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Abstract: A practical design that combines a fuzzy adaptation technique with sliding mode 
control to enhance robustness and sliding performance in a class of uncertain MIMO nonlinear 
systems is proposed. Using an online adaptation scheme, a fuzzy sliding mode controller is used 
to approximate the equivalent control in the neighbourhood of the sliding manifold. The hitting 
control is appended to ensure that the fuzzy sliding mode control can achieve a stable closed-loop 
system for the trajectory-tracking control of a plant with unknown nonlinear dynamics. The 
proposed design simultaneously guarantees the stability of the adaptation of the fuzzy rules and 
obtains suitable equivalent control when the nominal mathematical model is unknown in advance. 
It also provides the designers with flexibility to design and implement the fuzzy rule base without 
domain experts and without a mathematical model. The robust adaptive scheme is applied to a 
two-link robotic manipulator and shown to be able to guarantee that the output tracking error will 
ultimately converge to a residual set. 

1 Introduction 

Conventional control theory is well suited to applications 
where the control efforts can be generated based on an 
analytical model [l,  21. Sliding mode control (SMC), based 
on the theory of variable structure systems (VSS), has 
been widely applied to robust control of nonlinear systems 
[3-81. Sliding mode control performs well in trajectory 
tracking of some nonlinear systems. It employs a discon- 
tinuous control law to drive the state trajectory toward a 
specified sliding surface and maintain its motion along the 
sliding surface in the state space. Hung et al. [7] have made 
a comprehensive survey of VSS theory. The dynamic 
performance of an SMC system has been confirmed as 
an effectively robust control approach with respect to 
system uncertainties and unknown disturbance when the 
system trajectories belong to predetermined sliding 
surfaces [9], However, SMC suffers from some difficulties. 
First, there are many physical systems with highly coupled 
nonlinear and uncertain dynamics for which it is generally 
difficult or even impossible to obtain accurate mathema- 
tical models. Secondly, to operate effectively in the sliding 
surface, SMC requires instantaneous change of the control 
input without sacrificing the robustness against the model 
uncertainties and external disturbances. The discontinuity 
in the control action becomes the cause of chattering, 
which is undesirable in most applications [7]. In practical 
implementations, the chattering may cause an unnecessa- 
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rily large control signal as the system uncertainties are 
large and may damage system components such as actua- 
tors. Thus, the chattering has to be eliminated or alleviated 
as much as possible. Finally, it is usually difficult to 
directly extend the SMC design into a multiple-input 
multiple-output (MIMO) system, especially when the 
coupling among the subsystems is unknown. 

The latest studies consider adding computationally intel- 
ligent methods to the SMC by automatically tuning the 
control parameters [ 101. In particular, integrating fuzzy set 
theory and SMC into fuzzy controller design has produced 
a superior performance [l l-171. Fuzzy logic control (FLC) 
is a model-free approach, which is synthesised by a 
collection of fuzzy IF-THEN rules to decide control 
action [18, 191. FLC has succeeded in many control 
applications that conventional control theories have had 
difficulties with. For complex or ill-defined systems that 
are not ,amenable to conventional control techniques, FLC 
provides an alternative approach for both collecting human 
knowledge and expertise, and dealing with nonlinearities. 
However, FLC lacks a formal synthesis technique and all 
fuzzy rules have to be supplied by human experts. To 
overcome these drawbacks, the fuzzy sliding mode control 
(FSMC) technique, which is an integration of variable 
structure control and FLC, provides a simple way to 
design FLC systematically. This approach retains the 
positive property of SMC but alleviates the chattering, 
and the fuzzy control rules can be determined system- 
atically by the reaching condition of SMC. The main 
advantage of FSMC is that the control method achieves 
asymptotic stability of the closed-loop system. Thus, 
FSMC uses fuzzy control to construct the system dynamic 
model or the control while the fuzzy control rules and 
variables are obtained directly from the sliding surface 
equation. 

Although FSMC has achieved many practical successes 
in many fields, several fundamental problems still exist in 
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the control of complex systems. In particular, the integra- 
tion of fuzzy set theory and SMC into fuzzy controller 
design, as well as the stability and robustness properties of 
such a system, are vigorous areas in fuzzy control research. 
The linguistic expression of fuzzy control makes it very 
difficult to simultaneously guarantee the stability and 
robustness of the fuzzy control system if the nominal 
mathematical model is unknown in advance. Furthermore, 
the huge amount of fuzzy rules needed for a high-order 
system always makes the analysis complex. In most of 
these studies, fuzzy controllers are designed with respect to 
a phase plane determined by error and change of error 
according to the state and change of state, which is usually 
inappropriate. Therefore, various tuning algorithms are 
usually employed to improve the performance of fuzzy 
sliding mode controllers. The main contribution of this 
paper is the implementation of this advanced adaptive 
SMC control strategy into the framework of fuzzy models. 

This paper will address the problem of controlling an 
unknown MIMO nonlinear affined system. The goal is to 
develop an adaptive MIMO fuzzy sliding mode controller 
to overcome the interaction among the subsystems by a 
decoupling neural network and to facilitate robust proper- 
ties by fine-tuning the consequent membership functions. 
First, a sliding mode controller for robust tracking control 
of multivariable nonlinear systems is developed by assum- 
ing that imposed uncertainties are bounded and satisfy 
matching conditions. The fuzzy logic control is then 
designed on the basis of the SMC law. An FSMC is used 
to approximate the equivalent control in the neighbourhood 
of the sliding manifold with online fuzzy self-tuning 
parameters subject to parameter variations in the control 
object. Secondly, the hitting control is appended to ensure 
that the proposed FSMC can result in a closed-loop system 
that is stable for the trajectory-tracking control of a plant 
with unknown nonlinear dynamics. As a result, we simul- 
taneously guarantee the global stability of the closed-loop 
system and obtain a suitable equivalent control when the 
nominal mathematical model is unknown in advance. In 
path tracking systems, considerable attention is paid to the 
control of uncertain dynamical nonlinear systems that are 
subject to certain internal parameter variations and external 
disturbances. This scheme also provides the designers with 
flexibility to design and implement the fuzzy rule base 
without domain experts and without mathematical model. 

2 Problem formulation and sliding mode control 

Consider a MIMO nonlinear system whose equations of 
motion can be governed by 

y(') =f(x) + G(x)u + d(x, t )  (1) 

where y = b l , .  . . , y J T  and y(")= by'), . . , ,y$>)lT denote 
the output vector and its derivative, respectively, 
Y = [rl  , . . . , rt17] with ri = n is defined as the system 
relative degree, u = [uI  , . . . , uJT is the input, x = [xl , x2, 

is the state . . . , xn] = kl,. . . ,,$-'), y2 ,  . . . ,y,,,"' ( r  
vector, G(X> = k l ( X ) ,  ' . ' 3 

gm(x)~> .h(x> and gi(x> = [gli(x), . . . > g n i i ( ~ > ~ ~  with gii > 0, 
i =  1, .  . . ,m,  are unknown functions, and d(x, t)= 
[dl(x,  t),  . . . , d,,(x, t)lT is the disturbance with the proper- 
ties of standard smoothness and it is assumed to have an 
upper bound D = diag[D;], that is, I &(x, t )  I 5 D j ,  
i = 1, . . . , nz. 

If we let yc/ = [yc/ l ,  y d 2 ,  . . . , yrc,77] represent the known 
desired trajectories, the intention is to determine a control- 

T 

Ax) = cfi(x>, . . . > J?,(41? 
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ler for the composite nonlinear system described by (1) so 
that the tracking error represented by 

4 = [ e , ,  . . . , em] 

with e, = [e,, E,, . . . , e ,  ] = b d ,  - y , ,  j d L  - j l , .  . . , 

arbitrarily small residual tracking error set. Further, we 
define a set of sliding surfaces in the error space passing 
through the origin to represent a sliding manifold as 
fo1lows: 

(2) T 

( , , - I )  T 

& l )  - p 1 ) ] T  I , i=  1,.  . . , m, will be attenuated to an 

T s = [SI, s2, . . . , s,,] 

and A; = [ a j l ,  . . . , ail.,IT E R" be such that all roots of the 
polynomial 

are in the open left half-plane, i=  1,.  . . , m. 
The process of sliding inode control can be divided into 

the reaching phase with s, # 0 and the sliding phase with 
s, =0,  i =  1 , .  . . , m. If the sliding mode exists on s, = 0, 
then from the theory of variable structure systems and 
sliding mode control [20], the motion of the system is 
governed by linear differential equations (3) whose beha- 
viour IS dictated by the sliding manifold design. Since (4) 
guarantees (3) to satisfy the Hurwitz stability criterion, the 
origin in the subspace s, is asymptotically stable with a 
finite convergence time for each x, from s [21]. Thus, 
maintaining the system states on the sliding manifold s for 
all t > 0 is equivalent to the tracking problem y = yd, i.e. it 
is required that the system errors converge to zero. Then, 
the system has invariance properties against external 
disturbances and parameter uncertainties. 

If the system state is outside the sliding manifold s, 
the controller must be designed such that it can force 
the system states to approach the sliding manifold and 
then move along the sliding manifold to the origin. By 
choosing the Lyapunov function candidate VI =i(sTs,), 
i=  1,.  . . , nz, an equivalent control is given first such that 
each state Lyapunov-like condition holds for system stabi- 
lity [4] 

or in sum 

Inequality (5) constrains the trajectories to point towards 
the sliding surface si(t) such that the distance to the sliding 
surface decreases along all system trajectories as illustrated 
in Fig. 1, and is referred to as the reaching condition [3]. 
To meet the reaching condition, a hitting control term i i h  
must be added to guarantee the reaching condition (5) in 
the presence of parameter and disturbance uncertainties. 
That is, the states of the system are driven from any initial 
state to the eventual sliding surface on which sliding mode 
control takes place. 

It is obvious that to obtain the sliding mode control law, 
the control strategy consists of two design goals: first, to 
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Fig. 1 Illtistrution of the sliding condition 

force the system toward a desired dynamics; and secondly, 
to maintain the system on that differential geometry. 
Motivated by the principle of SMC, the equivalent control 
ii,, is estimated by using an adaptive mechanism that 
forces the system state to slide on the sliding manifold 
and the hitting control iilz that drives the states toward the 
sliding manifold. Thus the control law can be represented 
as 

u = G,, + = G, + G-'u~ ,  (7) 

where he, and iih> respectively, are yielded through fuzzy 
and nonfuzzy design modes. 

3 Design of the fuzzy sliding mode controller 

One of the essential elements in designing a sliding mode 
controller is the model of the dynamical system to be 
controlled. In many situations, accurate mathematical 
models of the system are not available or are difficult to 
formulate, or are incomplete because the plant has a 
complicated design. It is obvious that the difficulty for 
MIMO systems control is how to overcome the coupling 
effects among each degree of freedom. To solve these 
difficulties, we need a tractable model for the controller. 
An appropriate decoupling network is incorporated into 
this tractable model to control the MIMO systems to 
compensate for the dynamic coupling between each 
degree of freedom. We developed a new control approach 
for controlling MIMO systems by combining the fuzzy 
approximator of the system with its MIMO sliding mode 
control, resulting in a decoupled fuzzy sliding mode 
controller. That is, the fuzzy logic system theory is applied 
to design the sliding mode controller for system (1). 

The design objective is to choose a sliding manifold s 
satisfying the Hurwitz stability criterion and the related 
discontinuous control law such that the error state attains a 
sliding mode. If we design a controller that satisfies the 
reaching condition ( 5 ) ,  then the system state will approach 
the sliding surface from any initial state within a finite time 
and move along the sliding surface to the origin. This 
implies that the system dynamics are governed only by the 
sliding surface and will track the reference trajectory 
asymptotically. Therefore the control problem is to obtain 
the optimal control input U* that guarantees the reaching 
condition ( 5 ) .  The ideas behind the controller are as 
follows. The proposed adaptive fuzzy sliding mode 
controller is composed of three parts: an MIMO SMC, a 
fine-tuning mechanism on the consequent membership 
functions of the multilayer fuzzy system, and a decoupling 
network. Fig. 2 shows the configuration of the MIMO 
sliding mode controller and the interconnected compensat- 
ing network of the adaptive fuzzy control system. The 
multilayer fuzzy system and the decoupling network are 
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Fig. 2 Configiiration ojthe aduptive fuzzy sliding mode control system 

nominal designs based on an online approximation of the 
unknown nonlinear functions of the plant. The fine-tuning 
mechanism is designed to encounter the equivalent uncer- 
tainty resulting from the plant uncertainty, the function 
approximation error, or the external disturbances. 

Consider the nonlinear system (1) and let the sliding 
surface be defined as in (3). Let u! be the output of the 
system's ith MIMO SMC. Then, for the system given in 
( l ) ,  the ith sliding surface is si. Hence, this MIMO SMC 
also has m sliding surfaces to form a sliding manifold so 
that the system exhibits desirable behaviour when its 
trajectories are confined in the sliding surfaces. If the 
control law is designed such that the sliding mode exists 
on s i=O,  i =  1 , .  . . , m, the system error dynamics are 
dictated by the linear dynamic equations ( 3 ) .  Since (3) 
satisfies the Hurwitz stability criterion from (4), maintain- 
ing system states on sliding surfaces for all t >  0 is 
equivalent to requiring that the system errors converge to 
zero. Thus, the tracking control problem can be formulated 
by keeping the tracking error 2(t) = [el, . . . , e,JT on the 
sliding manifold defined as follows: 

= &) - f ( x )  - C(X)U - d(x, t )  
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Theorenz 1: If the functions f ,  G and d of the nonlinear 
MIMO systems (I)  are known and do not take the inter- 
connections among the subsystems into consideration, then 
the control law uo can be chosen as follows: 

p- 1 - f (x) - d(x, t)  +y$' + K sgn(s) 

(9) 

where P =  diag[gii], K = diag[Ki] is m x m positive define 
diagonal gain matrix with Ki > 0, sgn(s) [sgn(sl) 
sgn(s2) . . . sgn(sm)lT and sgn(sJ is defined as 

1 S j > O  

sgn(si) = 0 si = 0 (10) l -1 S j 1 0  

and 

K sgn(s) = [Kl sgn(sl), . . . , Km ~gn(s ,~>l '  (1 1) 

Thus, the reaching condition (5) can be easily verified. 

Pro$ If the functions J; G and d are known and 
G = P = diag[gij] is a diagonal matrix, the optimal sliding 
mode control law can be represented as 

where vi > 0, and (c) is the state trajectory to hit the sliding 
surface no matter where the initial state is. Therefore the 
optimal control is 

I 11 avey-j' - ~ ; ( x )  - d,(x, t)  +y$:' u* =g? ["' j= I 

1 + hi sgn(s,) . vi 

where 

1, if si # 0 
0, if si = 0 h i =  { 

This optimal sliding mode control input u? guarantees the 
reaching condition of (5). This completes the proof. 

Since the control of nonlinear MIMO systems uses the 
sliding mode control directly but does not take the inter- 
connections among subsystems into consideration, the 
interconnection compensating network is needed. Thus, 
the proposed sliding mode controller has a neural part to 
release the interaction among the subsystems. The output 
of the controller is combined with uo and its modification 
by a decoupling network 

u(t) = U O ( t )  + MuO(t) (12) 

To derive a stable weight adaptation in the control matrix, 
the matrix M be chosen as 

M = -(In1 + (13) 

where I ,  denotes a m x m identity matrix and 

1 :  gm 1 gm2 : . . . ' . 0 1  

The nonsingularity supervisor is introduced to monitor the 
situation of rankLC) < m. If C is found to be singular, it 
is perturbed as C +  [dll]mxm to obtain full rank, where 

is an m x m matrix with small value component 
[a,]. Then the weight matrix M in (12) is guaranteed to 
exist. 

Using (9), (12)-(14) and the matrix inversion 
(A +BCD)-' =A-l - A-'B(DA-'B + C - y D A - '  [22], 
the formulation of MIMO SMC resolves into 

u =  

G-' 

r2-I 

i= 1 2i 

a e(r2-i) 1 - f ( x )  - d(x, t )  +$' + K  sgn(s) 

where G = C +i! By plugging u into (8), we will have 
S = -Ksgn(s). Thus, the reaching condition (5) can be 
easily verified. 

H?wever, f and G are unknown, only their estimations7 
and G can be used to construct u. Moreover, to account for 
the system uncertainties and disturbance, each Ki is chosen 
to be large enough to satisfy the reaching condition. It can 
be seen from (15) that the control input u is discontinuous 
across s(t),  which leads to unwanted chattering. An adap- 
tive fuzzy controller is proposed to eliminate the chattering 
and to achieve practical applicability of the proposed 
sliding control design. 

4 Description of the adaptive fuzzy system 

Various fuzzy models and their control have been success- 
fully applied in many fields [2 1, 23-26]. The basic config- 
uration of the fuzzy logic system comprises four principal 
components: fuzzifier, fuzzy rule base, fuzzy inference 
engine and defuzzifier [18]. The fuzzy control rules are 
the principal factor in determining the performance of a 
fuzzy controller. The fuzzy system can uniformly approx- 
imate nonlinear continuous functions to arbitrary accuracy 
[27, 281. Thus we will introduce fuzzy systems, which are 
expressed as a series expansion of fuzzy basis functions, to 
model the uncertainties G(x) andflx) by tuning the para- 
meters of the corresponding fuzzy systems. The configura- 
tion of the fuzzy system with adjustable rule credit 
assignment is shown in Fig. 3 [29]. 

The fuzzy logic system performs a mapping from U c R" 
to V c R m .  Let U =  U1 x ' . .  x U,, and V =  Vl x .  . '  x V, 
where U,<C R,  k =  1 , 2 , .  . . , n and V,  c R, i =  I ,  2 , .  . . , m. A 
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Dicigramnmtic representation of firzzy systems with adjustable Fig. 3 
rule credit assigninent 

multivariable system can be controlled by the following N 
linguistic rules: 

I?('): IF xI is A{ and . . . and x, is Af, 

THEN zl is B[1 and . . . and z,, is B:,, (16) 

where 1 = 1, . . . , N, xli, k = 1, 2 , .  . , , n, are the input vari- 
ables to the fuzzy system, z , ,  I = 1, 2, . . . , m, are the output 
variables of fuzzy system, and the antecedent fuzzy sets Ai 
in uk and the consequent fuzzy sets Bf in v, are linguistic 
terms characterised by the fuzzy membership functions 
p A ~ ( x n )  and pB!(z,). The fuzzy logic system with centre- 
average defuzzifier, product inference and singleton fuzzi- 
fier is defined as [I81 

N c PYX> ' 4: 

c d(x> 
z,(x) = / = I N  (17) 

I= I 

where p''(x) = ni=l p,&) is the matching degree of the 
lth rule, and 41 is the centre of the consequent membership 
function of the lth rule. If 41 is chosen as the design 
parameter, the adaptive fuzzy system can be viewed as 
the type of neural network shown in Fig. 4 [30]. Therefore, 
(17) can be rewritten as 

where q5 = @:, . . . , 4YlT is a parameter vector, $(x) = 
. , , tN) is a regressor, and where the fuzzy basis 

function is defined as [ 181 

z,(4 = dm.4 (18) 

n n /-lAi(x.k) 
k= I 

(19) t/ = 

/'=I 5 (ii k = l  P&J) 

5 Learning algorithm and performance analysis 

We now show how to derive an adaptive law to adjust the 
controller parameters such that the estimated equivalent 
control a,, can optimally approximate the equivalent 
control of the FSMC, given the unknown functions f and 
G. We construct the hitting control to guarantee the 
system's stability by the Lyapunov theory so that the 
ultimately bounded tracking is accomplished. 

We define the control u = &, + u,, where the auxiliary 
input is 
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and where D = diag[Dj], 7 = diag[qi], i = 1 , .  . . , m and the 
hitting control is u,, = G- uh. 

We define the parameters 0: € R N  and w$ € R N  of the 
best function approximation as 

r 7 

r 1 

where Q ,  and QZwq are constraint sets for Bi and wq, 
i, j = 1, . . . , m, is defined as Q, = { Oi: 1 I 5 MO ,,,,, ,,,} and 

specified by the designer. The fuzzy logic systems &x I Oi) 
and &(x I wii) are 

Q>",, = {wij: I Wi/l F M W  ,,,, J where Mo,,,w,,, and M," ,,,, w,,l are 

J(xl e;) = e: . </(X) = @x) . ei ( 2  1) 

where <f(x)  and Cg(x) are vectors of fuzzy bases, Oi and wii 
are the corresponding parameters of the fuzzy logic 
systems. Thus (8) can be rewritten as 

where 8, = 8, - OF, = w,, - w;, denotes the parameter 
estimation errprs, and the minimum approximation 
errors are &=fix I e*) - f ix) ,  CG = G(x I w*) - G(x) with 

Our 
design objective is to specify the control and adaptive 
- 6 = [e,, . . . fM, w = [ W I  I ,  . . . , w1 ,,,, W ~ I ,  . . . , wIIII~,1. 
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Fig. 4 Basic structure of an adaptib.e,ftizzy system 

laws for 8; and wii such that the reaching condition (5) is 
guaranteed. 

Theorem 2: Consider a nonlinear plant (1) with a controller 
(7). The tracking error allows us to use the following 
adaptive law and hitting control as 

8 .  I = -s.y.<. i l j  (24) 

where i, j = 1, . . . , m. After straightforward manipulation, 
the time derivative of V,  is obtained as 

Pro05 Consider the Lyapunov candidate 

= srii 5 0. 

v =  V , + V , + " ' + V m  (27) 

where 

By the fact 8 i =  fli,  kii= wij and (23), we obtain the 
derivative of Vas 

where 

- 
If we choose the adaptive law as 8i=-siyi@, 
6, = - ~ ~ [ ~ ~ ~ < ~ f i ~ ~ , ~  and each Ki is chosen sufficiently large 
that I sjKi . Di . sgn(s;) I > I sid;(t) I , then 

JIZ 

5 5 sii;i + s; l&j j  - (29) 
j=  I 

where we use the fact that ulZi has the same sign as si. 
To complete the FSMC design, it is necessary to show 

that the hitting control is enough to force the state trajec- 
tory toward the sliding surface as well as to establish 
asymptotic convergence of the tracking error. Consider 
the Lyapunov function candidate 

1 

v. ! 32 (30) ' 2 '  

Taking the derivative of (30) and using (7) and (S), one has 

(3 1) 

To ensure that (31) is less than zero, the hitting control 
should be selected as 

I ~ U  Imax I h e q j  I + 1~2:) I 

I j=l I J  
This means that the inequality R.=s+ki < 0 is obtained and 
the hitting control actually achieves a stable FSMC system. 
This completes the proof. 

From the above discussion, we use an FSMC to estimate 
the equivalent control of the SMC system. In addition, the 
requirement of the system stability is also proved and 
ensured by the hitting control. However, the hitting control 
part described previously is a high gain bang-bang control. 
It is usually proportional to the bounds ofJ; and go in (26) 
and is discontinuous across si so that heavy chattering 
arises. In addition, a very large control force may be 
generated and may activate high-frequency unmodelled 
dynamics [4]. These drawbacks have been considered in 
[20], where the boundary layer concept was utilised as a 
compact measure of the equality of the uncertainty esti- 
mate. In fact, as si is large, the upper bounds ofJ; and gii are 
appropriate choices, but for small si these bounds may be 
unsuitable. This implies that bound on si can be directly 
considered when minimising the hitting control. 

From empirical knowledge of the design of sliding mode 
controllers, the equivalent control is used when the state 
trajectory is near si=O. While the hitting control is 
appended in the case of si#O [20], a large hitting control 
will force the state trajectories to approach the sliding 
surface si=O rapidly, but at the same time, tend to excite 
chattering. Thus, when the state trajectories are far from 
the sliding surface, that is, when the value of I si I is large, 
the hitting control should be correspondingly increased and 
vice versa. Furthermore, in the region 1 si 1 5 sf with s! > 0, 
it can be treated as the boundary layer of the conventional 
sliding mode control [4]. Thus, to maintain the attractive- 
ness of the boundary layer, we minimise the hitting control 
in (26) by a fuzzy function in practical implementation 
[3 11. The equivalent control and the hitting control are on 
the consequent membership functions of the fuzzy system. 
The consequent membership functions of the fuzzy control 
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rules are well defined to satisfy the stability of the control 
system. Therefore, a fuzzy rule base is of the form 

If si is ZO Then zii is zii = Gel,, (32) 

If s, is NZ Then zi, is ui = 2,; + Girl (33) 

where ZO and NZ denote zero and nonzero fuzzy sets, 
respectively, and the input variable si is given in (3). The 
modified control law of the fuzzy controller for (7) is 

/-lzo(si) . ceqi + /-lNZ(~i)[Gec,i + i,iiI 

~ Z o ( s i )  + / -Ldsi)  
Z l j  = 

= Geqi + PNz(si)G/,i (34) 

where pzo(si) and pNZ(si) are the membership functions of 
fuzzy sets ZO and NZ, respectively. The membership 
functions of fLizzy sets ZO and NZ are selected to overlap 
and be symmetric to satisfy ,UZ&~) + p ~ ~ ( s i )  = 1. 

If we choose the triangle membership functions as 
shown in Fig. 5 for the fuzzy sets ZO and NZ of si, the 
control law zii will be continuously adjusted by the use of 
the fuzzy logic depending on a ‘ZO’ layer s!. When 
holding the condition IsiI>s!, it can be seen that the 
control law is the same as the proposed FSMC. However, 
the amount of hitting control in region 1s; I < s! is domi- 
nated by the grade of the membership function of NZ, that 
is, the hitting control could be attenuated by the grade of 
NZ. 

6 Simulation results 

Here, we demonstrate the proposed FSMC by the tracking 
control of a two-link robotic manipulator with two degrees 
of freedom in the rotational angles described by angles ql 
and q2,  as shown in Fig. 6. The aim is to produce some 
torque signals that create a sliding motion in the phase 
plane for each link. The dynamic equations describing the 
motion of the robotic system are derived by the Lagrange 
scale function L(q, q)  [32], and are defined to be 

L(q, 4) = T(q ,  4) - U(Y3 4) (35) 

where T(q, q)  and U(q, 4 )  are the total kinetic and potential 
energy. respectively, q = [ql q2]? The Lagrange equation 
has the form 

where z = [ z l  z2ITcR2 is the vector of the externally 
applied torques along the directions of their corresponding 
generalised coordinates q. Suppose the robotic system 
suffers from time-varying parametric uncertainties, un- 
modelled friction forces, and exogenous disturbances. 

L‘ 

I 
NZ I NZ 

-S! 0 S !  

Fig. 6 Moclel of n two-link rohotic nicinipulutor 

After some manipulation, the dynamic equations are of 
the following form [33]: 

m l  + m2)ry + nz2r; + 2m2rlr2c2 + J l  m 2 4  + nz2rlr2c2 

m2r; + m2r11a2c2 m2r; + J2 1 

(37) 

or in matrix form 

M(q)i l+ C(q, 4) + N q ,  g) = z + d(q,  4, 0 (38) 
where M( ) E R2x2  denotes the moment of inertia, 
C(q, q )  E R is a vector of Coriolis and centrifugal force, 
h(q, g ) E R 2  is a vector of gravitational forces with 
g = 9.8 m/s2 is the gravity constant and d(q, q, t )  E R2 is 
disturbance. In (37), the nominal parameters m l ,  m2, J I ,  
J2 ,  r1 = 0.511, and r2 = 0.5l2 are the mass, the moment of 
inertia, the half-length of links 1 and 2, and the shorthand 
notations are c2 E cos(q2), s2 sin(q2), c12 = cos(gl+ q 2 ) ,  
etc. The combined effects of friction and the external 
torque disturbance are 

4 .  

d, = 2.0 sin(ql) + 2.5 sin(q2) + 0.5 sin(t) 
d, = 5.0 sin(ql) + 4.0 sin(&) + 0.4 sin(t) 

In the control experiments described below, the kinematics 
and inertial parameters of the arm are chosen as 
~ I = 2 . 0 4 i n ,  12= 1.66m, J l = J 2 = 4 . S  kg.m, m ,  =0.6Okg, 
m2 = 7.02 kg, respectively. The trajectories to be followed 
are described by two decoupled linear systems from (3), 
the desired coefficients are specified to be a,, = 2, aZ2 = 1, 
i =  I ,  2. The robot is given by the following target joint 
rotations: 

qdl = ( 2 . 5 ~ / 1 2 ) .  sint 
q L [ 2  = (3 .75~/12)  ’ cost 

with the initial states 41(0) = 1 .S rad, q2(0) = - 1.2 rad, 
ql(0) = 0 rad/s and q2(0) = 0 rad/s. 

In (24)-(26), the design parameters are given by y ,  = 0.1, 
[ j ,=O.Ol,  K,= 1, ql=O.O1, D,=S and i, j =  1, 2 .  The 
membership functions of states q l ,  q2 ,  q1 and Q2 (repre- 
sented by generic variable n,) for the qualitative statements 
( N =  S4 = 625 regular rule partitions) are defined as {NB,  
NS, ZE, PB, PS} where NB: exp(-0.S(x,+0.4)2), NS: 
exp(-O.S(x, + 0.2)2j, PB: exp(-O.S(x, - 0.4)2), PS: 
exp(-O.S(x, - 0.2) ) and ZE: exp(-O.Sxf). In (32) and 
(33), the membership functions of s, for the fuzzy sets 
ZO and NZ are given in a triangle function, as shown in 
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has the property that, for all s,, yz&,)+ 
When holding the condition Is, I > s,' with 

can be seen that the control law is the same 
as the proposed FSMC. However, the amount of hitting 
control in region Is, I < sl is dominated by the grade of the 
membership function of NZ, that is, the hitting control 
could be attenuated by the grade of NZ. 

The desired trajectories, the tracking errors, the state 
trajectories of the phase plane, and variations of the sliding 
surfaces with and without boundary layer for ql( t )  and q Z ( t )  
are shown in Figs. 7-10, respectively. The simulation 
results reveal that FSMC both with and without a boundary 
layer, encountering the combined effects of friction, para- 
metric uncertainties, unmodelled dynamics and external 
disturbance, can attenuate the tracking error efficiently. As 
a result, while appending the boundary layer to FSMC, the 
system has less chattering than that without using it. 
Moreover, without using any a priori linguistic informa- 
tion, our adaptive fuzzy sliding mode controller has 
successfully executed the trajectory following control of 
the robot system. 
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7 Conclusions 

An adaptive fuzzy controller based sliding mode control 
has been proposed for the robust trajectory tracking of 
MIMO control systems with unknown nonlinear dynamics. 
The core of this structure does not require knowledge of 
the system dynamics and parameters to compute the 
equivalent control, and an adaptive fuzzy system is devel- 
oped to further compensate the system uncertainty and 
ltnowledge incompleteness. This design obtains robustness 
in the sense that the self-tuning mechanism can automati- 
cally adapt the fuzzy controller by using a learning algo- 
rithm and the global asymptotic stability of the algorithm is 
established via the Lyapunov stability criterion. When 
matching with the model occurs, the overall control 
system becomes equivalent to a stable dynamic system. 
The simulation presented in the two-link robotic manip- 
ulator control indicates that the proposed approach is 
capable of achieving a good chatter-free trajectory follow- 
ing performance without the knowledge of the plant para- 
meters. In conclusion, the proposed FSMC is superior to its 
predecessors. The design can achieve the goal of compo- 
site nonlinear multivariable control and also guarantee that 
the output tracking error can ultimately converge to a 
residual set. 
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