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While Σ∆M techniques [l, 2] are applied
widely in analog conversion sub-sys-
tems, both analog-to-digital (ADC) and

digital-to-analog (DAC) converters. these meth-
ods have enjoyed much less exposure in the
broader application domain, where flexible and
configurable solutions, traditionally supplied via
a software DSP (soft-DSP), are required. And this

limited level of exposure is easy to understand.
Most, if not all, of the efficiencies and optimiza-
tions afforded by Σ∆M are hardware oriented and
so cannot be capitalized on in the fixed precision
pre-defined datapath found in a soft-DSP proces-
sor. This limitation, of course, does not exist in a
field programmable gate array (FPGA) DSP solution.
With FPGAs the designer has complete control of
the silicon to implement any desired datapath
and employ optimal word precisions in the sys-
tem with the objective of producing a design that
satisfies the specifications in the most economi-
cally sensitive manner .
While implementation of a digital Σ∆ ASIC (appli-
cation specific integrated circuit) is of course possi-
ble, economic constraints make the implementa-
tion of such a building block that would provide
the flexibility, and be generic enough to cover a
broad market cross-section, impractical. FPGA
based hardware provides a solution to this prob-
lem.
FPGAs are an off-the-shelf commodity item that
provide a silicon feature set ideal for constructing
high-performance DSP systems. These devices
maintain the flexibility of software based solu-
tions. while providing levels of performance that
match, and often exceed ASIC solutions.
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There is a rich and expanding body of literature
devoted to the efficient and effective implementa-
tion of digital signal processors using FPGA
based hardware. More often than not, the most
successful of these techniques involves a para-
digm shift away from the methods that provide
good solutions in software programmable DSP
systems.
This paper reports on the rich set of design oppor-
tunities that are available to the signal processing
system designer through innovative combinations
of Σ∆M techniques and FPGA signal processing
hardware. The applications considered include
narrow-band filters, both single-rate and multi-
rate, DC canceler, and Σ∆M hybrid digital-analog
control loops for simplifying carrier recovery, tim-
ing recovery and AGC (automatic gain control)
loops in a digital communication receiver.
The paper is organized as follows: Section 2 pres-
ents a brief overview of FPGA architecture. In
Section 3 a simple single-loop base-band Σ∆ mod-
ulator is introduced. This structure is then extend-
ed to a novel architecture that permits center fre-
quency tuning, as well a method for working with
the system degrees of freedom to tradeoff modu-
lator bandwidth with dynamic range. The tunable
Σ∆M is then utilized for implementing area effi-
cient FPGA FIR filters. The process for computing
the modulator coefficients for lowpass, bandpass
and highpass designs is described. In Section 4, a
new Σ∆ modulator architecture is described that
provides a very simple method for tuning using
only a single coefficient. In any fixed-point data-
path, careful consideration must be given to the
DC aspects of the design. For example, the intro-
duction of a DC component due tc sample trunca-
tion between the stages of a multistage multi-rate
filter can be problematic, causing arithmetic satu-
ration or increasing the bit error rates in a digital
receiver. Section 5 describes a unique Σ∆ modula-
tor approach to building a DC canceler. In Section
6, Σ∆ methods are described for simplifying the
implementation of hybrid digital-analog control
loops in a system such as a software defined
radio. In Section 7 some comments on the indus-

trial implications of the techniques considered in
the paper are presented. Finally, some conclu-
sions are drawn in Section 8.
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There is a rich range of FPGAs provided by many
semiconductor vendors including Xilinx, Altera,
Atmel, AT&T and several others. The architectur-
al approaches are as diverse as there are manu-
facturers, but some generalizations can be made.
Most of the devices are basically organized as an
array of logic elements and programmable rout-
ing resources used to provide the connectivity
between the logic elements, FPGA I/O pins and
other resources such as on-chip memory. The
structure and complexity of the logic elements, as
well as the organization and functionality sup-
ported by the interconnection hierarchy, distin-
guish the devices from each other. Other device
features such as block memory and delay locked

Figure 1. Generic FPGA architecture
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loop technology are also significant factors that
influence the complexity and performance of an
algorithm that is implemented using FPGAs.
A logic element usually consists of 1 or more
RAM (random access memory) n-input look-up
tables, where n is between 3 and 6, and 1 to sever-
al flip-flops. There may also be additional hard-
ware support in each element to enable highspeed
arithmetic operations. This generic FPGA archi-
tecture is shown in Figure 1. Also
illustrated in the figure (as wide
lines) are several connections
between logic elements and the
device input/output (1/O) ports.
Application specific circuitry is
supported in the device by down-
loading a bit stream into SRAM
(static rondom access memory) based
configuration memory. This per-
sonalization database defines the
functionality of the logic elements,
as well as the internal routing.
Different applications are support-
ed on the same FPGA hardware
platform by configuring the
FPGA(s) with appropriate bit
streams. As a specific example, consider the

Xilinx VirtexTM series of FPGAs [3]. The logic ele-
ments, called slices, essentially consist of two 4-
input look-up tables (LUTs), two flip-flops, sever-
al multiplexors and some additional silicon sup-
port that allows the efficient implementation of
carry-chains for building highspeed adders, sub-
tracters and shift registers. Two slices form a con-
figurable logic block (CLB) as shown in Figure
2.The CLB is the basic tile that is used to build the

logic matrix. Some FPGAs, like the Xilinx Virtex
families, supply on-chip block RAM. Figure 3
shows the CLB matrix that defines a Virtex FPGA.
Current generation Virtex silicon provides a fam-
ily of devices offering 768 to 12,288 logic slices,
and from 8 to 32 variable form factor block mem-
ories.
Xilinx XC4000 and Virtex [3] devices also allow
the designer to use the logic element LUTs as
memory - either ROM or RAM. Constructing
memory with this distributed memory approach
can yield access bandwidths in the many tens of
gigabytes per second range.Typical clock frequen-
cies for current generation devices are in the mul-
tiple tens of mega-hertz (100 to 200) range. In con-
trast to the logic slice architecture employed in
Xilinx Virtex devices, the logic block architecture
employed in the Atmel AT40K [4] FPGA is shown
in Figure 4. Like the Xilinx device, combinational
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logic is realized using lookup tables. In this case,
two 3-input LUTs and a single flip-flop are avail-
able in each logic cell. The pass gates in a cell form
part of the signal routing network and are used
for connecting signals to the multiple horizontal
and vertical bus planes. In addition to the orthog-
onal routing resources, indicated as N, S, E and W
in Figure 4, a diagonal group of interconnects
(NW, NE, SE, and SW), associated with each cell x
output, are available to provide efficient connec-
tions to a neighboring cell's x bus inputs.
The objective of the FPGA/DSP architect is to for-
mulate algorithmic solutions for applications that
best utilize FPGA resources to achieve the
required functionality.This is a three-dimensional

optimization problem in power , complex-
ity and bandwidth. The remainder of this
paper describes some novel FPGA solu-
tions to several signal processing prob-
lems. The results are important in an
industrial context because they enable
either smaller, and hence more economic,
solutions to important problems, or allow
more arithmetic compute power to be real-
ized with a given area of silicon.
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This section describes a method employing
sigma-delta modulation (Σ∆ M) techniques for
implementing area efficient finite impulse
response (FIR) filters using FPGA
hardware.Before treating the FPGA filter design,
a brief review of Σ∆ modulation encoding is pre-
sented.

Σ∆��	
�4,��	�

Sigma-Delta modulation is a source coding tech-
nique most prominently employed in analog-to-
digital and digital-to analog converters. In this
context, hybrid analog and digital circuits are
used in the realization. Figure 5 shows a single
loop Σ∆ modulator. Provided the input signal is
busy enough, the linearized discrete time model of
Figure 6 can be used to illustrate the principle. In
this figure the 1-bit quantizer is modeled by an
additive white noise source with variance
δ2e=∆2/12, where ∆ represents the quantization
interval. The z-transform of the system is
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Figure 5. Single loop Σ∆ modulator
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which is the transfer function of delay and an
ideal integrator, and Hs(z) and Hn(z) are the sig-
nal and noise transfer functions (NTF) respective-
ly. In a good Σ∆ modulator, Hs(ω) will have a flat
frequency response in the interval|f| =< B. In
contrast, Hn(ω) will have a high attenuation in the
frequency band|f|=< B and a don't care region in
the interval B<|f| < fs/2. For the single loopΣ∆ in
Figure 6 Hs(z) = z-1 and Hn(z) = 1- z-1. Thus the
input signal is not distorted in any way by the net-
work and simply experiences a pure delay from
input to output. The performance of the system is
determined by the noise transfer function Hn(z)
which is given by

and is shown in Figure 7. The in-band quantiza-
tion noise variance is

where Sq(f) = δ2q/fs is the power spectral density
of the quantization noise. Observe that for a non-
shaped noise (or white) spectrum, increasing the

sampling rate by a factor of 2, while keeping the
bandwidth B fixed, reduces the quantization
noise by 3 dB. For a first order Σ∆M it can be
shown that

for fs >> 2B. Under these conditions doubling the
sampling frequency reduces the noise power by 9
dB, of which 3 dB is due to the reduction in Sq(f)
and a further 6 dB is due to the filter characteris-
tic Hn(f). The noise power is reduced by increas-
ing the sampling rate to spread the quantization
noise over a large bandwidth and then by shaping
the power spectrum using an appropriate filter.
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Σ∆Μ techniques can be employed for realizing
area efficient narrowband filters in FPGAs. These
filters are utilized in many applications. For
example, narrow-band communication receivers,
multi-channel RF surveillance systems and for
solving some spectrum management problems.
A uniform quantizer operating at the Nyquist rate
is the standard solution to the problem of repre-
senting data within a specified dynamic range.
Each additional bit of resolution in the quantizer
provides an increase in dynamic range of approx-
imately 6 dB. A signal with 60 dB of dynamic
range requires 10 bits, while 16 bits can represent
data with a dynamic range of 96 dB.
While the required dynamic range of a system
fixes the number of bits required to represent the
data, it also affects the expense of subsequent
arithmetic operations, in particular multiplica-
tions. In any hardware implementation, and of
course this includes FPGA based DSP processors,
there are strong economic imperatives to mini-
mize the number and complexity, of the arith-
metic components employed in the datapath. The
proposal investigated in this section is to employ
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noise-shaping techniques to reduce the precision
of the input data samples so that the complexity
of the multiply-accumulate (MAC) units in the fil-
ter can be minimized. Of course, the pre-process-
ing must not compromise the integrity of the sig-
nal in the band of interest. The net result is a
reduction in the amount of FPGA logic resources
required to realize the specified filter.
Consider the structure shown in Figure 8. Instead
of applying the quantized data x(n) from the ana-
log-to-digital converter directly to the filter, it will
be pre-processed by a Σ∆ modulator.

The re-quantized input samples x(n) are now rep-
resented using fewer bits per sample, so permit-
ting the subsequent filter H(z) to employ reduced
precision multipliers in the mechanization. The
filter coefficients are still kept to a high precision.
The Σ∆ data re-quantizer is based on a single loop
error feedback sigma-delta modulator [l] shown
in Figure 9. In this configuration, the difference
between the quantizer input and output sample is
a measure of the quantization error which is fed
back and combined with the next input sample.
The error-feedback sigma-delta modulator oper-
ates on a highly oversampled input and uses the
unit delay z-1 as a predictor. With this basic error
feedback modulator only a small fraction of the
bandwidth can be occupied by the required sig-
nal. In addition, the circuit only operates at base-
band. A larger fraction of the Nyquist bandwidth
can be made available and the modulator can be
tuned if a more sophisticated error predictor is
employed. This requires replacing the unit delay
with a prediction filter P(z). This generalized
modulator is shown in Figure 10.
The operation of the re-quantizer can be under-
stood by considering the transform domain
description of the circuit.

This is expressed in Eq. (7) as

where Q(z) is the z-transform of the equivalent
noise source added by the quantizer q(·), P( z ) is
the transfer function of the error predictor filter,
and X(z) and X(z) are the transforms of the system
input and output respectively. P(z) is designed to
have unity gain and leading phase shift in the
bandwidth of interest. Within the design band-
width, the term Q(z)(1 - p(z)z-l) = 0 and so X(z) =
X(z). By designing P(z) to be commensurate with
the system passband specifications, the in-band
spectrum of the re-quantizer output will ideally
be the same as the corresponding spectral region
of the input signal.
To illustrate the operation of the system consider
the task of recovering a signal that occupies 10%
of the available bandwidth and is centered at a
normalized frequency of 0.3 Hz. The stopband
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requirement is to provide 60 dB of attenuation.
Figure 11(a) shows the input test signal.It com-
prises an in-band component and two out-of-
band tones that are to be rejected. Figure 11(b) is a
frequency domain plot of the signal after it has
been re-quantized to 4 bits of precision by a Σ∆
modulator employing an 8th order predictor in
the feedback path. Notice that the 60 dB dynamic
range requirement is supported in the bandwidth
of interest, but that the out-of-band SNR has been
compromised. This is of course acceptable, since
the subsequent filtering operation will provide
the necessary rejection. A 160-tap filter H(z) satis-
fies the problem specifications. The frequency
response of H(z) using 12-bit filter coefficients is
shown in Figure 11(c). Finally, H(z) is applied to
the reduced sample precision data stream X(z) to
produce the spectrum shown in Figure 11(d).
Observe that the desired tone has been recovered,
the two out-of-band components have been reject-
ed, and that the in-band dynamic range meets the
60 dB requirement.

*�/
����	��)�4�/��
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The design of the error predictor filter is a signal
estimation problem [7, 8]. The optimum predictor

is designed from a statistical viewpoint. The opti-
mization criterion is based on the minimization of
the mean-squared error. As a consequence, only
the second-order statistics (autocorrelation func-
tion) of a stationary process are required in the
determination of the filter. The error predictor fil-
ter is designed to predict samples of a band-limit-
ed white noise process Nxx(ω) shown in Figure 12.

Nxx(ω) is defined as

and related to the autocorrelation sequence rxx

(m) by discrete-time Fourier transform (DTFT)

The autocorrelation function rxx(n) is found by
taking the inverse DTFT of Eq. ( 9 )

Nxx(ω) is non-zero only in the interval -θ=<ω=<θ
giving rxx(n) as 

�#���������������///������������������$������������������������*���������'�,������0111&

Figure 11. (a) Input signal - 12b samples. (b) Shaped input -
4b samples. (c) Filter response - 12b coefficients. (d) Filtered
result.
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So the autocorrelation function corresponding to
a band-limited white noise power spectrum is a
sinc function. Samples of this function are used to
construct an autocorrelation matrix which is used
in the solution of the normal equations to find the
required coefficients. Leaving out the scaling fac-
tor in Eq. (11), the required autocorrelation func-
tion rxx(n), truncated to p samples, is defined as

The normal equations are defined as

equations [7]. This system of equations can be
compactly written in matrix form by first defining
several matrices.
To design a p-tap error predictor filter first com-
pute a sinc function consisting of p + 1 samples
and construct the autocorrelation matrix Rxx as

Next define a filter coefficient row-vector A as

A=[a(0),a(1),...,a(p-1)]

where ai i = 0, . . . , p- 1 are the predictor filter coef-
ficients. Let the row-vector R’xx be defined as

The matriz equivalent of Eq. (13) is

The filter coefficients are therefore given as

For the case in-hand, the solution of Eq. (18) is an
ill-conditioned problem. To arrive at a solution for
A, a small constant e is added to the elements
along the diagonal of the autocorrelation matrix
Rxx in order to raise its condition number. The
actual autocorrelation matrix used to solve for the
predictor filter coefficients is

8,�
*,�*�/
���	�

The previous section described the design of a
lowpass predictor. In this section bandpass
processes are considered.A bandpass predictor
filter is designed by modulating a lowpass proto-
type sinc function to the required center frequen-
cy θ0 [10]. The bandpass predictor coefficients
hBP(n) are obtained by solving the normal equa-
tions with a heterodyned sinc function

2�+2*,�*�/
���	�

The highpass predictor coefficients hHP(n) are
obtained by solving the normal equations with a
sinc function heterodyned to the half sample rate

sincHP(n) = sincLP(n)(-l)n-k     n = 0, ...,2p 
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The most challenging aspect of implementing the
data modulator is producing an efficient imple-
mentation for the prediction filter P(z). The desire
to support high-sample rates, and the require-
ment of zero latency for P(z), will preclude bit-
serial methods from this problem. In addition, for
the sake of area efficiency, parallel multipliers
that exploit one time-invariant input operand (the
filter coefficients) will be used, rather than gener-
al variable-variable multipliers. The constant coef-
ficient multiplier (KCM) is based on a multi-bit
inspection version of Booth's algorithm [9].
Partitioning the input variable into 4-bit nibbles is
a convenient selection for the Xilinx Virtex func-
tion generators (FG) [3]. Each FG has 4 inputs and
can be used for combinatorial logic or as applica-
tion RAM/ROM. Each logic slice [3] in the Virtex
logic fabric comprises 2 FGs, and so can accom-
modate a 16 x 2 memory slice. Using the rule of
thumb that each bit of filter coefficient precision
contributes 5 dB to the sidelobe behavior, 12-bit
precision is used for P(z). 12-bit precision will also
be employed for the input samples . There are 3
4bit nibbles in each input sample. Concurrently,
each nibble addresses independent 16 x 16 lookup
tables (LUTs). The bit growth incorporated here
allows for worst case filter coefficient scaling in
P(z). No pipeline stages are permitted in the mul-
tipliers because of P(z)'s location in the feedback
path of the modulator. It is convenient to use the
transposed FIR filter for constructing the predic-
tor. This allows the adders and delay elements in
the structure to occupy a single slice. 64 slices are
required to build the accumulate-delay path. The
FPGA logic requirements for P(z), using a9-tap
predictor, is Γ(p(z)) =9x 40+64=424 CLBs. A small
amount of additional logic is required to complete
the entire Σ∆ modulator. The final slice count is
450. The entire modulator comfortably operates
with a 113 MHz clock. This clock frequency
defines the system sample rate, so the architecture
can support a throughput of 113 MSamples per
second. The critical path through this part of the

design is related to the exclusion of pipelining in
the multipliers.
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Now that the input signal is available as a reduced
precision sample stream, filtering can be per-
formed using area optimized hardware. For the
reasons discussed above, 4-bit data samples are a
convenient match for Virtex devices. Figure 13
shows the structure of the reduced complexity
FIR filter. The coded samples x(n) are presented to
the address

inputs of N coefficient LUTs. In accordance with
the modulated data stream precision, each LUT
stores the 16 possible scaled coefficient values for
one tap as shown in Figure 14.An N-tap filter
requires N such elements. The outputs of the min-
imized multipliers are combined with an add-
delay datapath to produce the final result. The
logic requirement for the filter is Γ(H(z)) =
NΓ(MUL)+(N -1)Γ(ADD_z-1) where Γ(MUL) and
Γ(ADD-z-1) are the FPGA area cost functions for
a KCM multiplier and an add-delay datapath
component respectively.
Using full-precision input samples without any
Σ∆M encoding, each KCM would occupy 40 slices.
The total cost of a direct implementation of H(z) is
7672 slices. The reduced precision KCMs used to
process the encoded data each consume only 8
slices. Including the sigma-delta modulator the
slice count is 3002 for the Σ∆ approach. So the
data re-quantization approach consumes only

�#���������������///������������������$������������������������*���������'�,������0111&
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implemented as a table lookup constant
coefficient multiplier (KCM)

Figure 13. Area optimized FPGA FIR structure
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39% of the logic resources of a direct implementa-
tion.

Σ∆�
/���,�	�

The procedure for re-quantizing the source data
can also be used effectively in an m . 1 decimation
filter. An interesting problem is presented when
high input sample rates (>= 150MHz) must be
supported in FPGA technology. High-perform-
ance multipliers are typically realized by incorpo-
rating pipelining in the design. This naturally
introduces some latency in to the system. The
location of the predictor filter P(z) requires a zero-
latency design.1 Instead of requantizing, filtering
and decimating, which would of course require a
Σ∆ modulator running at the input sample rate,
this sequence of operations must re-ordered to

permit several slower modulators to be used in
parallel. The process is performed by first deci-
mating the signal, re-quantizing and then filter-
ing. Now the Σ∆ modulators operate at the
reduced output sample rate. This is depicted in
Figure 15. To support arbitrary center frequencies,
and any arbitrary, but integer, down-sampling
factor m, the bandpass decimation filter must
employ complex weights. The filter weights are of
course just the bandpass modulated coefficients
of a lowpass prototype filter designed to support
the bandwidth of the target signal. Samples are
collected from the A/D and alternated between
the two modulators. Both modulators are identi-
cal and use the same predictor filter coefficients.
The re-quantized samples are processed by an
m:1 complex polyphase filter to produce the deci-
mated signal. Several design options are present-
ed once the signal has been filtered and the sam-
ple rate lowered. Figure 15 illustrates one possibil-
ity. Now that the data rate has been reduced, the
low rate signal is easily shifted to baseband with a
simple, and area efficient, complex heterodyne.
One multiplier and a single digital frequency syn-
thesizer could be time shared to extract one or
multiple channels.
It is interesting to investigate some of the changes
that are required to support the Σ∆ decimator.
What may not be immediately obvious is that the
center frequency of the prediction filter must be
designed to predict samples in the required spec-
tral region in accordance with the out-put sample
rate. For example, consider m=2, and the required
channel center frequency located at 0.1 Hz, nor-

1 It is possible that the predictor could be modified to
predict samples further ahead in the time series, but
this potential modification will not be dealt with in the
limited space available.
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Figure 14. Constant coefficient multiplier.
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Figure 15. Dual half-rate Σ∆ modulators in m:1 complex
decimator configuration.
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malized with respect to the input sample rate. The
prediction filter must be designed with a center
frequency located at 0.2 Hz. In addition, the qual-
ity of the prediction must be improved. With
respect to the output sample rate, the predictors
are required to operate over a wider fractional
bandwidth. This implies more filter coefficients in
P(z).The increase in complexity of this component
must of course be balanced against the savings
that result in the reduced complexity filter stage
to confirm that a net savings in logic requirements
is produced. To more clearly demonstrate the
approach, consider a 2:1 decimator, a channel cen-
ter frequency at 0.2 Hz and a 60 dB dynamic range
requirement.
Figure 16(a) shows the double sided spectrum of
the input test signal. The input signal is commu-
tated between

Σ∆0 and Σ∆1 to produce the two low precision
sequences xo(n) and x1(n). The respective spec-

trums of these two signals are shown in Figures
16(b) and 16(c). The complex decimation filter
response is defined in Figure 16(d). After filtering,
a complex sample stream supported at the low
output sample rate is produced. This spectrum is
shown in Figure 16(e). Observe that the out-of-
band components in the test signal have been
rejected by the specified amount and that the in-
band data meets the 60 dB dynamic range
requirement. For comparison, the signal spectrum
resulting from applying the processing stages in
the order, requantize, filter and decimate is shown
in Figure 16(f). The interesting point to note is that
while the dual Σ∆ modulator approach satisfies
the system performance requirements, its out-of-
band performance is not quite as good as the
response depicted in Figure 16(f). The stopband
performance of the dual modulator architecture
has degraded by approximately 6 dB. This can be
explained by noting that the shaping noise pro-
duced by each modulator is essentially statistical-
ly independent. Since there is no coupling
between these two components prior to filtering,
complete phase cancelation of the modulator
noise cannot occur in the polyphase filter.


����	�

To provide a frame of reference for the Σ∆ deci-
mator, consider an implementation that does not
pre-process the input data, but just applies it
directly to a polyphase decimation filter. A com-
plex filter processing real-valued data consumes
double the FPGA resources of a filter with real
weights. For N = 160, 15344 CLBs are required.
This figure is based on a cost of 40 CLBs for each
KCM and 8 CLBs for an add-delay component.
Now consider the logic accounting for the dual
modulator approach. The area cost Γ(FIR) for this
filter is

�#���������������///������������������$������������������������*���������'�,������0111&

Figure 16. (a) Input signal. (b) Shaped data xo(n). (c) Shaped
data xl(n). (d) Complex filter. (e) Recovered result. (f) Filtered
signal - single modulator.
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where Γ(Σ∆) represents the logic requirements for
one Σ∆ modulator, and Γ(MUL) is the logic need-
ed for a reduced precision multiplier. Using the
filter specifications defined earlier, and 18-tap
error prediction filters, Γ(FIR) = 2 x 738 + 2 x ((160
+ 159) x 8) = 6596. Comparing the area require-
ments of the two options produces the ratio

So for this example, the re-quantization approach
has produced a realization that is significantly
more area efficient than a standard tapped-delay
line implementation.

�/��/��)�/7�/��6 �����+

For both the single-rate and multi-rate Σ∆ based
architectures, the center frequency is defined by
the coefficients in the predictor filter and the coef-
ficients in the primary filter.The constant coeffi-
cient multipliers can be constructed using the
FPGA function generators configured as RAM
elements. When the system center frequency is to
be changed, the system control hardware would
update all of the tables to reflect the new channel
requirements. If only several channel locations are
anticipated, separate configuration bit streams [3]
could be stored, and the FPGA(s) re-configured as
needed.

8,�
*,�Σ∆������+�,44*,��/�:	�;

In an earlier section we discussed how to design a
predicting filter for the feedback loop of a stan-
dard sigma delta modulator. The predicting filter
increases the order of the modulator so that the
modified structure has additional degrees of free-
dom relative to a single-delay noise feedback
loop.These extra degrees of freedom have been
used in two ways, first to broaden the bandwidth

of the loop's noise transfer function, and second to
tune its center frequency. The tuning process
entailed an off line solution of the Normal equa-
tions which while not difficult, does present a
small delay and the need for a background
processor. We can define a sigma-delta loop with
a completely different architecture that offers the
same flexibility, namely wider bandwidth and a
tunable center frequency that does not require
this background task. In this alternate architec-
ture, a fixed set of feedback weights from a set of
digital integrators defines a base-band prototype
filter with a desirable NTF. The filter is tuned to
arbitrary frequencies by attaching to each delay
element z-l, a simple sub-processing element that
performs a base-band to band-pass transforma-
tion of the prototype filter. This processing ele-
ment tunes the center frequency of its host proto-
type with a single real and selectable scalar.The
structure of a fourth order prototype sigma-delta
loop is shown in Figure 17. The time and spectrum
obtained by using the loop with a 4-bit quantizer
is shown in Figure 18. In this structure the digital
integrator poles are located on the unit circle at
DC. The local feedback (a1 and a2) separates the
poles by sliding them along the unit circle, and
the global feedback (b1, b2, b3 and b4) places
these poles in the feedback path of the quantizer
so they become noise transfer function zeros.

%4315344/6596
)(

)ˆ( ≈=
Γ
Γ=

FIR

RIFλ

(23)

Figure 18. Input and output time series of base-band proto-
type 4-th order, 4-bit sigma-delta loop (top) and output spectrum
(bottom).
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These zeros are positioned to form an equal-rip-
ple stop band for the NTF. The coefficients select-
ed to match the NTF pole-zero locations to an
elliptic high pass filter. The single sided band-
width of this fourth order loop is approximately
4% of the input sample rate.
The low-pass to band-pass transformation for a
sampled data filter is achieved by substituting an

all-pass transfer function G(z) for the all-pass
transfer function z-l. This transformation is
shown in Eq.(24).

A block diagram of a digital filter with the trans-
fer function for G(z) is shown in Figure 19.
Examining the left hand block diagram, we find
the transfer function from x(n) to y(n) is the all-
pass network -(1 - cz)/(z - c) while the transfer
function from x(n) to v(n) is -(l/z)(l-cz)/(z-c).we
absorb the external negative sign change in the

internal adders
of the filter we
obtain the sim-
ple right-hand
side version of
the desired
transfer function
G(z).
After the block
diagram substi-
tution has been

made, we obtain
Figure 20, the tunable version of the low-pass pro-
totype. The basic structure of the prototype
remains the same when we replace the delay with
the tunable all-pass network. The order of the fil-
ter is doubled by the substitution since each delay
is replaced by a second order sub-filter. Tuning is
trivially accomplished by changing the c multipli-
er of the all-pass network. The tuned version of

the system reverts back to the prototype
response if we set c to 1.
Figure 21 presents the time and spectrum
obtained by using the tunable loop with a
4-bit quantizer shown in Figure 20. The
single sided bandwidth of the prototype
filter is distributed to the positive and neg-
ative spectral bands of the tuned filter.

Thus the two-sided bandwidth of each
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Figure 17. Fourth order sigma-delta loop.
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Figure 19. Block diagram of all-pass transfer function G(z) form Eq.(1)
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Figure 21. Input and output time series of tuned base-band
prototype 4-th order, 4-bit sigma-delta loop (top), filter and
modulator output spectrum (middle), and filtered output spec-
trum (bottom).
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spectral band is approximately 4% of the input
sample rate.
We now estimate the computational workload
required to operate the prototype and tunable fil-
ter. The prototype filter has six coefficients to
form the 4-poles and the 4-zeros of the transfer
function. The two ak k = 0, 1 coefficients deter-
mine the four zero locations. These are small coef-
ficients and can be set to simple binary scalers.
The values computed for this filter for al and a2

were 0.0594 and 0.0110.These can be approximat-
ed by 1116 and 11128 which lead to no significant
shift of the spectral zeros in the NTF. These sim-
ple multiplications are of course virtually free in
the FPGA hardware since they are implemented
with suitable wiring. The four coefficients bk k =
0, ... , 3 are 1.000, 0.6311, 0.1916, and 0.0283 respec-
tively were replaced with coefficients containing
one or two binary symbols to obtain values 1.000,
1;2+1/8 (.625), 118+1/16 (0.1875) and 1;32
(0.03125). When the sigma-delta loop ran with
these coefficients there was no discernable change
in bandwidth or attenuation level of the loop. The
loop operates equally as well in the tuning mode
and the non tuning mode with the approximate
coefficients listed above. Thus the only real multi-
plies in the tunable sigma-delta loop are the c
coefficients of the all-pass networks. These net-
works are unconditionally stable and always
exhibit all-pass behavior even in the presence of
finite arithmetic and finite coefficients.This is
because the same coefficient forms the numerator
and the denominator. Errors in approximating the

coefficients for c
simply result in a
frequency shift of
the filter's tuned
center. The c
coefficient is
determined from
the cosine of the
center frequency
(in radians/sam-
ple). The curve
for this relation-

ship is shown in Figure 22. Also shown is an error
due to approximating c by c +δc. The question is,
what is the change in center frequency θ, from θ
to θ + δθ due to the approximation of c? We can
see that the slope at the operating point on the
cosine curve is - sin(θ), so that δc/δθ ≈ -sin(θ) so
that δc ≈ -δθsin(θ) is the required precision to
maintain a specified error. We note that tuning
sensitivity is most severe for small frequencies
where sin(θ) is near zero. The tolerance term, δθ
sin(θ) , is quadratic for small frequencies, but the
lowest frequency that can be tuned by the loop is
half the NTF pass-band bandwidth.For the fourth
order system described here, this bandwidth is
4% of sample rate, so the half bandwidth angle is
2% or 0.126 radians. To assure that the frequency
to which the loop is tuned has an error smaller
than 1% of center frequency δc < δθsin(θ) => δc <
(0.1261100)(0.126) = 0.0002 which corresponds to a
14 bit coefficient. An error of less than 10% center
frequency can be achieved with 10 bit coefficients.
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Figure 20. Tunable sigma-delta loop. Prototype is fourth Order. Tunable version is eight order.

Figure 22. Relationship between errors in constant c in all-
pass networks to errors in tuning frequency.
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The tuning multipliers could be implemented as
full multipliers in the FPGA hardware or as
dynamically reconfigured KCMs, or KDCM, as
shown in Figure 23. The later approach conserves
FPGA resources at the expense of introducing a
start-up penalty each time the center frequency is
changed. The start-up period is the initialization
time of the KCM LUT. When a new center fre-
quency is desired, the tuning constant is present-
ed to the k input of the KDCM and the load signal
LD is asserted. This starts the initialization engine
which requires 16 clock cycles to initialize 16 loca-
tions in the multiplier LUT. The initialization
engine relies on the automatic shift mode [31 of
the Virtex LUTs. In this mode of operation a LUT's
register contents are passed from one cell to the
next cell on each clock tick.This avoids the
requirement for a separate address generator and
multiplexor in the initialization hardware.
Observe from Figure 23 that the initialization
engine only introduces a small amount of addi-
tional hardware over that of a static KCM.
There is approximately a factor of 4 difference in
the area of a KDCM and full multiplier.

Σ∆�
���,��/4/�

Unwanted DC components can be introduced into
a DSP datapath at several places. It may be pre-
sented to the system via an un-trimmed offset in

the analog-to-digital conversion pre-processing
circuit, or may be attributed to bias in the AID
converter itself. Even if the sampled input signal
has a zero mean, DC content can be introduced
though arithmetic truncation processes in the
fixed-point datapath. For example, in a multi-
stage multi-rate filter , the intermediate filter out-
put samples may be quantized between stages in
order to compensate for the filter processing gain
and thereby keep the word-length requirements
manageable. The introduced DC bias can impact
the dynamic range performance of a system and
potentially increase the error rate in a digital
receiver application.
In a fixed-point datapath, the bias can cause
unnecessary saturation events that would not
occur if the DC was not present in the system.
In a digital communication receiver employing M
-ary QAM modulation, the DC bias can interfere
with the symbol decision process, so causing
incorrect decoding and therefore increasing the
bit error rate.
In some cases the introduced bias can be ignored
and is of no concern. However, for other applica-
tions it is desirable to remove the DC compo-
nent.One solution to removing the unwanted DC
level is to employ a DC canceler.
A simple canceler is shown in Figure 24. It is easy
to show that the transfer function of the network
is

The cancelation is due to the transfer function
zero at 0 Hz. The pole at 1- µ controls the system
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Figure 23. Loadable constant coefficient multiplier (KDCM).
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bandwidth and hence the system transient
response. The location of the zero at z = 1 of
course, completely removes the DC component in
the signal, but there are some problems with a
practical implementation of this circuit.
Figure 25a. is a spectral domain representation of
a biased signal presented to the DC canceler.
Figure 25b is the processed signal spectrum at
yq(n) in Figure 24. We observe that the DC content
in the input signal has been completely removed.
However, in the process of running the canceling
loop the network processing gain has caused a
dynamic range expansion. So although the sam-
ple stream yq(n) is a zero mean process, it requires
a larger number of bits to represent each sample
than is desirable. The only option with the circuit
is to re-quantize yq(n) to produce y(n) using the
quantizer Q(·). The effect of this operation is
shown in Figure 25c, which demonstrates, not
surprisingly, that after an 8-bit quantizer, the sig-
nal now has a DC component and we are almost
back to where we started. How

can the canceler be re-organized to avoid this
implementation pitfall? One option is to embed
the re-quantizer in the feedback loop in the form
of a Σ∆ modulator as shown in Figure 26. The
modulator can be a very simple 1st order loop

such as the error feedback Σ∆ modulator shown
in Figure 9. Figure 25d demonstrates the opera-
tion of the circuit for 8-bit output data. Observe
from the figure that the DC has been removed
from the signal while employing the same 8-bit
output sample precision that was used in Figure
24. The simple Σ∆M employed in the canceler is
easily implemented in an FPGA.
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In earlier sections we recognized that when a
sampled data input signal has a bandwidth that is
a small fraction of its sample rate the sample com-
ponents from this restricted bandwidth are high-
ly correlated. We took advantage of that correla-
tion to use a digital sigma-delta modul8.tor to
requantize the signal to a reduced number of bits.
The sigma-delta modulator encodes the input sig-
nal with 8. reduced number of bits while preserv-
ing full input precision over the signal bandwidth
by placing the increased noise due to requantiza-
tion in out-of-band spectral positions that are

Figure 25. (a) Input signal. (b) DC canceler. (c) Quantized
DC canceler. (d) Σ∆ DC canceler.
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Figure 26. Sigma-delta based DC canceler.
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already scheduled to be rejected by subsequent
DSP processing. The purpose of this requantiza-
tion is to allow the subsequent DSP processing to
be performed with reduced arithmetic resource
requirements since the desired data is now repre-
sented by a smaller number of bits.
A similar remodulation of data samples can by be
employed for signals generated within a DSP
process when the bandwidth of the signals are
small compared to the sample rate of the process.
A common example of this circumstance is the
generation of control signals used in feedback
paths of a digital receiver. These control signals
include a gain control signal for a voltage con-
trolled amplifier in an automatic gain control
(AGC) loop and VCO (voltage controlled oscilla-
tor) control signals in carrier recovery and timing
recovery loops [10, 11, 12]. A block diagram of a
receiver with these specific controls signals is
shown in Figure 27. The control signals are gener-
ated from processes operating at a sample rate
appropriate to the input signal bandwidth. The
bandwidth of control loops in a receiver are usu-
ally a very small fraction of the signal bandwidth,
which means that the control signal are very
heavily oversampled. As a typical example, in a
cable TV modem, the input bandwidth is 6 MHz,
the processing sample rate is 20 MHz, and the
loop bandwidth may be 50 kHz. For this example,
the ratio of sample rate to bandwidth is 4000-to-1.
As seen in Figure 27, the process of delivering
these oversampled control signals to their respec-
tive control points entails the transfer of 16 bit
words to external control registers, requiring
appropriate busses, addressing, and enable lines
as well as the operation of 16-bit digital-to-analog
converters (DACs).
We can use a sigma-delta modulator to requantize
the 16-bit oversampled control signals in the digi-
tal receiver prior to passing them out of the pro-
cessing chip. The sigma-delta can preserve the
required dynamic range over the signal's restrict-
ed bandwidth with a one-bit output. As suggest-
ed in Figure 28, the transfer of a single bit to con-
trol the analog components is a significantly less

difficult task than the original. We no longer
require registers to accept the transfer, the busses
to deliver the bits, or the DAC to convert the digi-
tal data to the analog levels the data represents.
All that is needed a simple filter ( and likely an
analog amplifier to satisfy drive level and offset
requirements). Experience shows that a 1-bit, one-
loop sigma-delta modulator could achieve 80 dB 

dynamic range and requires a single RC filter to
reconstruct the analog signal. A two-loop sigma-
delta modulator is required to achieve 16-bit pre-
cision for which a double RC filter is required to
reconstruct the analog output signal. Figure 29
shows the time response of the one-bit two loop
sigma-delta converter to a slowly varying control
signal and the reconstructed signal obtained from
the dual-RC filter. Figure 30 shows the spectrum
obtained from a 1-bit two-loop modulator and the
spectrum obtained from an unbuffered RC-RC fil-
ter.
This example has shown how with minimal addi-
tional hardware, an FPGA can generate analog
control signals to control low-bandwidth analog
functions in a system.
An observation worthy of note, is that the audio
engineering community has recognized the
advantage offered by this option of requantizing a
16-bit oversampled data stream to 1-bit data
stream. In that community, the output signal is
intentionally upsampled by a factor of 64 and
then requantized to 1-bit in a process called a
MASH converter. Nearly all CD players use the

�#���������������///������������������$������������������������*���������'�,������0111&
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MASH converter to deliver analog audio signals.

:2,� 2,</�:/�+,��/
=

What has been achieved by expressing our signal
processing problems in terms of Σ∆M techniques?
The paper has demonstrated some Σ∆M tech-
niques for the compact implementation of certain
types of filter and control applications using
FPGAs. This optimization can be used in several

ways to bring economic benefits to a commercial
design. By exploiting Σ∆M filter processes, a
given processing load may be realizable in a
lower-density, and hence less expensive, FPGA
than is possible without access to these tech-
niques. An alternative would be to perform more
processing using the same hardware. For exam-
ple, processing multiple channels in a communi-
cation system.
In addition to FPGA area trade-offs, the Σ∆M
methods can result in reduced power consump-
tion in a design. Power p may be expressed as

where c is capacitance, v is voltage and fclk is the
system clock frequency. By reducing the silicon
area requirements of a filter, we can simultane-
ously reduce the power consumption of the
design. For the examples considered earlier, logic
resource savings of greater than 50% were
demonstrated. The savings is proportional to
increased efficiency in the system power budget,
and this of course is very important for mobile
applications.
The Σ∆M AGC, timing and carrier recovery con-
trol loop designs are also important examples in a
industrial context. The examples illustrated how
the component count in a mixed analog/digital
system can be reduced. In fact, not only is the
component count reduced, but printed circuit
board area is minimized. This results in more reli-
able and physically smaller implementations. The
reduced component count also results in reduced
power consumption.In addition, since the control
loops no longer require wide output buses from
the FPGA to multi-bit DACs that generate analog
control voltages, power consumption is decreased
because fewer FPGA I/O pads are being driven.

�	��4��	�

FPGAs opens a range of opportunities in the solu-

Figure 29. Control loop signal and Σ∆ encoded control sig-
nal (top), filtered Σ∆ sequence (bottom).

Figure 30. Σ∆ encoded control signal spectrum (top), filtered
Σ∆ sequence spectrum (middle), exploded view at baseband of
filtered Σ∆ control signal (bottom).

clkfcvP 2=
(26)
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tion space that can result in high-performance
and economic solutions to a DSP problem. Often
this is best achieved via an appropriate paradigm
shift in the algorithmic domain to find an optimal
approach that best exploits the cellular LUT /flip-
flop FPGA architecture. This paper has illustrated
how Σ∆M techniques can be combined with
FPGA technology to address a range of signal
processing problems. These included single and
multi-rate filters, DC canceler and the efficient
and compact generation of analog control signals
for AGC, carrier recovery and timing recovery
functions in a communication receiver. The source
data re-quantization approach is suitable for both
single-rate and multi-rate filter processes. The
proposed method arms the DSP /FPGA engineer
with another tool that is useful for certain filtering
requirements. For the examples considered here,
logic savings in excess of 50% were demonstrated.
As the frequency band of interest occupies a
smaller fractional bandwidth, the order of the
required filter increases. This growth tends to
make the data re-quantization approach more
attractive, as the cost of modulator consumes a
decreasing proportion of the entire design.
While the paper has exclusively focused on Σ∆M
methods in the context of FPGA hardware, we feel
that there is broader lesson delivered in the study.
The signal processing literature is full of creative
solutions to real world problems. Often these
solutions are excluded to a designer because they
do not map well to software programmable DSP
architectures. The algorithm will of course have
an ASSP solution, but this may not be an option
for reasons of schedule, economies of scale, and
flexibility. FPGAs do, however, give immediate
access to the diverse range of potential solutions.
And they do so while simultaneously providing
flexibility and high-performance - frequently the
performance equals or exceeds that of an ASSP.
In this era of systems-on-a-chip, increased fiscal
pressure, tighter engineering deadlines, time-to-
market constraints, and increasing performance
demands, new system level and hardware archi-
tectures must be employed. FPGAs provide a

mechanism for working with and performing
trade-offs between all of these important vari-
ables. As we move into the next millennium,
reconfigurable FPGA technology will increasing-
ly provide solutions to signal processing prob-
lems.
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