
Fault Injection into VHDL Models: The MEFISTO Tool 1

Eric Jenn*, Jean Arlat*, Marcus Rimén**, Joakim Ohlsson** and Johan Karlsson**

* LAAS-CNRS, 7, Avenue du Colonel Roche, 31400 Toulouse, France
** Laboratory for Dependable Computing, Chalmers University of Technology, S-412 96 Gothenburg, Sweden

Abstract
This paper focuses on the integration of the fault injection
methodology within the design process of fault-tolerant
systems. Due to its wide spectrum of application and
hierarchical features, VHDL has been selected as the
simulation language to support such an integration. Suitable
techniques for injecting faults into VHDL models are
identified and depicted. Then, the main features of the
MEFISTO environment aimed at supporting these
techniques are described. Finally, some preliminary results
obtained with MEFISTO are presented and analyzed.
Index Terms: Experimental Validation, Fault Injection,
Simulation, VHDL, Fault/Error Models.

1 Introduction

In the last decade, fault injection has emerged as an
invaluable means to support the dependability validation of
fault-tolerant systems (e.g., see [1-3]).

Two main trends characterize recent work on fault
injection: (i) apply fault injection as early as possible in the
design process of fault-tolerant systems, i.e., into simulation
models of the target system [3-6] and (ii) when dealing with
the implementation of the target system, favorsoftware-
implemented fault injection (SWIFI), i.e., based on the
mutation of the executing software or of the data [7-10].

Classically, simulation-based fault injection approaches
address different abstraction levels by using distinct
description languages. Clearly, a coherent environment
should be provided: (i) to favor interoperability between the
successive abstraction levels and (ii) to integrate the
validation in the design process. SWIFI is primarily
motivated to avoid the difficulties and cost inherent to the
implementation of physical fault injection approaches (e.g.,
pin-level [11] or heavy-ion [12]). It is also intended to cover
errors that can be generated by both software and hardware
faults. However, this is only achieved to some extent. Still,

1 This work was supported in part by the CEC ESPRIT Basic Research
Project nº6362 PDCS2 (Predictably Dependable Computing Systems) and
by theMidi-Pyrénées Regional Authority under contract RECH/90078306.

further work is needed to validate such abstract error models
before it can be confidently considered that SWIFI alone can
adequately embrace the consequences of hardware faults.

The paper presents the main objectives and the
preliminary results of a research aimed at (i) providing an
integrated environment — called MEFISTO (Multi-level
Error/Fault Injection Simulation TOol) — for applying fault
injection into simulation models encompassing various
levels of abstraction and thus (ii) helping to identify and
validate an abstraction hierarchy of fault/error models.

The development of an integrated and coherent design
environment for fault-tolerant systems based on a single
language seems to be achievable when considering the
emergence of hardware description languages. With this
respect, VHDL has been recognized as a suitable language
as it presents many useful features:
• ability to describe both the structure and behavior of a

system in a unique syntactical framework,
• widespread use in digital design and inherent hierarchical

abstraction description capabilities [13],
• recognition as a viable framework (i) for developing high-

level models of digital systems (block diagrams, Petri
nets), even before the decision between hardware or
software decomposition of the functions takes place, and
(ii) for supporting hybrid (i.e., mixed abstraction
levels) simulation models [14],

• capability to support test activities [15].
MEFISTO can be used: (i) to estimate the coverage of

fault tolerance mechanisms, (ii) to investigate different
mechanisms for mapping results from one level of
abstraction to another and (iii) to validate fault and error
models applied during fault injection experiments carried
out on the implementation of a fault-tolerant system (e.g.,
SWIFI or pin-level fault injection).

The remainder of this paper is made up of six sections.
Section 2 presents a critical analysis of four techniques for
injecting faults into VHDL models. Section 3 describes the
architecture and the main features of the MEFISTO system
that supports these techniques. Section 4 details the user
interactions necessary to set up a fault injection campaign.
Section 5 presents a case study where MEFISTO is used to

inject faults in two VHDL models (structural and
behavioral) of a simplified 32-bit processor. Abstract error
models are extracted from the resulting data and compared.
Section 6 concludes the study with a summary and some
remarks.

2 Fault injection into VHDL models

Two categories of fault injection techniques are identified:
the first one covers two techniques that requiremodification
of the VHDL model and the second one covers two other
techniques that instead use thebuilt-in commands of the
simulator. Before describing these two categories, we
provide a summary of the characteristics of the VHDL
language used in the subsequent sections [16].

2.1 Characteristics of the VHDL language

A system modeled in VHDL is made up ofcomponents
linked by signals. VHDL allows a signal to have many
drivers (signal sources), provided that aresolution function
is supplied to resolve the values generated by the multiple
sources into a single value for the signal. Such a signal is
called aresolved signal; it can be used to model buses and
wired-and logic.

A component can have many implementations. In VHDL,
each implementation is expressed by a separate component
description. To allow simulation of the system, a
configuration mechanism assigns a single component
description to each component. A component description is
represented by both an entity declaration and an architecture.
The entity declaration specifies the interface, i.e., the set of
inputs and outputs, while the architecture describes the
internal organization of the component. A component
description can bestructural or behavioral (or a mixture of
both). A structural description is a composition hierarchy
consisting of subcomponents and signals, while a behavioral
description is an algorithmic model of the component’s
function expressed by means ofprocesses. A VHDL process
is a set of sequential statements. The process can
communicate with other processes by reading and assigning
values tosignals. Variables are used inside processes and are
not accessible from the outside. Processes are executed
repeatedly in a loop fashion, and stopped only at
synchronization statements, calledwait statements.

2.2 Modification of the VHDL model

In this category, two techniques can be distinguished. The
first one is based on the addition of dedicated fault injection
components, called saboteurs, to the VHDL model. The
second one is based on the mutation of existing component
descriptions in the VHDL model, which generates modified
component descriptions called mutants. In this paper, any
change made to an existing component description is

regarded as a mutation.
A saboteur is a VHDL component that alters the value or

timing characteristics of one or several signals when
activated. It is usually inactive during normal system
operation and activated only to inject a fault. Aserial
saboteurbreaks up the signal path between a driver (output)
and its corresponding receiver (input) (Figure 1-a) or a set of
drivers and its corresponding set of receivers (Figure 1-b). A
parallel saboteur is simply added as an additional driver for
a resolved signal, as shown byFigure 1-c. Another way to
achieve the same effect is to assign a modified resolution
function to signals that are potential fault targets.

A mutant is a component description that replaces another
component description. When inactive, it behaves as the
component description it replaces and, when activated, it
imitates the component’s behavior in presence of faults. It is
easy to implement this replacement technique in VHDL
using the configuration mechanism.

Mutation may be accomplished in several ways by:
• adding saboteur(s) to structural or behavioral component

descriptions,
• mutating structural component descriptions by replacing

subcomponents (e.g., a NAND-gate replaced by a NOR-
gate),

• automatically mutating statements in behavioral
component descriptions, e.g., by generating wrong
operators or exchanging variable identifiers; this is similar
to the mutation techniques used by the software testing
community,

• manually mutating behavioral component descriptions to
achieve complex and detailed fault models.
Both signal and variable manipulations can be used for

controlling, i.e., activating and deactivating, saboteurs and
mutants. In this way, the injection of faults can be controlled
by the built-in commands of the simulator also when
mutants and saboteurs are used. This can be achieved by
means of global signals or shared global variables. The latter
is a new capability introduced in the latest version of VHDL,
called VHDL’93 (IEEE Std. 1076-1993).

 Figure 1: Insertion of saboteurs

a: Simple serial b: Complex serial c: Parallel

Control

 O I

 S O I

 O I

 O I

 O I

 O I
 S

 O

 O

 I

 In

 O

 O

 I

 In

 S

Control

Control

(original structures at the top modified at the bottom)

2.3 Use of built-in commands of the simulator

The main reason for using the built-in commands of the
simulator for fault injection is that this does not require the
modification of the VHDL code; however, the applicability
of these techniques depends strongly on the functionnalities
offered by the command languages of the simulators.

Two techniques based on the use of simulator commands
can be identified:signal andvariable manipulation. For each
technique, the required sequence of simulator pseudo-
commands is described inFigure 2 and is explained below.

a: Signal manipulation for b: Variable manipulation for
a temporary stuck at fault a temporal variable

 Figure 2: Fault injection using simulator commands

2.3.1 Signal manipulation: In this technique, faults are
injected by altering the value of signals in the VHDL model.
This is done by simulating the system until the time of
injection is reached and all processes have stopped on a
WAIT statement (Figure 2-a, step 1), then the signal is
disconnected from its driver(s) and forced to a new value
(step 2); the system is simulated for the duration of the fault
(step 3); finally, the signal’s driver(s) is (are) reconnected
when the fault injection is completed (step 4) and the
simulation is continued until the end of the observation time
(step 5). For a permanent fault, steps 3 and 4 are skipped.
Intermittent faults can be injected using a more complex
command sequence.

2.3.2 Variable manipulation: This technique allows
injection of faults into behavioral models by altering values
of variables defined in VHDL processes. In the simulation
phase, the execution of the sequential code in a process takes
no time as viewed by the simulator since time is incremented
only when a process stops at aWAIT statement.

A variable is termedatemporal when it holds valid
information over a number of sequential statements in the
process, but never over anyWAIT statements. Thus, the
variable will not be susceptible to changes made to its
contents when the process has stopped. A variable is termed
temporal if it always holds valid information overWAIT
statements. As a result, the variable will be susceptible to
changes made to its contents when the process has stopped.
In other words, a variable is temporal or atemporal
depending whether it is used to transfer information through
simulation time space or code space, respectively.
Furthermore, a variable is termedmixed-mode if it is
sometimes temporal and sometimes atemporal.

In the case of temporal variables, faults are injected by the

[1] SimulateUntil <fault injection time>

[2] FreezeSignal <signal name>

<signal value>

[3] SimulateFor <fault duration>

[4] UnFreezeSignal <signal name>

[5] SimulateFor <observation time>

[1] SimulateUntil <fault injection time>

[2] AssignVariable <variable name>

<variable value>

[3] SimulateFor <observation time>

same means as signals, i.e., when all processes are stopped
on aWAIT statement (seeFigure 2.b). By definition, this
technique cannot be used for atemporal variables since they
are only used between twoWAIT statements, therefore some
extra fine-grained synchronization is required.Figure 3
shows the simulator controls required to manipulate an
atemporal variable. The main idea is to (i) simulate the
system until one of the statements where the target variable
is assigned a value is reached (steps 1-3) and (ii) then assign
a faulty value to it (steps 4-7).

[1] SimulateUntil <fault injection time>

[2] SetSrcBreakOnLine <LineNo> <Library> <Entity> <Architecture>

.../...

[2] SetSrcBreakOnLine <LineNo> <Library> <Entity> <Architecture>

[3] SimulateFor <time window>

[4] If (AtSrcBreak) {

[5] AssignVariable <variable name> <variable value>

[6] DeleteAllSrcBreaks

[7] SimulateUntil <fault injection time+observation time> }

 Figure 3: Variable manipulation of atemporal variables

Step 1 inFigure 3 is the same as step 1 inFigure 2. In step
2, breakpoints are set on all VHDL source code lines that
follow an assignment to the target variable. Then the
simulation is started in step 3 and continues until a
breakpoint is reached. However, as the execution can follow
paths in the VHDL code where no assignments are made to
the target variable from oneWAIT statement to the next one,
it cannot be ensured that a source line breakpoint will be
reached. Therefore it is necessary to specify a maximum
time for the simulation, which is defined by the<time window>

parameter in step 3. If a breakpoint is reached (step 4), a fault
is injected (step 5), then all source line breakpoints are
removed (step 6) and the simulation is continued until the
end of the observation time (step 7). If a breakpoint is not
reached within the time window (step 4) then steps 5-7 are
skipped, i.e., no fault is injected.

The injection of faults into mixed-mode variables is
achieved by a combination of the above methods; the
sequence is the same as the one given inFigure 3, with an
“AssignVariable <variable name> <variable value>” step inserted
between the first and the second steps.

2.4 Comparison of the fault injection techniques

The fault injection techniques considered are compared in
terms offault modeling capacity, effort required for setting
up an experiment andsimulation time overhead.

Considering thefault modeling capacity, mutants can be
designed using the full strength of the VHDL language, and
are thus well suited for implementing any behavioral and
structural fault models provided they can be expressed
within the VHDL semantics. This is also the case for the
saboteurs, although they have a very restricted view of the
system due to their limited number of input and output ports.

Signal manipulation is suited for implementing simple fault
models (e.g., permanent or temporary stuck-at faults).
Variable manipulation offers a simple way for injecting
behavioral faults.

Considering theeffort for setting up an experiment, the
signal and variable manipulations do not require any
modification of the VHDL code, whereas much effort is
needed for mutants and saboteurs, as they require
(i) creation/generation of saboteurs/mutants, (ii) inclusion
of saboteurs/mutants in the model and (iii) recompilation of
the VHDL model. The creation of saboteurs and the
automatic generation of mutants are relatively easy tasks,
provided that simple fault models are considered. It is also
worth noting that a saboteur is a reusable component, while
a mutant has to be specifically generated for each target
component; on the other hand, the inclusion of saboteurs
requires the modification of the component description
while mutants are easily included in the model by means of
the VHDL configuration mechanism.

Considering thesimulation time overhead induced by the
injection mechanisms, signal and variable manipulations
impose a model-independent overhead due to the fact that
the simulation has to be stopped and started again for each
fault injected. The simulation time overhead imposed by
saboteurs and mutants depends on several factors such as
(i) the amount of additional generated events (signal
changes), (ii) the amount of code to execute per event (e.g.,
a complex behavioral mutant may require many statements
to be executed per event), and (iii) the complexity of the
injection control.

3 Overview of MEFISTO

Figure 4 gives an overview of MEFISTO and of the main
user interactions for defining and executing afault injection
campaign (i.e., a series offault injection experiments). The
fault injection campaign consists of three phases: aSetup
Phase, aSimulation Phase, and aData Processing Phase.

3.1 The Setup Phase

The two main objectives of the setup phase are to generate:
• an Executable Model of the system including mutants, if

any2 ;
• an Experiment Control List containing the commands

necessary to control the simulator for each experiment in
the campaign.
For a given VHDL description of the target system, the

user specifies during the Setup Phase (i) the fault set to be
used, (ii) the readouts to be saved (e.g., signal traces) in the
campaign, (iii) how to select faults from the fault set for each

2 Saboteurs are not directly supported by the system, but can easily be
handled. The use of a saboteur is regarded as the generation of a mutant.
Thus, saboteurs can be handled the same way as mutants.

experiment, (iv) when to inject the selected fault(s), and
(v) when to terminate each experiment.

In the first part of the Setup Phase, the tool analyzes the
VHDL target model and provides a list of fault targets to the
user. The user specifies the fault set to be used in the
campaign by selecting targets from the list. Each target
belongs to a target group which corresponds to a certain
class of VHDL objects, e.g., signal, variable or component.
Each target group has at least one attribute such as a type
(BOOLEAN, INTEGER, etc.) for a signal or an
implementation (VHDL entity declarations and
architectures) for a component. For each fault target, a user-
definable fault type can be selected. This fault type is called
anAbstract Fault Model, or AFM. The act of selecting a fault
target and a fault type (AFM) specifies a fault.

AFMs can be applied to any of the target groups described
above. It is also possible to restrict the application of an
AFM to targets with a specific attribute, e.g., signal of type
BIT. Thus, for each target there exists a set of selectable
AFMs from which the user can chose.

System
Description

(VHDL)

Experiment Results

Setup of
Campaign

Extraction Rules

Experiment
Control List

Run Experiment

Executable
Model

SC File Start State File(s)

Abstract Fault
Model Library

Mutant Library
(VHDL)

Component
Library (VHDL)

Signal Trace File

Process Data

Experiment Data

Generate
Extr. Rules

main input/output

other input/output

automatic step

step with user
interaction

Legend

 Figure 4: Overview of the fault injection tool

Data
Processing

Phase

Schedule Experiments

End State File(s)

Simulation
Phase

Setup
Phase

Extract Exp. Data

When mutants are used, after the fault set is specified by
the user, a final VHDL configuration for the target system is
created and then the Executable Model can be generated.
Once the final configuration is decided, all signals, variables
etc., are identified and presented to the user. From this list the
user selects the readouts to be saved for each experiment.
Finally, the user must specify for each experiment how to
select faults from the fault set, when to inject them and when
to terminate the experiment. This information is needed by
the tool to generate the Experiment Control List.

The main user interactions in the Setup Phase are further
described in Section 4. A more comprehensive description
can be found in [17].

3.2 The Simulation Phase

In the Simulation Phase, the simulation model created in the
Setup Phase together with the Experiment Control List are
used to schedule the execution of the injection experiments.

The simulations are executed on a set of simulators run-
ning on a network of computers. An experiment scheduler
reads the Experiment Control List and schedules simulations
on the available simulators. For each simulation, the sched-
uler reads an entry with simulation control commands from
the Experiment Control List and creates a simulation control
file (SC File) for controlling the simulator, and a start state
file. The Start State File specifies from which simulation
state a simulation should start. The final simulation state
(End State File) of each simulation can be saved; this makes
it possible to use the final simulation state of a previous sim-
ulation as a start state for a new simulation. Moreover, the
readouts (Signal Trace File) from each simulation are saved
for further processing in the Data Processing Phase.

3.3 The Data Processing Phase

The Data Processing Phase involves two steps: (i) extraction
of Experiment Data from the raw data produced by the
simulations, and (ii) processing of the Experiment Data into
Experiment Results.

The purpose of the extraction process, which is guided by
Extraction Rules generated by the user, is to extract and
convert to a convenient format the data needed to generate
the experimental results (e.g., error detection coverage and
latency measures).

The actual processing of the Experiment Data into
Experiment Results is application-dependent and must be
tailored for each fault injection campaign. For instance, in
one campaign the user may want to compute coverage
figures for a fault tolerance mechanism, while in another
campaign he may want to obtain enough data to study the
error propagation in the system.

4 Main user interactions in the Setup Phase

Section 4.1 and Section 4.2 describe the generation of AFMs
and mutants, respectively. Then, Section 4.3 describes the
selection of the fault set. Finally, Section 4.4 presents the
selection of experiment parameters.

4.1 Generation of AFMs

MEFISTO includes an AFM database containing predefined
AFMs. The user can expand the database by generating and
adding new AFMs to it. By default, certain target groups and
attributes are recognized by the tool (such as signals of the
typeBIT), and associated simple AFMs (e.g., stuck signal of
typeBIT to 0) for injecting faults are stored in the database.

In addition to the predefined AFMs, the user can add both
simple and complex AFMs, such as those supporting the
saboteur and mutant-based techniques, to the database.
Those techniques require the generation of a mutant. The
mutant is stored in a database (the mutant library) and a
complex AFM is associated with the mutant, containing a
reference to the mutant and also a “description” of how to
activate it.

4.2 Generation of mutants

A mutation of a component description can be carried out in
several ways by (i) manually mutating it, (ii) inserting
saboteurs into it and (iii) manually selecting mutation rules
for the automatic mutation. A mutation rule states where the
mutation must occur, and what modification to make. The
only rules available in MEFISTO are those that map one
VHDL grammar rule to another one. A mutation rule can
make calls to other mutation rules, in a recursive manner.
Indeed, the mutation of an entity containing instances (i.e.,
components) of other entities may be obtained by the
mutation of any of these components.

Examples of fault models possible to describe as mutation
rules are found in [18] that divides behavioral-level fault
models into eight fault classes: Stuck-Then, Stuck-Else,
Assignment Control, Dead Process, Dead Clause, Micro-
operation, Local Stuck-data and Global Stuck-data.

4.3 Selection of the fault set

The first step in the process of selecting a fault set consists in
the analysis of the VHDL description to get information on
potential targets for fault injection:target group (e.g., signal,
variable, component etc.),attribute (e.g., boolean, integer,
etc.), etc. As mentioned earlier, because of its group
belonging and attribute, each target implicitly defines one or
more selectable AFMs.

After analyzing the VHDL description, the faults to be
injected are determined interactively and added to a fault set.
This is done by selecting targets and AFMs.

The fault injection tool provides three main categories of
target selection mechanisms:
• explicit target selection,
• selection of targets that satisfy a given property,
• random target selection.
The properties for the second category concern (i) the entity-
instances relationship in the model (e.g., select mutated
architectures for components that are instances of a specific
entity), (ii) the composition structure of the model (e.g., all
signals in a specific architecture, or all variables in a specific
process), (iii) the VHDL semantics (e.g., all variables, all
signals, all processes, all variables or all signals that carry
values of a specific type) and (iv) a given topological
property (e.g., all signals connected to a given component).

The selection criteria may be composed; for instance, it is
possible to select “all signals that are of a given type and are
connected to a given component”.

4.4 Selection of experiment parameters

The experiment parameters include preconditions, fault
activation conditions and termination conditions.

The preconditions specify the starting state of each
experiment. It can be (i) the zero state, i.e., the state
corresponding to a reset of the target system, or (ii) the final
state of a previous experiment. The preconditions also define
the functional activation of the simulation model for each
experiment. In particular, the functional activation of a
microprocessor is also called the workload.

Theactivation of the injected faults (i.e., AFMs associated
with targets) can be triggered according to any mix of the
following conditions provided by the simulation
environment:
• a given period of simulation time has elapsed,
• a signal has changed (to a given value),
• a given line of code has been executed, or
• one of the above conditions has occurred for thenth time.
All values in these definitions may be chosen at random.

The termination conditions state when an individual
experiment should complete. The completion of the
experiment is characterized by a predicateP on the system’s
state. Depending on its complexity, the assessment of theP
predicate can be performed on-line or off-line with respect to
a running simulation within an experiment.
When computed on-line, theP predicate is expressed by
means of simulation tool expressions or VHDL code. The
simulation environment provides the same means to
terminate a simulation as for detecting the time for activating
a fault as described above. Expressing the predicate in
VHDL is a matter of embedding specific expressions,
processes or even components in the original model. Their
activation may create events that satisfy one of the
conditions that can be monitored by the simulation

environment to stop the simulation. When computed off-
line, the same means as those cited above are used to assess
a first predicateP1. However, onceP1has been satisfied, the
current simulation state is saved, the simulation is stopped
and a second, more thorough, analysis is performed to test a
second predicateP2. If P2 is not satisfied, the simulation
continues from the saved state.

5 A case study: the DP32 processor

This section presents some preliminary results of fault
injection experiments carried out with MEFISTO on two
models of a simple 32-bit processor. The main goals of the
experiment consist in the analysis of the impact of the choice
of the injection method and the model description level on
the error outcome. More specifically, the differences
observed when using (i) signal or variable manipulation
methods3 , and (ii) a structural model or a behavioral model
of the target system are studied. The next paragraphs present
the design and the realization of the campaign. Finally, the
experimental results are given and analyzed.

5.1 Design of the campaign

The target system is a model of a very simple 32 bits
processor, the DP32 described in [19], for which two
architectures, one behavioral and one structural, are
available. The structural model, on the register-transfer
level, is depicted inFigure 5; it is mainly composed of a
finite state control machine (Control FSM), an ALU, a
program counter (PC), a register file and several buffers and
latches. The behavioral model, on the procedural description
level, mainly consists of a VHDL process containing a large
“CASE” statement that initiates the appropriate bus cycles
with respect to the operation code of the fetched instruction.

All external operations are synchronized on two non-

3Saboteurs and mutants are not used in the study.

CC comp

OP

CC

ALU

R1 R2

Register FilePC

R3 Buf. Ext Address DISP BufferBuffer

Result

Control
FSM

OP1_bus
OP2_bus
R_bus

Data_bus
Address_bus

Bus reply
Bus command

a b c

MUX

φ1

(32)

(32)

(3)

(32)

(3) (32)

(2x32)(3x32)

(32)

(32)

(32)

(32)

(256x32)

(32)(8)

(32)

(8)
(3)

 Figure 5: Structural architecture of the DP32 processor

φ2

bc a

(8) (8) (8)
(8)

overlapping clocksΦ1 andΦ2 (a cycle is 40ns); Φ1 is the
main clock which synchronize all bus accesses.

Figure 6 rates the “simulation efficiency”, the
“complexity” and the “average simulation duration” for the
two models. This table shows that for the processor used in
the experiments, less events are needed to complete the
execution of the same workload on the behavioral model
than on the structural model, indicating that the structural
model is more complex than the behavioral model.
Furthermore, the simulator can simulate the events
generated by the behavioral model faster, i.e., more
efficiently, than those generated by the structural one. This
clearly illustrates the trade-off between speed and accuracy.

The fault models used in the experiments share the
following characteristics:
• the time of injection — expressed in cycles — is

uniformly distributed in the range [0, the execution time
of the workload] and all injections are synchronized with
the raising edge ofΦ1,

• the fault values are uniformly distributed in the range of
permitted values for the target (e.g., [0,1] for targets of
typeBIT, [0,255] for targets of typeBYTE, etc.).
At the structural level, single random temporary stuck-at

faults have been injected systematically on all atomic signals
(compound signals, such as buses, were splitted into their
basic bit components), with a fault duration of oneΦ1 clock
cycle. At the behavioral level, single random bit-flips were
injected into variables.

Two fault injection campaigns with two different
workloads — a Bubblesort (22 bytes) and a Heapsort (63
bytes) sorting programs applied to a set of 16 values — were
run on each model.

5.2 Realization of the Campaign

In the following paragraphs, the implementation of the
experiments is described in terms of the two main phases
that have been identified in Section 3, i.e., setup and data
processing. The completion of the simulation phase took
about one week on two Sun IPC workstations.

5.2.1 The Setup Phase:In this case, it was not necessary to
generate new AFMs as predefined AFMs corresponding to
signal and variables manipulation techniques could be used.

The analysis of both VHDL models resulted in a set of
target signals and variables. The selection mechanism

Model
Simulated
events per

sec

Generated
events per

nsec

Average exec.
time (3600 clock

cycles)

Structural 4636 2.06 80 s

Behavioral 7927 1.07 25 s

 Figure 6: Efficiency and complexity of the models

described in Section 4.3 was used to reduce the initial set of
(signal) targets resulting from the analysis of the structural
model to a set of signals strictly internal to the processor4 . A
manual selection was used to exclude variables that were not
used during the execution of the activations from the
(variable) targets of the behavioral model. All output ports of
the DP32 processor (i.e., address bus, data bus, read, write,
fetch) were chosen as readouts for the fault injection
experiments.

5.2.2 The Data Processing Phase:The final results were
extracted from the experiment data by means of a two-step
procedure consisting of (i) the determination of the time and
location of the error manifestation on the output ports of the
processor and (ii) the classification of these observations
with respect to a set of error classes integrating information
on latency, location and instruction cycle.

Each injected fault belongs to one of the fault classes
listed in Figure 7. Each fault class corresponds to the
function of the target signal/variable.

The first step of the data processing was achieved by
comparing the readouts of each fault injection simulation
with the readouts of a reference simulation. In the second
step, error classification predicates were used to classify the
readouts of each experiment. The errors classes derive from
an a priori knowledge of the processor structure and
behavior. Figure 8 defines the predicates that characterize
the considered error classes.

4The input and output ports have been excluded from this selection.

Structural
fault class Target Behavioral

fault class Target

Buses Internal buses PC Program counter
Xfer Buffer control lines CR Control register (flags)
Latch Latch control lines IR Instruction register
Select Mux control lines AR Address register
Func ALU control lines DR Data register
Misc OTHER UR User register

 Figure 7: Fault classes

Error class Predicates
Direct Execution PDE = an error on any output port during the execution of

instruction(i)
Direct Flow PDF = an address bus error in the fetch phase of

instruction(i+1)
Indirect Flow PIF = an address bus error in the fetch phase of

instruction(≥i+2)
Indirect Data PID = an address bus error in the read or write phase of

instruction(≥i+1), or a data bus error in the write
phase of instruction(≥i+1)

Notes:
(1)“indirect” refers to the fact that the error propagated from one instruction
to the other through a storage device such as a user register or a condition
code bit, and stayed latent until the storage element was used;
(2) instruction (i) refers to the instruction executed when the fault is injected;
(3) All predicate values equal 1 when they are asserted and 0 otherwise.

 Figure 8: Error classes

5.3 Results

5.3.1 Error behavior outcome: Figure 9 shows the error
outcomes of both models for the two activations used in the
experiments. In the structural model, about 80% of all errors
manifest as direct Flow or Execution errors. Furthermore,

Class Total Buses Misc Xfer Latch Select Func

% # % # % # % # % # % # % #

Injected 100 3433 47.5 1632 41.6 1428 5.0 172 4.5 155 0.7 23 0.7 23

Effective 16.6 568 22.8 372 8.2 117 23.3 40 18.7 29 8.7 2 34.8 8

Direct
Flow

28.7 163 31.5 117 15.4 18 37.5 15 31.0 9 0 0 50.0 4

Direct
Execution

49.5 281 53.2 198 35 41 45.0 18 65.5 19 100 2 37.5 3

Indirect
Flow

9.1 52 6.2 23 21.4 25 7.5 3 3.5 1 0 0 0.0 0

Indirect
Data

12.7 72 9.1 34 28.2 33 10.0 4 0.0 0 0 0 12.5 1

a: Structural model for Heapsort

Class Total Buses Misc Xfer Latch Select Func

% # % # % # % # % # % # % #

Injected 100 3820 50.3 1920 40.8 1560 4.2 160 3.7 140 0.5 20 0.5 20

Effective 14.4 550 20.1 386 6.3 98 20.6 33 19.3 27 10.0 2 20.0 4

Direct
Flow

29.8 164 32.9 127 22.5 22 15.1 5 37.0 10 0 0 0 0

Direct
Execution

51.5 283 54.4 210 33.7 33 54.5 18 59.3 16 100 2 100 4

Indirect
Flow

8.0 44 7.5 29 12.2 12 6.1 2 3.7 1 0 0 0 0

Indirect
Data

10.7 59 5.2 20 31.6 31 24.2 8 0.0 0 0 0 0 0

b: Structural model for Bubblesort

Class Total PC CR IR AR DR UR

% # % # % # % # % # % # % #

Injected 100 3664 8.5 313 0.8 28 11.0 403 18.2 665 0.3 11 61.2 2244

Effective 21.9 803 45.7 143 3.6 1 7.2 29 2.9 19 0 0 27.2 611

Direct
Flow

11.7 94 56.6 81 100 1 24.1 7 0 0 0.8 5

Direct
Execution

18.9 152 43.4 62 0 0 51.7 15 100 19 9.2 56

Indirect
Flow

33.2 267 0.0 0 0 0 3.4 1 0 0 43.5 266

Indirect
Data

36.1 290 0.0 0 0 0 20.7 6 0 0 46.9 284

c: Behavioral model for Heapsort

Class Total PC CR IR AR DR UR

% # % # % # % # % # % # % #

Injected 100 3626 11.6 421 0.8 28 12.8 466 21.0 763 0.6 20 53.2 1928

Effective 20.6 746 47.7 201 0.0 0 5.2 24 3.9 30 10 2 25.4 489

Direct
Flow

19.2 143 65.7 132 12.5 3 0 0 0 0 1.6 8

Direct
Execution

24.3 181 34.3 69 50.0 12 100 30 0 0 14.3 70

Indirect
Flow

33.9 253 0.0 0 4.2 1 0 0 0 0 51.5 252

Indirect
Data

22.6 169 0.0 0 33.3 8 0 0 100 2 32.5 159

d: Behavioral model for Bubblesort

 Figure 9: Error outcomes for the models and workloads

the workload dependency for these errors appears to be low.
For the behavioral model, only 30-43% of all errors manifest
directly, and a workload dependency is observed for these
errors. For the indirect errors, both models exhibit a work-
load dependency. The major fault classes contributing to the
indirect errors are for the structural model, the fault classes
Buses and Misc, while the UR fault class is the major con-
tributor to indirect errors in the behavioral model.

5.3.2 Error manifestation latency: We focus our analysis
on the indirect error classes, i.e., errors which propagate
through the user register file, as the latency for direct errors
is by definition smaller than 2.Figure 10 shows the latency
due to indirect errors of both models and activations used in
the experiments. Latency is defined here as the time from the
injection of a fault to the manifestation of an error on any
output port, and is measured by the number of instructions
executed between the two events.

For the structural model, the mean latency is rather short
(approx. 3 instructions), while for the behavioral model the
latency is much longer. In the following paragraphs, we
provide an explanation for this observation.

The latency means shown inFigure 10 are estimates of the
mathematical expectation ,
where represents the probability that an error
occurs on an output port when instruction numberi is being
executed, given that a fault was injected during execution of
instructioni=0 . The differences in the values of the latency
obtained for the two models originate from differences in the
values of .

Now, let represent a register in the user register file, and
let and denote a user register used as a destination and
source register, respectively, during instructioni.
Furthermore, let denote that is erroneous. Then,

 can be characterized by:

The first term is completely determined by the workload
and characterizes the propagation of the error from a user
register to an output port. The second term combines two

Class Error Latency
[instructions]

Structural Model Behavioral Model

Heap Bubble Heap Bubble

Indirect
Flow

min 2 2 2 2
max 13 20 63 129
median 2 2 8 39
mean 3.42 2.93 10.96 41.21
std 2.79 3.37 9.58 31.26
of errors 52 42 267 253

Indirect
Data

min 1 1 1 1
max 18 5 105 6
median 3 3 5 2
mean 3.17 2.85 8.02 2.27
std 2.70 0.55 11.25 1.49
of errors 72 59 290 169

 Figure 10: Indirect errors manifestation latencies

E l[] i p e oi()()×
i∑=

p e oi()()

p e oi()()
r

r i r i

e r() r
p e oi()()

p e oi()() p e oi() e ri() p e ri()[]×= (1)

phenomena: (i) the propagation of the errors among the
registers, and (ii) the potential overwrite of errors. This term
depends on both the workload and the fault injection
method.

For the structural model we assume that the effect of the
injected fault during execution of instruction 0 is one of four
possible events. The terms represent the
probabilities of occurrence of each of these events:
• corresponds to the occurrence of an error in registers

 and due to incorrect register selection;
• corresponds to the occurrence of an error in due to

a fault on the data lines;
• corresponds to the occurrence of an error in due to a

fault on the control line (no latch);
• corresponds to the occurrence of an error in

due to a fault on the control line (unexpected latch).

As the fault can affect at most two user registers during
instruction 0, it can be easily verified that:

The three terms can be respectively developed as:
, and

.

As the fault locations are uniformly distributed among the
set of signals and since the data and register selection lines
are much more numerous than the control lines (32+24 vs.
1), it can be stated that both and are much smaller
than and . More specifically, if an error propagates
into the user register file, it is very likely that it will
propagate into the destination register of instruction 0
(i.e.,). In other words, at the end of the execution of
instruction 0:

For the behavioral model, the fault locations are also
uniformly distributed. In this case, almost all indirect errors
are caused by bit-flips injected into the user registers. For
these errors, the error occurrences are totally decoupled from
the activity of the system, i.e., there is an equal probability
to hit any of the user registers. Therefore,

Expression (2) implies that faults injected by means of
signal manipulation arelikely to affect a register () which
is, by application of the temporal locality principle [20],
likely to be used soon. Thus, the mean time until the next
access of the affected register will be short.

On the other hand, expression (3) implies that faults
injected by variable manipulation affect arbitrary user
registers, which leads to a longer access delay as temporal
locality does not shorten it.

p1…p4

p1
r0 r r0 r≠()
p2 r0

p3 r0

p4 r r r 0≠()

p e r0()[] p e r()[] p e r0() e r()∧[] 1=
r0 r≠
∑–

r0 r≠
∑+

p e r0()[] p1 p2 p3+ += p e r()[] p1 p4+=
r0 r≠
∑

p e r0() e r()∧[] p1=
r0 r≠
∑

p3 p4
p1 p2

r0

r0 r≠ , p e r0()[] >> p e r()[]∀ (2)

r0 r≠∀ p e r0()[] p e r()[]= (3)

r0

In our case, since the sorting workloads perform mainly
indexed transfers between registers and memory, there is a
high probability for the content of an erroneous register to
appear either on the data or address buses. Consequently, the
first term of expression (1) can be expected to be close to 1
and thus:

As a result, the error latency for both workloads is mainly
determined by the access delay, which has been
demonstrated to be shorter for errors caused by signal
manipulation faults than variable manipulation faults. This
explains why the error latency is much shorter for the
structural model compared to the behavioral one.

6 Summary and concluding remarks

This paper presents (i) a description of methods to inject
faults in VHDL models, (ii) an overview of a simulation-
based fault injection tool, called MEFISTO and (iii) a case
study where signal and variable-related faults are injected
into a structural and behavioral model of a 32-bit processor,
respectively.

The case study has proven the capability of both the signal
and variable manipulation methods to inject faults in VHDL
models. Signal manipulation can be used on a VHDL model,
in a similar way as pin-level fault injection is used on
physical systems. Using the former technique, it is possible
to inject a fault on any signal, not just on the IC pins. The
variable manipulation technique also makes it possible to
inject faults that are injectable on physical systems; it can be
used to simulate the effect of bit-flips in registers, as caused
by heavy-ion fault injection. Simulation-based fault
injection provides perfect controllability over where and
when a fault is injected, in contrast to the heavy-ion
technique.

In the case study, the fault effects are classified into two
error classes: direct errors, which manifest directly on the
output ports, and indirect errors which stay dormant for
some time in the user registers before manifesting. The
signal-related faults injected into the structural model are
shown to result in direct errors in 80% of the cases, while the
variable-related faults injected into the behavioral model
only result in direct errors in less than 45% of the cases.
Furthermore, the error manifestation latency for indirect
errors is much shorter for faults related to signals than
variables.

The variation in error latency with respect to the fault type
is analyzed in detail. It is argued that the faults related to
signals will spread inside the processor, as well as to its
output ports, more rapidly than those related to variables. It
is interesting to note that this line of reasoning most likely
can be extended to include a comparison between pin-level
(signal) and heavy-ion (variable) induced errors.

p e oi()() p e ri()[]≈ (4)

Simulation speed and accuracy are important factors to
account for when considering fault injection for error
propagation studies. The execution times of the sorting
programs are much smaller using an instruction-level
simulator, as in the experiments (cf.Figure 6), than using a
more accurate gate-level simulator, thus making it possible
to simulate much longer instruction sequences. Furthermore,
it can be noted that the behavioral model is more efficient
(faster) than the structural one.

Both the structural and behavioral models are abstractions
of the same processor at an abstraction level significantly
above the gate and circuit level. It is possible to inject only a
subset of all possible bit-flip faults using the behavioral
model, as it only includes a subset of all “real” registers
(variables) that would be present in a physical
implementation of the DP32. Likewise, it is possible to
inject temporary stuck-at faults on only a subset of all “real”
signals using the structural model. This limits the use of
simulation models on these abstraction levels for validation
of fault tolerance mechanisms.

It should be noted that all faults which are injectable using
SWIFI on a physical system, also are injectable using
instruction-level simulation models, such as the structural
and behavioral models used here. Clearly, more research is
needed to investigate the accuracy of fault injection
experiments at these levels (and using SWIFI), with respect
to more detailed ones. Such an investigation could possibly
identify classes of faults that can be injected at these higher
levels without loss of accuracy; MEFISTO is well suited for
this type of experiments.

An important point demonstrated by this study is the
relative ease in performing fault injection campaigns using
VHDL models. This is due to the ability of the used fault
injection techniques to take advantage of available VHDL
models, without requiring any model modifications.

Further work with MEFISTO will address the early test of
fault tolerance mechanisms imbedded in fault tolerant
systems. In particular, the favorable error tracing capabilities
depicted in this paper will be used to monitor the fault
activation/error propagation processes in order to:
• monitor the sensitization of the fault tolerance

mechanisms, when the fault injection experiments are
aimed atremoving potential fault tolerance deficiency
faults,

• study the mapping between the set of faults in the fault
tolerant system and the error models used to test the fault
tolerance mechanisms, in orderto evaluate their
coverage.

References
[1] J. Arlat, “Fault Injection for the Experimental Validation of

Fault-Tolerant Systems,” inProc. Workshop Fault-Tolerant
Systems,IEICE, Kyoto, Japan, June 1992, pp.33-40.

[2] R. K. Iyer and D. Tang,Experimental Analysis of Computer
System Dependability, Univ. of Illinois at Urbana-Champaign,
Tech. Report CRHC-93-15, September 1993.

[3] C. R. Yount,The Automatic Generation of Instruction-Level
Error Manifestation of Hardware Faults: A New Fault
Injection Model, Ph.D. Dissertation Thesis, Carnegie-Mellon
University, Pittsburgh, PA, May 1993.

[4] K. K. Goswami and R. K. Iyer,DEPEND: A Simulation-Based
Environment for System Level Dependability Analysis, Univ.
of Illinois at Urbana-Champaign, Tech. Report CHRC-92-11,
June 1992.

[5] J. A. Clark and D. K. Pradhan, “Reliability Analysis of
Unidirectional Voting TMR Systems Through Simulated
Fault-Injection,” inProc. Workshop on Fault Tolerant Parallel
and Distributed Systems, Amherst, MA, July 1992, pp.72-81.

[6] J. Ohlsson, M. Rimén and U. Gunneflo, “A Study of the
Effects of Transient Fault Injection into a 32-bit RISC with
Built-in Watchdog,” in Proc. FTCS-22, Boston, MA,
July 1992, pp.316-325.

[7] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki,
J. Barton, D. Rancey, A. Robinson and T. Lin, “FIAT — Fault
Injection based Automated Testing Environment,” inProc.
FTCS-18, Tokyo, Japan, June 1988, pp.102-107.

[8] R. Chillarege and N. S. Bowen, “Understanding Large System
Failures — A Fault Injection Experiment,” inProc. FTCS-19,
Chicago, MI, June 1989, pp.356-363.

[9] G. A. Kanawati, N. A. Kanawati and J. A. Abraham,
“FERRARI: A Tool for the Validation of System
Dependability Properties,” inProc. FTCS-22, Boston, MA,
July 1992, pp.336-344.

[10] J. M. Voas, “PIE: A Dynamic Failure-Based Technique”,IEEE
Trans. on Software Eng., 18 (8), August 1992, pp.717-727.

[11] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.C. Fabre,
J.C. Laprie, E. Martins and D. Powell, “Fault Injection for
Dependability Validation — A Methodology and Some
Applications,” IEEE Trans. on Software Eng., 16 (2),
February 1990, pp.166-182.

[12] J. Karlsson, P. Lidén, P. Dahlgren, R. Johansson and
U. Gunneflo, “Using Heavy-Ion Radiation to Validate Fault-
Handling Mechanisms,”IEEE Micro, 14 (1), February 1994,
pp.8-23.

[13] H.-P. Juan, N. D. Holmes, S. Bakshi and D. P. Gajski, “Top-
Down Modeling of RISC Processors in VHDL,” inProc.
EURO-VHDL'93, Paris, France, September 1993, pp.454-459.

[14] J. H. Aylor, R. Waxman, B. W. Johnson and R. D. Williams,
“The Integration of Performance and Functional Modeling in
VHDL,” in Performance and Fault Modelling with VHDL,
(J. M. Schoen, Ed.), Prentice-Hall, 1992, pp.22-145.

[15] A. Miczo, “VHDL as a Modeling-for-Testability Tool,” in
Proc. COMPCON'90, IEEE, February 1990, pp.403-409.

[16] IEEE Standard VHDL Language Reference Manual,1988.
[17] M. Rimén, J. Ohlsson, J. Karlsson, E. Jenn and J. Arlat,

“Design Guidelines of a VHDL-based Simulation Tool for the
Validation of Fault Tolerance,” inProc. 1st ESPRIT Basic
Research Project PDCS-2 Open Workshop, LAAS-CNRS,
Toulouse, France, September 1993, pp.461-483.

[18] J. R. Armstrong, F.-S. Lam and P. C. Ward, “Test Generation
and Fault Simulation for Behavioral Models,” inPerformance
and Fault Modelling with VHDL,(J. M. Schoen, Ed.),
Prentice-Hall, Englewood Cliffs, 1992, pp.240-303.

[19] P. J. Ashenden,The VHDL Cookbook, University of Adelaide,
South Australia, Tech. Report, 1990.

[20] J. L. Hennessy, D. A. Patterson,Computer Architecture A
Quantitative Approach, Morgan Kaufmann Publishers, 1990.

