
Linear Cryptanalysis

Linear cryptanalysis is a powerful method of cryptanalysis introduced by
Matsui in 1993 [11]. It is a known plaintext attack in which the attacker studies
the linear approximations of parity bits of the plaintext, ciphertext and the
secret key. Given an approximation with high probability and counting on the
parity bits of the known plaintexts and ciphertexts one obtains an estimate of
the parity bit of the key. Using auxiliary techniques one can usually extend the
attack to find more bits of the secret key.

In slightly more detail: following Matsui we denote by A[i] the i-th bit of
A and by A[i1, i2, . . . , ik] the parity A[i1] ⊕ A[i2] ⊕ . . . ⊕ A[ik]. For such simple
linear operations as XOR with the key or a permutation of bits very simple
linear expressions can be written which hold with probability one. For non-linear
elements of a cipher such as S-boxes one tries to find linear approximations with
probability p that maximize the deviation |p − 1

2
|. Approximations for single

operations inside a cipher can be further combined into approximations that hold
for a single round of a cipher. For the whole cipher one receives an approximation
of the type:

P [i1, i2, . . . , ia] ⊕ C[j1, j2, . . . , jb] = K[k1, k2, . . . , kc] (1)

(where i1, i2, . . . , ia, j1, j2, . . . , jb and k1, k2, . . . , kc denote fixed bit locations)
which can be obtained by appropriate concatenation of one-round approxima-
tions. Such approximation is interesting only if it holds with p 6= 1/2. Matsui
found such an approximation for DES with probability 1

2
+ 2−24. Using this ap-

proximation, a simple algorithm based on the maximum likelihood method can
be used to find one parity bit K[k1, k2, . . . , kc] of the key:

Given a pool of N random known plaintexts, let T be the number of
plaintexts such that the left side of the equation 1 is zero.
if (T − N/2) · (p − 1/2) > 0 then

K[k1, ..., kc] = 0
else

K[k1, ..., kc] = 1
end if

More efficient algorithms for linear cryptanalysis, which find more key bits
are described in [11].

1 Piling-up Lemma

The first stage in linear cryptanalysis consists in finding useful approximations
for a given cipher (or in demonstrating that no useful approximations exist, which
is usually much more difficult). Although the most biased linear approximation
can easily be found in an exhaustive way for a simple component such as an S-
box, a number of practical problems arise when trying to extrapolate this method
to full-size ciphers. The first problem concerns the computation of the probability
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of a linear approximation. In principle, this would require the cryptanalyst to
run through all possible combinations of plaintexts and keys, which is clearly
infeasible for any practical cipher. The solution to this problem is to make a
number of assumptions and to approximate the probability using the so-called
Piling-up Lemma:

Lemma 1. Given n independent random variables X1, X2, . . . , Xn taking on

values from {0, 1}, then the bias ǫ = p−1/2 of the sum X = X1⊕X2⊕ . . .⊕Xn

is given by:

ǫ = 2n−1

n∏

j=1

ǫj , (2)

where ǫ1, ǫ2, . . . , ǫn are the biases of the terms X1, X2, . . . , Xn.

Notice that the lemma can be further simplified by defining c = 2 · ǫ, known as
the imbalance or the linear probability of an expression. With this notation (2)
reduces to c =

∏n

j=1
cj .

In order to estimate the probability of a linear approximation using the
Piling-up Lemma, the approximation is written as a chain of connected linear
approximations, each spanning a small part of the cipher. Such a chain is called
a linear characteristic. Assuming that the biases of these partial approximations
are statistically independent and easy to compute, then the total bias can be
computed using (2).

Although the Piling-up Lemma produces very good estimations in many
practical cases, even when the approximations are not strictly independent, it
should be stressed that unexpected effects can occur when the independence
assumption is not fulfilled. In general, the actual bias in these cases can be both
much smaller and much larger than predicted by the lemma.

2 Matsui’s Search for the Best Approximations

The Piling-up Lemma in the previous paragraph provides a useful tool to esti-
mate the strength of a given approximation, but the problem remains how to
find the strongest approximations for a given cipher. For DES, this open problem
was solved by Matsui [13] in 1994. In his second paper, he proposes a practi-
cal search algorithm based on a recursive reasoning. Given the probabilities of
the best i-round characteristic with 1 ≤ i ≤ n − 1, the algorithm efficiently
derives the best characteristic for n rounds. This is done by traversing a tree
where branches are cut as soon as it is clear that the probability of a partially
constructed approximation cannot possibly exceed some initial estimation of the
best n-round characteristic.

Matsui’s algorithm can be applied to many other block ciphers, but its effi-
ciency varies. In the first place, the running time strongly depends on the accu-
racy of the initial estimation. Small estimations increase the size of the search
tree. On the other hand, if the estimation is too large, the algorithm will not

2



return any characteristic at all. For DES, good estimations can easily be ob-
tained by first performing a restricted search over all characteristics which only
cross a single S-box in each round. This does not work as nicely for other ciphers
however. The specific properties of the S-boxes also affect the efficiency of the
algorithm. In particular, if the maximum bias of the S-box is attained by many
different approximations (as opposed to the distinct peaks in the DES S-boxes),
this will slow down the algorithm.

3 Linear Hulls

Estimating the bias of approximations by constructing linear characteristics is
very convenient, but in some cases, the value derived this way diverges signifi-
cantly from the actual bias. The most important cause for this difference is the
so-called linear hull effect, first described by K. Nyberg in 1994 [14]. The effect
takes place when the correlation between plaintext and ciphertext bits, described
by a specific linear approximation, can be explained by multiple linear charac-
teristics, each with a non-negligible bias, and each involving a different set of key
bits. Such a set of linear characteristics with identical input and output masks is
called a linear hull. Depending on the value of the key, the different characteris-
tics will interfere constructively or destructively, or even cancel out completely.
If the sets of keys used in the different linear characteristics are independent,
than this effect might considerably reduce the average bias of expression (1),
and thus the success rate of the simple attack described above. Nyberg’s paper
shows however that the more efficient attacks described in [11], which only use
the linear approximations as a distinguisher, will in general benefit from the
linear hull effect.

4 Provable Security Against Linear Cryptanalysis

The existence of a single sufficiently biased linear characteristic suffices for a
successful linear attack against a block cipher. A designer’s first objective is
therefore to ensure that such characteristic cannot possibly exist. This is usually
done by choosing highly non-linear S-boxes and then arguing that the diffusion
in the cipher forces all characteristics to cross a sufficiently high minimal number
of “active” S-boxes.

The approach above provides good heuristic arguments for the strength of a
cipher, but in order to rigorously prove the security against linear cryptanalysis
in general, the designer also needs to take into account more complex phenom-
ena such as the linear hull effect. For DES-like ciphers, such security proofs were
studied by L. Knudsen and K. Nyberg, first with respect to differential cryptanal-
ysis [15], and then also applied to linear cryptanalysis [14]. The results inspired
the design of a number of practical block ciphers such as MISTY (or its variant
KASUMI), AES, Camellia and others. Later, similar proofs were formulated for
ciphers based on SP-networks [5, 7].
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A somewhat more general theory for provable security against a class of at-
tacks, including basic linear cryptanalysis, is based on the notion of decorrelation,
introduced by S. Vaudenay [21]. The theory suggests constructions were a so-
called Decorrelation Module effectively blocks the propagation of all traditional
linear and differential characteristics.

An important remark with respect to the previous notions of provable se-
curity, however, is that ciphers which are provably optimal against some re-
stricted class of attacks often tend to be weak when subject to other types of
attacks [19, 22].

5 Comparison with Differential Cryptanalysis

Linear cryptanalysis has many methodological similarities with differential crypt-
analysis as is noted in [1]. Differential characteristics correspond to linear ap-

proximations. Difference distribution tables are replaced by linear approximation

tables. Concatenation rule for differential characteristics: “match the differences,
multiply the probabilities” corresponds to concatenation rule for linear approx-
imations (the piling-up lemma): “match the masks, multiply the imbalances”.
The algorithms that search for the best characteristic or the best linear approx-
imation are essentially the same. The notion of differentials has a corresponding
notion of linear hulls. Together with striking methodological similarity between
the two techniques there is also duality [13] of operations: “XOR branch” and
“three-forked branch” are mutually dual regarding their action on differences
and masks respectively. Important distinction between the two methods is that
differential cryptanalysis works with blocks of bits while linear cryptanalysis
typically works with a single bit. The bias of the linear approximation has a
sign. Thus given two approximations with the same input and output masks
and equal probability but opposite signs, the resulting approximation will have
zero bias, due to the cancellation of the two approximations by each other.

6 Extensions

Linear cryptanalysis technique has received much attention since its invention
and has enjoyed several extensions. One technique is a combined differential-linear
approach proposed by Langford and Hellman. Other extensions include key-

ranking which allows for a tradeoff between data and time of analysis [6, 12, 17];
partitioning cryptanalysis [4] which studies correlation between partitions of the
plaintext and ciphertext spaces (no practical cipher has been broken via this
technique so far); chi-square cryptanalysis [9, 20] has been applied successfully
against several ciphers, including round-reduced versions of RC6; the use of non-
linear approximations was suggested [10, 18], but so far it provided only small
improvements over the linear cryptanalysis. Full non-linear generalization still
remains evasive. Idea to use multiple approximations has been expressed in [2]
but no significant improvement over the basic technique has been demonstrated.
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A conversion of a known plaintext linear attack to a chosen plaintext linear at-
tack has been proposed in [8]. Finally note that similar techniques have been
applied to stream ciphers (see Linear Cryptanalysis for Stream Ciphers).

–Alex Biryukov, Christophe De Cannière.
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