-based processing scheme when multiple operations have to be

performed on image data and there are no data dependencies between the operations [16].

An image-based processing scheme involves applying one operation to all the pixels and then

applying another operation to all the pixels, etc. This is quite similar to the way MATLAB

performs processing on images. A pixel-based processing scheme on the other hand is one that

applies all the operations to one pixel, and the same is repeated for all the pixels.

The problem with an image-based processing scheme is that it does not make an efficient

use of the cache memory scheme, since the same pixel would have to be read many times to

complete the entire processing. In the pixel-based processing scheme, the pixel is read only once

and all the operations are performed while the pixel resides in the internal on-chip memory.

Thus, not only does pixel-based processing improve spatial and temporal locality of memory

accesses, but also increases the computational intensity of the implementation, a measurement

commonly used to gauge if an implementation is memory limited or not [143]. Computational

intensity is defined as the ratio of the number of instructions executed to the number of memory

accesses. If many instructions are being executed per memory access, then the coded routine

is said to have a high computational intensity, while on the other hand if a small number of

instructions are executed per memory access, then the coded routine is said to have a low com-

putational intensity. In other words, a low computational intensity means that the coded routine

is memory inefficient. Therefore, since more operations are performed per memory access in

a pixel-based processing scheme, the use of such a scheme is beneficial when it is applicable.

4.3.5.4 Other Memory Optimization Methods

There are many other strategies that could be employed to achieve an efficient use of memory,

and most of these indeed depend on the application, the available resources, and the critical

bottlenecks. Various steps, such as using global variables instead of local variables to reduce
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the size of the stack, allocating enough memory to the heap for dynamic allocation, and taking

advantage of packed data transfers to maximize memory bandwidth, should be considered when

transitioning to a real-time implementation.

4.4 SOFTWARE OPTIMIZATION

After having ported a code to standard C as a reference for implementation on the target

hardware, and applying/exploring compiler-level optimizations, software profiling should be

performed to see what portions of the code pose significant bottlenecks for meeting the real-

time requirements. Once determining the bottlenecks, steps need to be taken to optimize

those portions of the code in order to bring the execution time within an acceptable real-time

range. Use of image/video processing libraries, fixed-point arithmetic, software pipelining, and

subword parallelism are popular techniques that are mentioned here.

4.4.1 Profiling

There is a certain established method of performing software optimizations to improve the

efficiency of a source code. One should not proceed blindly in applying software optimization

techniques but should be guided by certain accepted practices. The very first stage in the software

optimization process is to profile the code, that is to say, gather the expended processor clock

cycles or actual execution times of every function and subfunction in the code. Most modern

integrated development environments include the capability to profile codes. Profiling the code

reveals the portions that are the most time consuming. The goal of software optimizations is

to apply code transformations to those time critical portions of the code in order to extract

maximum performance from the underlying hardware architecture. In image/video processing,

such time critical portions mostly involve nested loop statements. After applying a single trans-

formation, the code should first be verified for functional accuracy, and then profiled once again.

If after profiling, the code still does not achieve a satisfactory performance, the process needs

to be repeated again; otherwise, the software optimization phase should be stopped, as there

would be no benefit in seeking a faster performance than what is actually necessary.

4.4.2 Compiler Optimization Levels

Modern compilers are usually equipped with automatic software optimizers, which gather infor-

mation from the code and attempt transformations on the code to make it more efficient. Often

there are several levels of optimization, each one targeting a different aspect of optimization,

with the highest one offering the ability to produce the most efficient code than the other
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levels. After applying compiler-level optimizations, the code should be profiled to see if any

increases in performance were gained. In some cases, applying compiler optimization levels

would actually degrade performance for some functions. Thus, if it is possible, compiler opti-

mizations need to be applied only to those functions that experience an increase in performance.

If the performance after applying compiler optimization levels is satisfactory, then no further

optimization will be necessary, bearing in mind that this is usually not the case. Normally, it

is best to proceed with applying the strategies discussed next to those remaining time critical

portions of the code. An important item to note is the utilization of the volatile keyword

to make sure that the compiler does not remove the variables it thinks are useless when they

are actually needed for proper functionality. An example of this is having a flag variable in a

hardware, interrupt-triggered interrupt service routine [124].

4.4.3 Fixed-Point Versus Floating-Point Computations and Numerical Issues

When porting over a standard C reference code to the target architecture, usually floating-point-

based computations are kept intact at the first stages of optimization to verify the functionality.

More often than not, floating-point computations pose a major performance bottleneck in real-

time implementations, especially on fixed-point processors that are often used in embedded

devices. Performing floating-point calculations on fixed-point processors is regarded as a waste

of resources since floating-point calculations have to be emulated through software to properly

handle the exponent and mantissa parts of the numbers. Considering that heavy computations

are usually performed in loops, this performance degradation is magnified by the number of

iterations through loops. In addition to this, compiler optimizations usually cannot be performed

on loops with floating-point calculations on a fixed-point processor since the compiler has to add

a function call to a library emulating floating-point calculations. A compiler would not optimize

a loop with a function call within the loop [113, 114]. Therefore, performing floating-point

calculations on fixed-point processors is not a good idea.

Fixed-point arithmetic is the preferred format of arithmetic in real-time image/video

processing systems, especially in embedded systems. The reason behind the choice of fixed-

point over floating-point is that fixed-point calculations are usually faster to perform since they

can be accomplished using integers without the overhead imposed by floating-point calculations

that have to take into consideration the mantissa and the exponent of a floating-point number

representation. Also, noting that most embedded devices utilize fixed-point processors, it is quite

inefficient to emulate floating-point arithmetic on such processors as this causes a considerable

reduction in performance.
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The speedup gained when transitioning from floating-point-based computations to fixed-

point-based computations can be dramatic. Therefore, a transition to fixed-point arithmetic is

essential toward achieving the highest levels of performance. However, in practice this is easier

said than done, because the developer has to decide what the appropriate fixed-point format

for the calculations should be. One of the most commonly known methods of coding fixed-

point representation of numbers is the mixed integer fractional Q format, Qm.n, denoting

an m + n + 1 bit number, where m + 1 bits to the left of the radix point constitute the 2’s

complement signed integer portion and n bits to the right of the radix point constitute the

fractional portion [16, 124]. This format has the flexibility of allowing differing levels of accuracy

to mitigate the effects of quantization on the numerical calculations. As a result, it becomes

important to determine the necessary level of accuracy for each calculation and thus to use an

appropriate fixed-point representation.

Numerical issues such as these and others including quantization effects, rounding, trun-

cation, overflows, proper scaling, and the order of operations need to be carefully considered

when implementing fixed-point computations. Multiplying two fractional numbers yields an-

other fraction, but adding/subtracting two fractional numbers might generate numbers outside

the fractional range causing overflow, hence the need for proper scaling [81]. The order of

operations might also be critical in reducing the propagation of errors throughout a particular

computation, for instance, in the calculation of local variances [124]. Also, care must be taken

to keep track of the decimal point during the calculations. These issues can be rapidly and

fully explored within the development environments such as MATLAB with its Fixed-point

Toolbox or with Simulink, allowing a rapid determination of the required accuracy level.

It is recommended to find a representation that requires the least amount of bits in order

to conserve memory and to enable use of packed data processing [16]. For example, using a

16-bit fixed-point representation instead of a 32-bit representation such as the popular Q0.15

format, or a 16-bit pure fractional fixed-point representation, allows representing numbers in

the range (−1, 1) [81, 124]. When implemented on a target platform, fixed-point computations

are accomplished by first scaling data by an appropriate power of 2 via left bit-shifting to gain

sufficient accuracy, performing the computations, and then scaling back down by the same

power of 2 via right bit-shifting. Scaling by powers other than 2 is not time efficient since such

scaling would often require a computationally expensive division operation in order to scale the

result back to the original level [113, 114].

Some other important numerical issues involve performing division operations on fixed-

point processors. In [81, 124], several strategies are suggested including using the repeated
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subtraction method, using a lookup table if the input range is known a priori, or using the

Newton–Raphson algorithm.

4.4.4 Optimized Software Libraries

One should not discount the use of any dedicated image and signal processing libraries supplied

by the manufacturer of the processor being used. Such libraries have been carefully crafted to

extract maximum performance from the processor architecture and thus their use should be

considered as a means of improving performance to meet real-time requirements. Of course,

one should consult the supplied documentation on the available functions before using them.

Some noteworthy libraries include Intel Integrated Performance Primitives Library for the

Pentium line of processors, Texas Instruments DSPlib signal processing library, and Imglib

image processing library. When used properly, these libraries can help one to cut down on

the development time by not having to optimize certain basic functions that are used in many

applications. While such libraries can be used to obtain a performance gain in certain cases, in

other cases, it might be advantageous to specialize the implementation to the specific compu-

tation needed instead of utilizing a general-purpose function from the library.

4.4.5 Precompute Information

Sometimes certain computations are repeated over and over when in reality such computations

are in fact just constants used within other computations. In such cases, it is beneficial to

precompute constants and to store these in memory as a lookup table, trading the computation

time with the time to access the constants in memory. Again, for frequently used constants,

such data should be placed in internal memory if space permits or else in fast external memory.

If the constants are always accessed from memory in a certain order, it would be helpful to store

data in memory in that particular order to ease memory accesses.

4.4.6 Subroutines Versus In-Line Code

To improve performance, it is recommended to use in-line codes instead of subroutines [1].

While subroutines are usually considered to be a good software engineering practice, they incur

overhead when called since variables have to be pushed onto a stack in order to be popped back

upon return. To avoid such overheads, the function calls can be replaced with in-line codes.

While this will increase the code size, the benefits gained in performance might outweigh the

increase in the code size. This is another classic example of the space-time trade-off in software

design.
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4.4.7 Branch Predication

It is well known that control-intensive codes in their original forms are not amenable to parallel

processing. One strategy of getting around this limitation is to employ the technique of branch

predication that essentially converts control-intensive codes to data-intensive codes [91, 111].

As a result, such codes can be parallelized leading to improved performance.

4.4.8 Loop Transformations

Loops are usually the most critical portions of codes. As such, there are many strategies to help

one to extract the most performance out of time critical loops both in the high-level and in the

low-level (assembly) languages. It is often a good practice to first apply loop transformations in

the high-level language before applying assembly optimizations.

The first step toward applying loop transformations is to carefully examine a loop to see if

there are any unnecessary calculations within the loop itself. If such calculations are found, they

should be removed. Calculations such as common subexpressions should usually be evaluated

only once instead of multiple times. Hence, such calculations serve as candidates for removal.

Another important aspect of a loop is to avoid function calls within the loop. All func-

tion calls within a loop should be replaced with in-line codes. As mentioned before, function

calls within a loop usually disqualify the loop from being examined for optimization by the

compiler optimizer. Also, any floating-point operations within the loop should be removed

when using a fixed-point processor since the compiler inserts software emulation to support

floating-point computations. Thus, it is essential to remove any function calls within the loop.

It should be noted that this does not apply to intrinsic functions, and C-callable functions

supplied by the manufacturer that map directly to the assembly-level instructions of the target

processor.

One of the most effective and commonly used high-level loop transformations is loop

unrolling, which can be used to increase the instruction level parallelism (ILP) of the loop.

Loop unrolling allows performing multiple iterations in one pass, grouping more computations

together for simultaneous access to more data and thus reducing loop overhead due to branching

and helping the compiler to create a more efficient scheduling of the main loop body. Of course,

unrolling a loop increases the code size, but it can also lead to more efficient code. This is

another classic example of the space-time trade-off in software design.

Software pipelining is a code optimization technique found useful for reducing the exe-

cution time of critical loops in an image/video processing algorithm. Essentially, this technique

utilizes the ILP that is buried within the loops. As previously stated, a simple high-level form of
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increasing ILP is to perform loop unrolling, relying on the compiler to automatically schedule

a software pipeline. If after profiling, satisfactory results are not obtained, then the pipeline

must be hand scheduled based on the assembly language of the target hardware. This is a truly

tedious task that requires analyzing a data-dependency graph and properly allocating processor

resources while making sure no conflicts or data dependencies exist in instructions scheduled

to run in parallel. Despite the tediousness of the task, the payoff of hand-scheduled pipelined

assembly is to obtain the highest performance. There are some automatic tools available that

can help relieve the burden of hand-coded software pipelining. It is recommended to use such

tools if the only way to obtain the necessary level of performance is through a hand-scheduled

software pipeline. Another option to consider before undertaking hand-scheduled software

pipelining is to utilize compiler intrinsics that can be used to direct the compiler optimizer to

produce a more efficient scheduling of a loop.

4.4.9 Packed Data Processing

Most modern architectures incorporate some form of packed data processing functionality to

enhance the performance of processing data that is smaller than the width of the data path. Recall

that pixel data is usually represented anywhere between 8 and 14 bits, depending on the accuracy

required by the application. Since most modern data paths are of 32 bits, it is possible to process

four 8-bit data or two 16-bit data pixels simultaneously, leading to processing more image data in

one clock cycle. Such operations can be used to speed up matrix–vector computations frequently

encountered in image/video processing algorithms. In order to use this packed data processing

feature, the code usually has to be reorganized to implement the packed data processing mode,

similar to code vectorizing [91]. It is important to exploit this feature to the fullest in order to

process the maximum amount of image data in one clock cycle. This feature can be combined

with software pipelining for even greater gains in performance. It is important to make sure

data are properly aligned so that memory loads and stores operate with maximum efficiency. In

the cases where it is necessary to access unaligned data, special instructions can be utilized, if

available, to reduce the overhead involved from loading two adjacent data words and extracting

the desired data via shifting and bit-masking operations [99].

4.5 EXAMPLES OF SOFTWARE METHODS

In what follows, several examples are presented to illustrate the deployment of the above software

optimization tools for achieving real-time throughputs.
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4.5.1 Software Design

Proper software design is essential for developing and maintaining real-time image/video pro-

cessing systems. Several representative examples covering the design of software architectures

and the use of object-oriented design principles are mentioned next.

4.5.1.1 Software Architectures

For real-time image/video processing systems, software architectures are just as important as

hardware architectures. Modular and layered approaches have been used extensively in designing

software architectures for real-time image/video processing systems as such approaches result

in software that is easy to maintain and extend its future functionality. Here, three examples are

mentioned to illustrate the use of modular and layered design and real-time operating system

concepts.

One example incorporating both modular and layered approaches appears in [77], where a

software architecture for an embedded multifunction digital camera system was discussed. This

approach to software architecture design involved extracting application-specific features and

device-dependent controls from the functional operation modules via a well-defined API and

device driver interface (DDI). The architecture consisted of three layers, namely an application

layer, a functional layer, and a system layer as well as two interfaces, the API and DDI. The ap-

plication layer included a graphic-user-interface (GUI), while the functional layer implemented

the supported camera functions. The system layer provided hardware abstraction, allowing reuse

of all upper layer codes upon changes to hardware components. The system was managed using

a real-time operating system that allowed the separation of upper level functionality from timing

schedule details and file-allocation processes. As a result, this modular and layered approach

allowed reusability and extended the programmability and flexibility of the software platform.

Another example of a layered approach can be seen in [13], where the software architecture

of a system used for the automatic exposure control of a charge-coupled device camera was

discussed. A layered approach to software architecture with five hierarchical layers was designed

to allow a better isolation of different layers for development and validation purposes. The heart

of the design revolved around the real-time layer that was constructed using RT-Linux, the

hard real-time extension to the popular general-purpose Linux operating system. The use of

this real-time operating system in the software architecture provided the ability to prioritize the

hard real-time task of updating the exposure.

Another important aspect of software architecture design for real-time image/video pro-

cessing systems is in the proper scheduling of tasks with different levels of priorities by utilizing



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK019-04 MOBK019-Kehtarnavaz.cls May 9, 2006 16:52

SOFTWARE METHODS FOR REAL-TIME IMAGE AND VIDEO PROCESSING 73

a real-time operating system. The concept of multithreaded implementation has been gaining

popularity in this regard. For example, in [18], a multithreaded software architecture was dis-

cussed that allowed a medical image enhancement procedure to be implemented in real-time. In

terms of thread organization, an initial thread was responsible for the GUI and administrative

control of the entire application. A frame acquisition/communication thread was used to han-

dle the frame-grabber hardware and was given a high priority. Two threads for diagnostic data

analysis and real-time enhancement also ran separately. In addition, a thread for storing data

to the hard disk ran with a lower priority. The administrator thread managed the interaction

among the different threads and had the ability to adjust priorities or halt threads if necessary.

The use of such a software architecture was beneficial to maintain a real-time response, and to

be reactive to the inputs by the user.

4.5.1.2 Object-Oriented Design Patterns

As previously mentioned, there has been an increased interest in the application of object-

oriented design patterns in real-time image/video processing systems. One research group has

primarily been involved in promoting the use of object-oriented design patterns for such systems

as discussed in the references [90, 104, 127, 128].

In [90], an object-oriented design for a class of Kalman filters was presented that helped

to decrease recoding efforts in adapting the filter implementation to different applications. By

using the object-oriented programming design patterns named the “Gang of Four,” a software

implementation of the Kalman filter was achieved that was amenable to future extensions

without much recoding effort. By making use of these design patterns, it was easy to abstract

the detail of the filter implementation away, allowing a truly flexible software implementation

supporting different numbers of inputs, different noise models, different filter implementations,

and pixel- or blockwise processing modes.

Not only can object-oriented design patterns be used to limit recoding efforts in deploying

differing versions of the same algorithm, they can also be used to limit the recoding efforts for

changes in hardware. In [104], it was discussed how object-oriented design patterns could be

applied to a real-time image processing problem, enabling and promoting software architecture

reuse in the face of both algorithm and hardware alterations. Since real-time image/video

processing systems consist of many lines of code, it would be beneficial to not have to redevelop

the software architecture from scratch every time for a new design. Object-oriented design

patterns can be used to help cut down on the development time by allowing the reuse of already

tested and developed software for similar image/video processing problems.
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Originally, it was thought that using such design patterns might have a detrimental effect

on the real-time performance of a system due to the use of several layers of abstraction involved

to create software reusable systems. In [127], it was shown that this was not the case. A study

was performed which showed which applying object-oriented design patterns could produce

well-designed and efficient image processing systems with easy extensibility, maintainability,

and reuse without sacrificing real-time performance. Due to these findings, in [128], it was

argued that real-time image processing applications should be written using an object-oriented

approach to achieve efficient, maintainable, and understandable code from the start. Such a

design approach was shown to be superior since it can eliminate inefficiencies in software that

are common in other design approaches.

4.5.2 Memory Management

4.5.2.1 Increasing Spatial/Temporal Locality

There have been several examples in the literature on methods to increase the spatial or tem-

poral locality of memory accesses for gaining speedups in processing. Here, five representative

examples are mentioned that illustrate how restructuring the processing can lead to efficient use

of the memory hierarchy necessary for achieving real-time performance.

As mentioned previously, the measure of computational intensity can be used as an in-

dication of memory bottlenecks in a given computation. An example of using this measure

can be seen in [143], where the problem of using the Discrete Wavelet Transform (DWT)

for lossless compression of medical images was considered. The DWT approach chosen was

the standard method based on a quadrature mirror filterbank. It was found that the im-

plemented convolution source code had a low computational intensity, indicating that the

source code was memory inefficient. To overcome the memory bottleneck, the computa-

tions were restructured in such a way that to reduce the number of external memory ac-

cesses per convolution operation. This had the effect of raising the computational intensity

of the convolution source code and thus helped to achieve more efficient use of the memory

hierarchy.

In most cases, the limited size of fast internal memories forces the restructuring of the

processing to make an efficient use of the memory hierarchy. For example, in [30], the prob-

lem of designing an efficient image processing library within the strict memory constraints of

an embedded digital camera platform was considered. The concept of “band processing” was

utilized that involved partitioning an image into several smaller-sized data bands, sequentially

processing the bands using a pipeline of band-based operators, and then collecting the bands
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into a single-output band. Such an approach provided a means of efficiently using the limited

memory resources of the embedded platform.

Another example in which the processing was restructured for an efficient use of mem-

ory resources is reported in [31], where a memory-efficient algorithm was devised for the

DWT calculations based on the overlapped block-transferring scheme and reorganization of

the calculations. It was shown that the chosen algorithm for computing the wavelet coefficients

suffered from the cache-miss problem in the filtering operation. Despite the computational

efficiency of the algorithm, the cache-miss problem caused a poor performance during ver-

tical filtering. An overlapped block-transferring method was thus devised to overcome the

cache-miss problem. The method involved partitioning the image residing in the external

memory into blocks the size of the cache. The processing was then restructured to allow the

elimination of the cache-misses during vertical filtering. To overcome the issue of needing

adjacent block information during this filtering procedure, horizontally overlapped blocks were

considered.

In contrast to the traditional block- and strip-partitioning schemes often used in the

reorganization of computations, a new data organization called “super-line” processing was

developed in [44, 58, 101] specifically addressing the issue of cache-misses in algorithms

that use multiresolution representations of image data. This organization involved dividing

an image into partitions called “super-lines,” where each partition contained all the neces-

sary information from each level of the multiresolution representation to allow the applica-

tion of the algorithm in one pass. In [44], the results showed that after application of the

super-line approach, only 0.2% of the memory accesses were to the external memory, which

helped to achieve a processing rate of 43.6 fps for 512 × 512 images on a desktop GPP. Also,

in [101], the results showed that the super-line approach was able to reduce the miss rate

from 99% to 0.8%, achieving a processing rate of 44 fps for 555 × 382 images on a desktop

GPP.

4.5.2.2 Efficient Movement of Data

Due to the vast amount of data needed to be processed in real-time image/video processing

systems, efficient movement of data plays an important role in obtaining real-time performance.

DMA has been used extensively to allow efficient movement of data, and several buffering

schemes have been developed for this purpose. For example, in [99], a data flow management

scheme using a programmable DMA controller was discussed. Since the size of the on-chip

data cache was limited and not large enough to hold an entire image frame, the images were
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processed in smaller chunks at a time. An on-chip programmable DMA controller was used to

manage the movement of data concurrently with the computations, preventing the processor

stalls introduced by waiting for the data to be fetched from the external memory to the on-chip

memory. A double buffering scheme was employed involving the use of four buffers, two for

input blocks (ping in buffer and pong in buffer) and two for output blocks (ping out buffer and

pong out buffer), which were allocated in the on-chip memory. While the core processor was

accessing pong out buffer, the DMA controller moved the previously calculated output block

in ping out buffer to the external memory and brought the next input block from the external

memory into ping in buffer. When the computation and data movements were completed, the

processor and DMA controller switched buffers, and the processor started to use the ping

buffers, while the DMA used the pong buffers.

Several other examples on the use of DMA for real-time image/video processing appli-

cations are reported in [31, 46, 77, 98, 138].

4.5.3 Software Optimization

There are many examples of software optimization techniques encountered in the literature.

Next, several representative examples on the use of fixed-point computations, software libraries,

and loop transformations are given.

4.5.3.1 Fixed-Point Computations

As most embedded platforms used in real-time image/video processing applications include

fixed-point processors, reformulating floating-point computations in fixed-point is an important

task for achieving real-time performance. For instance, in [11], it was found that floating-

point computations were the major bottleneck toward reaching a real-time performance. The

optimization strategy employed was to convert only the most computationally intensive parts

of the algorithm over to fixed-point to ease the coding effort while still achieving a significant

speedup.

Many researchers have used the Qm.n fixed-point format in transitioning their algorithms

from development to implementation. For instance, in [16], the Q9.6 fixed-point format was

employed in the algorithm utilized for a real-time video analysis traffic surveillance application.

The range and precision required were first verified in MATLAB before the implementation on

the embedded platform. In addition, all the arithmetic operations used were implemented using

the chosen fixed-point format. Another example illustrating the use of such a format appeared
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in [99], where the mapping of two-dimensional convolution on a VLIW media processor

was considered. It was pointed out that generalized convolution required the normalization

of the outcome via an expensive division operation. To avoid the division, a scaling factor was

introduced into the filter kernel coefficients. Each coefficient was thus represented in the Q0.15

fixed-point format.

To support varying levels of dynamic range throughout the course of a multistage com-

putation, a fixed-point format with a varying integer part can be used. An example of such an

approach is seen in [143], where in order to deal with the dynamic range changes in the DWT

(an increase from scale j − 1 to j in the forward DWT and a decrease from scale j to j − 1

in the inverse DWT), a 32-bit word length was used with a variable integer part. In order to

determine the required word length, the propagation of errors from each scale was analyzed to

determine the lower and upper bound errors and thus the required word length.

4.5.3.2 Software Libraries

Software libraries are used extensively in real-time image/video processing systems. Such li-

braries can aid in porting algorithms from a research development environment onto a target

hardware platform.

While general-purpose libraries can be used as a first step toward porting, libraries op-

timized for the target hardware platform can provide an easy means of extracting a high level

of performance from the platform without having to have a deep understanding of the un-

derlying hardware architecture. For example, in [132], an algorithm for adaptive image fusion

was originally developed in MATLAB using its Image Processing Toolbox. Since MATLAB

is an interpreted language, it provided a rapid prototyping, but it was not suitable for real-time

deployment. Thus, the MATLAB algorithm was ported over to the standard general-purpose

C++ programming language. To simplify the porting effort and to help maximize the use of

processor resources, the optimized Intel Image Processing Library was used to replace the MAT-

LAB Image Processing Toolbox functions. Another example of the use of optimized libraries is

covered in [146], where the optimized assembly code libraries supplied by the chip manufacturer

were used to reduce the coding effort and to speed up the performance.

4.5.3.3 Loop Transformations

The most time-consuming portions of image/video processing algorithms often consist of low-

level or intermediate-level operations that are implemented as nested loops, requiring multiple
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iterations to complete the processing for an entire image frame. The main techniques for

speeding up these critical core loops include loop unrolling and software pipelining.

For example, in [99], it was noted that certain instructions took multiple clock cycles

to complete, which led to latencies. Loop unrolling and software pipelining were used to

cope with such latencies. Loop unrolling was able to fill the delay slots due to instruction

latencies by taking advantage of single-cycle instructions via unrolling those instructions that

accessed multiple data within the loop. Software pipelining was then used to overlap the op-

erations from different iterations of the loop, allowing a parallel execution of loading and

computation. Software pipelining required a prolog part to set up the loop kernel and an

epilog part for finishing the computations. Loop unrolling and software pipelining were com-

bined to increase the data processing throughput of the algorithm for obtaining a real-time

performance.

Because writing a software pipeline code in assembly language is a cumbersome task,

tools have been created to help assist in this process. One example of such a tool is mentioned

in [49] for VLIW DSPs. In this example, the software pipeline optimization tool (SPOT)

was used which combined a graphical schedule editor with an automatic conflict analyzer. The

schedule editor provided a clear 2D visualization of the scheduled software pipeline with rows

representing the multiple functional units of the VLIW DSP and the columns representing

processor clock cycles. The conflict analyzer provided an automatic allocation of the processor

registers in addition to an instant feedback on any data dependencies and other coding errors.

This tool was also capable of generating the assembly source code file of the conflict-free

scheduled pipeline. The results showed that the tool was able to achieve a speedup by a factor

of 20 over the optimized C code. Basically, it provided a fast, simplified, and cost-effective

method for including optimized hand-scheduled pipeline code in the workflow of developing

a real-time image processing system.

4.6 SUMMARY

This chapter has covered the major topics regarding software methods for achieving real-time

performance including software design, memory management, and software optimization. It

should be stressed that before performing any software level modifications, a thorough exam-

ination of the algorithm involved should be carried out to identify key implementation details

such as the required dynamic range and input/output data accuracy, the memory requirements,

and any potential parallelism inherent in the algorithm. It is also essential to have a working

knowledge of the hardware in case the assembly language programming needs to be used to
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extract the maximum performance out of the hardware. It is worth pointing out that many of the

software methods mentioned in this chapter are standard methods and have been used exten-

sively to optimize algorithms running on various hardware platforms toward obtaining real-time

performance. Also, since the application of these methods is quite straightforward, it can be

assured that careful application of these methods will help one to acquire most performance out

of a given hardware platform.
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C H A P T E R 5

The Road Map

The major aim of this book has been to provide general guidelines toward the development of

real-time image/video processing systems. Such guidelines have not previously appeared in one

place as discussed here. In Chapter 2, several key strategies for designing simplified algorithms for

real-time use were presented. In Chapter 3, an overview of currently available hardware imple-

mentation platforms including digital signal processors (DSPs), field programmable gate arrays

(FPGAs), general-purpose processors (GPPs), and graphics processing units (GPUs) was given.

Finally, in Chapter 4, major software methods for obtaining real-time performance were covered.

In all these chapters, representative examples from the recent literature were carefully selected

and presented to provide relevant real-world problems to illustrate the key concepts one needs to

be aware of when transitioning to a real-time implementation. After having covered the algorith-

mic, hardware, and software aspects, a recommended road map is mentioned in this final chapter.

5.1 RECOMMENDED ROAD MAP

The following steps are considered to constitute the road map when taking an image/video

processing algorithm to a real-time environment running on a hardware platform:

• Step 1: Understand the algorithm

It is imperative that a deep understanding of the algorithm is first obtained beyond

the high-level knowledge that is often adequate in a research environment. In this

initial step, any algorithmic simplifications such as those covered in Chapter 2 should

be carefully considered. This understanding also determines what hardware platform

is most suitable for its real-time deployment.

• Step 2: Port the algorithm to a reference C/C ++ implementation

After having verified the algorithm in the research environment, it is often necessary to

create a reference C implementation, not specialized to any particular hardware. This

step is needed for debugging the transition from MATLAB or LabVIEW to C and
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for providing a platform-independent version of the algorithm, which could be ported

over to different hardware platforms. The output of the ported algorithm should be

verified using the initial version.

• Step 3: Understand the hardware

In addition to having a deep understanding of the algorithm, it is important to have

a deep understanding of the underlying hardware architecture in order to maximize

the available computational resources of the architecture involved. It is also useful to

become acquainted with any compiler intrinsic instructions as well as any optimized

image processing libraries during this step.

• Step 4: Port the reference algorithm to the target hardware

This step involves porting the reference algorithm over to the target hardware platform.

• Step 5: Profile and identify the bottlenecks

After having ported the reference algorithm to the target hardware, next step is to

profile the algorithm to identify where the bottlenecks lie. One should also make use of

the integrated development environment (IDE) of the target hardware during this step.

• Step 6: Apply memory and high-level software optimizations

Once the time critical portions of the code are identified, next step includes memory

optimizations and high-level software optimizations. Each modification of the code

should be followed by a verification procedure to make sure that the outcome is as

expected.

• Step 7: Apply low-level software optimizations if necessary

After exhausting all high-level software optimizations, if the performance is still lacking,

then one should resort to low-level software optimizations such as writing a hand-

scheduled software pipeline assembly.

• Step 8: Testing

Having achieved the desired performance, rigorous testing should be performed on

the system to guarantee a smooth operation under worst-case conditions. The system

should be put through a stress test to reveal any weak points to be patched up.

5.2 EPILOG

In this chapter, a recommended road map for the journey from research to reality was given.

Although this book has presented many guidelines to assist in this journey, ultimately it is up to

the system designer to select an appropriate collection of the presented guidelines in a particular

real-time image/video processing application of interest.
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