Fault Injection into VHDL Models: The MEFISTO Tool *

Eric Jenn*, Jean Arlat*, Marcus Rimén**, Joakim Ohlsson** and Johan Karlsson**

* LAAS-CNRS, 7, Avenue du Colonel Roche, 31400 Toulouse, France
** | aboratory for Dependable Computing, Chalmers University of Technology, S-412 96 Gothenburg, Sweden

Abstract further work is needed to validate such abstract error models
This paper focuses on the integration of the fault injectionbefore it can be confidently considered that SWIFI alone can
methodology within the design process of fault-tolerantddequately embrace the consequences o.f ha}rdware faults.
systems. Due to its wide spectrum of application anc The paper presents the main objectives and the
hierarchical features, VHDL has been selected as thePreliminary results of a research aimed at (i) providing an
simulation language to support such an integration. Suitableintégrated environment —called MEFISTO (Multi-level
techniques for injecting faults into VHDL models are Efror/Fault Injection Simulation TOol) — for applying fault
identified and depicted. Then, the main features of thdniection into simulation models encompassing various
MEFISTO environment aimed at supporting these'eV?|S of abstractlon ant_j thus (ii) helping to identify and
technigues are described. Finally, some preliminary resultsvalidate an abstraction hierarchy of fault/error models.

obtained with MEFISTO are presented and analyzed. The development of an integrated and coherent design
Index Terms. Experimental Validation, Fault Injection, €nvironment for fault-tolerant systems based on a single
Simulation, VHDL, Fault/Error Models. language seems to be achievable when considering the

emergence of hardware description languages. With this
1 Introduction respect, VHDL has been recognized as a suitable language

L as it presents many useful features:
In the last decade, fault injection has emerged as a. apility to describe both the structure and behavior of a
invaluable means to support the dependability validation 0 system in a unique syntactical framework,

fault-tolerant systems (e.g., see [1-3]). « widespread use in digital design and inherent hierarchical
Two main trends characterize recent work on fault apstraction description capabilities [13],

injection: (i) apply fault injection as early as possible in the. recognition as a viable framework (i) for developing high-
design process of fault-tolerant systems, i.e., into simulatiol |eye| models of digital systems (block diagrams, Petri
models of the target system [3-6] and (ii) when dealing with nets), even before the decision between hardware or
the implementation of the target system, fagoftware- software decomposition of the functions takes place, and

implemented fault |n]ect|0[(SW|F|), i.e., based on the (“) for Supporting hyb”d (i_e.’ mixed abstraction
mutation of the executing software or of the data [7-10]. levels) simulation models [14],

Classically, simulation-based fault injection approaches, capability to support test activities [15].
address different abstraction levels by using distinct \EFISTO can be used: (i) to estimate the coverage of
description languages. Clearly, a coherent environmengayit tolerance mechanisms, (ii) to investigate different
successive abstraction levels and (i) to integrate theapsiraction to another and (jii) to validate fault and error

validation in the design process. SWIFI is primarily models applied during fault injection experiments carried
motivated to avoid the difficulties and cost inherent to thegyt on the implementation of a fault-tolerant system (e.g.,

implementation of physical fault injection approaches (e.g. s\wiF| or pin-level fault injection).

errors that can be generated by both software and hardwagection 2 presents a critical analysis of four techniques for
faults. However, this is only achieved to some extent. St'”ainjecting faults into VHDL models. Section 3 describes the
architecture and the main features of the MEFISTO system
1 This work was supported in part by the CEC ESPRIT Basic Researclt[hat SUPports these techniques. SeCt'Or_] 4 d.eta'ls the yser
Project n°6362 PDCS2 (Predictably Dependable Computing Systems) arinteractions necessary to set up a fault injection campaign.
by theMidi-PyrénéesRegional Authority under contract RECH/90078306. Section 5 presents a case study where MEFISTO is used to

inject faults in two VHDL models (structural and

behavioral) of a simplified 32-bit processor. Abstract error
models are extracted from the resulting data and compare
Section 6 concludes the study with a summary and som

o
[

i
n il |
) !

remarks.
Control Control
2 Fault injection into VHDL models
) 1] @J}m Control [O{f n [41]
Two categories of fault injection techniques are identified: 0] Lm

the first one covers two technigues that reguioglification

of the VHDL modelnd the second one covers two other
techniques that instead use theilt-in commandsof the
simulator. Before describing these two categories, we
provide a summary of the characteristics of the VHDL
language used in the subsequent sections [16].

a: Simple serial b: Complex serial c: Parallel

(original structures at the top modified at the bottom)

Figure 1: Insertion of saboteurs
regarded as a mutation.
A saboteuris a VHDL component that alters the value or
timing characteristics of one or several signals when
activated. It is usually inactive during normal system

2.1 Characteristics of the VHDL language

A system modeled in VHDL is made up obmponents
linked by signals VHDL allows a signal to have many operation and activated only to inject a fault.séxial
drivers (signal sources), provided thatesolution function saboteutbreaks up the signal path between a driver (output)
is supplied to resolve the values generated by the multipland its corresponding receiver (inpujglre 1-a) or a set of
sources into a single value for the signal. Such a signal idrivers and its corresponding set of receiveigufe 1-b). A
called aresolved signalit can be used to model buses and parallel saboteur is simply added as an additional driver for
wired-and logic. a resolved signal, as shown Bigure 1-c. Another way to

A component can have many implementations. In VHDL,achieve the same effect is to assign a modified resolution
each implementation is expressed by a separate componefunction to signals that are potential fault targets.
description. To allow simulation of the system, a A mutantis a component description that replaces another
configuration mechanism assigns a single componentcomponent description. When inactive, it behaves as the
description to each component. A component description icomponent description it replaces and, when activated, it
represented by both an entity declaration and an architecturimitates the component’s behavior in presence of faults. It is
The entity declaration specifies the interface, i.e., the set ceasy to implement this replacement technique in VHDL
inputs and outputs, while the architecture describes thusing the configuration mechanism.
internal organization of the component. A component Mutation may be accomplished in several ways by:
description can bstructural or behavioral(or a mixture of * adding saboteur(s) to structural or behavioral component

both). A structural description is a composition hierarchy
consisting of subcomponents and signals, while a behavior:
description is an algorithmic model of the component’s
function expressed by meangobcessesA VHDL process

is a set of sequential statements. The process ce*
communicate with other processes by reading and assignir
values tasignals Variablesare used inside processes and are
not accessible from the outside. Processes are execut
repeatedly in a loop fashion, and stopped only ai
synchronization statements, calledit statements .

2.2 Modification of the VHDL model

In this category, two techniques can be distinguished. Th
first one is based on the addition of dedicated fault injectior
components, called saboteurs, to the VHDL model. The
second one is based on the mutation of existing compone!
descriptions in the VHDL model, which generates modified
component descriptions called mutants. In this paper, an
change made to an existing component description i

descriptions,

mutating structural component descriptions by replacing
subcomponents (e.g., a NAND-gate replaced by a NOR-
gate),

automatically mutating statements in behavioral

component descriptions, e.g., by generating wrong
operators or exchanging variable identifiers; this is similar
to the mutation techniques used by the software testing
community,

manually mutating behavioral component descriptions to
achieve complex and detailed fault models.

Both signal and variable manipulations can be used for

controlling, i.e., activating and deactivating, saboteurs and
m
by the built-in commands of the simulator also when
mutants and saboteurs are used. This can be achieved by
means of global signals or shared global variables. The latter
is a new capability introduced in the latest version of VHDL,
_called VHDL'93 (IEEE Std. 1076-1993).

utants. In this way, the injection of faults can be controlled

2.3 Use of built-in commands of the simulator same means as signals, i.e., when all processes are stopped
on aWAI T statement (sefigure 2.b). By definition, this

The main reason for using the built-in commands of théiechnique cannot be used for atemporal variables since they

simulator for fault injection is that this does not require thege only used between tWa\l T statements, therefore some

modification of the VHDL code; however, the applicability ayirg fine-grained synchronization is requirgdgure 3

of these techniques depends strongly on the functionnalitieshows the simulator controls required to manipulate an

offered by the command languages of the simulators. atemporal variable. The main idea is to (i) simulate the
Two techniques based on the use of simulator commancsystem until one of the statements where the target variable

can be identifiedsigna!andval’iablemanipula}tion. For each is assigned a value is reached (Steps 1_3) and (") then assign
technique, the required sequence of simulator pseudcy faulty value to it (steps 4-7).

commands is described fiigure 2 and is explained below.
[1] SimulateUntil <fault injection time>

[1] SimulateUntil <fault injection time> [1] SimulateUntil <fault injection time> [2] SetSrcBreakOnLine <LineNo> <Library> <Entity> <Architecture>
[2] FreezeSignal <signal name> [2] AssignVariable <variable name> ol

<signal value> <variable value> [2] SetSrcBreakOnLine <LineNo> <Library> <Entity> <Architecture>
[3] SimulateFor <fault duration> [3] SimulateFor <observation time> [3] SimulateFor <time window>
[4] UnFreezeSignal <signal name> [4] If (AtSrcBreak) {
[5] SimulateFor <observation time> [5] AssignVariable <variable name> <variable value>

. [6] DeleteAllSrcBreaks

a: Signal manipulation for b: Variable manlpu_latlon for [7] SimulateUntil <fault injection time+observation time> }
a temporary stuck at fault a temporal variable

Figure 2: Fault injection using simulator commands Figure 3: Variable manipulation of atemporal variables

2.3.1 Signal manipulation: In this technique, faults are _ St€P 1 irFigure 3 is the same as step 1Hiigure 2. In step

injected by altering the value of signals in the VHDL model.2» bréakpoints are set on all VHDL source code lines that
This is done by simulating the system until the time offollow an assignment to the target variable. Then the

injection is reached and all processes have stopped onSimulation is started in step 3 and continues until a
WAl T statement Rigure 2-a, step 1), then the signal is breakpoint is reached. However, as the execution can follow

disconnected from its driver(s) and forced to a new valud®@ths in the VHDL code where no assignments are made to
(step 2); the system is simulated for the duration of the faulthe target variable from oAl T statement to the next one,

(step 3); finally, the signal’s driver(s) is (are) reconnecteclt cannot be ensureq t_hat a source line bre.akpoint vvjll be
when the fault injection is completed (step 4) and thereached. Therefore it is necessary to specify a maximum

simulation is continued until the end of the observation timelime for the simulation, which is defined by thiee window>
(step 5). For a permanent fault, steps 3 and 4 are Skippe.parameter in step 3. If a breakpoint is reached (step 4), a fault

Intermittent faults can be injected using a more complexS injected (step 5), then all source line breakpoints are
command sequence. removel (step 6) and the simulation is continued until the

end of the observation time (step 7). If a breakpoint is not

2.3.2 Variable manipulation: - This technique allows reached within the time window (step 4) then steps 5-7 are
injection of faults into behavioral models by altering valuesgkinped, i.e., no fault is injected.

of variables defined in VHDL processes. In the simulation Tpe injection of faults into mixed-mode variables is
phase, the execution of the sequential code in a process takychieved by a combination of the above methods; the
no time as viewed by the simulator since time is incrementewS(:)quenCe is the same as the one givefigire 3, with an
only when a process stops atal T statement. “ AssignVariable <variable name> <variable value>" step inserted
A variable is termedatemporal when it holds valid petween the first and the second steps.
information over a number of sequential statements in thi
process, but never over aMAl T statements. Thus, the 2 4 Comparison of the fault injection techniques
variable will not be susceptible to changes made to it
contents when the process has stopped. A variable is termThe fault injection techniques considered are compared in
temporal if it always holds valid information ovanAl T terms offault modeling capacity, effort required for setting
statements. As a result, the variable will be susceptible tup an experimerandsimulation time overhead
changes made to its contents when the process has stopp Considering théault modeling capacitymutants can be
In other words, a variable is temporal or atemporaldesigned using the full strength of the VHDL language, and
depending whether it is used to transfer information througtare thus well suited for implementing any behavioral and
simulation time space or code space, respectivelystructural fault models provided they can be expressed
Furthermore, a variable is termedixed-modeif it is within the VHDL semantics. This is also the case for the
sometimes temporal and sometimes atemporal. saboteurs, although they have a very restricted view of the
In the case of temporal variables, faults are injected by thsystem due to their limited number of input and output ports.

Signal manipulation is suited for implementing simple fault experiment, (iv) when to inject the selected fault(s), and
models (e.g., permanent or temporary stuck-at faults)(v) when to terminate each experiment.
Variable manipulation offers a simple way for injecting In the first part of the Setup Phase, the tool analyzes the
behavioral faults. VHDL target model and provides a list of fault targets to the
Considering theeffort for setting up an experimenhe user. The user specifies the fault set to be used in the
signal and variable manipulations do not require anycampaign by selecting targets from the list. Each target
modification of the VHDL code, whereas much effort is belongs to a target group which corresponds to a certain
needed for mutants and saboteurs, as they requirclass of VHDL objects, e.g., signal, variable or component.
(i) creation/generation of saboteurs/mutants, (ii) inclusionEach target group has at least one attribute such as a type
of saboteurs/mutants in the model and (iii) recompilation of(BOOLEAN, | NTEGER, etc.) for a signal or an
the VHDL model. The creation of saboteurs and theimplementation (VHDL entity declarations and
automatic generation of mutants are relatively easy tasksarchitectures) for a component. For each fault target, a user-
provided that simple fault models are considered. It is alsdefinable fault type can be selected. This fault type is called
worth noting that a saboteur is a reusable component, whilanAbstract Fault Modelor AFM. The act of selecting a fault
a mutant has to be specifically generated for each targdarget and a fault type (AFM) specifies a fault.
component; on the other hand, the inclusion of saboteur AFMs can be applied to any of the target groups described
requires the modification of the component descriptionabove. It is also possible to restrict the application of an
while mutants are easily included in the model by means cAFM to targets with a specific attribute, e.g., signal of type
the VHDL configuration mechanism. Bl T. Thus, for each target there exists a set of selectable
Considering thsimulation time overheaishiduced by the AFMs from which the user can chose.
injection mechanisms, signal and variable manipulations

impose a model-independent overhead due to the fact th System gﬁ;“s%
the simulation has to be stopped and started again for ea Description
fault injected. The simulation time overhead imposed by (VHDL)

Abstract Fault
Model Library

saboteurs and mutants depends on several factors such
(i) the amount of additional generated events (signa| Component
changes), (ii) the amount of code to execute per event (e.¢| Library (VHDL)

Setup of
Campaign

a complex behavioral mutant may require many statement Mutant Library
to be executed per event), and (iii) the complexity of the (VHDL)
injection control. + Y
Executable Experiment
3 Overview of MEFISTO pose S, Simulation
Figure 4 gives an overview of MEFISTO and of the main (mtxpew@; Phase
user interactions for defining and executirfguat injection
campaign(i.e., a series dault injection experiments)he ‘
fault injection campaign consists of three phaseSetp ‘ ¥ X
Phase aSimulation Phaseand aData Processing Phase \ SC File \ \Start State FiIe(#)
3.1 The Setup Phase »(Run Experi‘,@
The two main objectives of the setup phase are to generatt / \
« an Executable Modedf the system including mutants, if “ Signal Trace FiIeHEnd State File(sl)---
any’; Data
« an Experiment Control Listtontaining the commands Processing
necessary to control the simulator for each experiment it gxiraction Rules_ . (Extract Exp. Dat) Phase
the campaign.
For a given VHDL description of the target system, the T ¢ Legend
g p get sy ; .
user specifies during the Setup Phase (i) the fault set to t [] main input/output

[] other input/output

b automatic step

() step with user
interaction

used, (ii) the readouts to be saved (e.g., signal traces) in tt
Extr. Rules

campaign, (iii) how to select faults from the fault set for eact

Experiment Resul

2 Saboteurs are not directly supported by the system, but can easily b
handled. The use of a saboteur is regarded as the generation of a mutal
Thus, saboteurs can be handled the same way as mutants. Figure 4: Overview of the fault injection tool

When mutants are used, after the fault set is specified k4 Main user interactions in the Setup Phase

the user, a final VHDL configuration for the target system is .] . .

Once the final configuration is decided, all signals, variable@nd mutants, respectively. Then, Section 4.3 describes the

etc., are identified and presented to the user. From this list trSelection of the fault set. Finally, Section 4.4 presents the

user selects the readouts to be saved for each experiment.Selection of experiment parameters.

Finally, the user must specify for each experiment how tc .

select faults from the fault set, when to inject them and whe|4'1 Generation of AFMs

to terminate the experiment. This information is needed b\MEFISTO includes an AFM database containing predefined

the tool to generate the Experiment Control List. AFMs. The user can expand the database by generating and
The main user interactions in the Setup Phase are furth(adding new AFMs to it. By default, certain target groups and

described in Section 4. A more comprehensive descriptioiattributes are recognized by the tool (such as signals of the

can be found in [17]. typeBI T), and associated simple AFMs (e.g., stuck signal of
_ _ typeBI T to 0) for injecting faults are stored in the database.
3.2 The Simulation Phase In addition to the predefined AFMs, the user can add both

simple and complex AFMSs, such as those supporting the
saboteur and mutant-based techniques, to the database.
Those techniques require the generation of a mutant. The
mutant is stored in a database (the mutant library) and a
complex AFM is associated with the mutant, containing a
reference to the mutant and also a “description” of how to
activate it.

In the Simulation Phase, the simulation model created in th
Setup Phase together with the Experiment Control List ar
used to schedule the execution of the injection experiments

The simulations are executed on a set of simulators rur
ning on a network of computers. An experiment schedule
reads the Experiment Control List and schedules simulation
on the available simulators. For each simulation, the schec
uler reads an entry with simulation control commands from
the Experiment Control List and creates a simulation contro

file (SC Filg for controlling the simulator, and a start state A mutationof a component description can be carried out in
file. The Start State Filespecifies from which simulation several ways by (i) manually mutating it, (i) inserting

state a simulation should start. The final simulation statésaboteurs into it and (|||) manua”y Se|ecting mutation rules
(End State Filpof each simulation can be saved; this makesfor the automatic mutation. A mutation rule states where the
it possible to use the final simulation state of a previous simmutation must occur, and what modification to make. The
ulation as a start state for a new simulation. Moreover, th(omy rules available in MEFISTO are those that map one
readouts §ignal Trace Filgfrom each simulation are saved VHDL grammar rule to another one. A mutation rule can

4.2 Generation of mutants

for further processing in the Data Processing Phase. make calls to other mutation rules, in a recursive manner.
_ Indeed, the mutation of an entity containing instances (i.e.,
3.3 The Data Processing Phase components) of other entities may be obtained by the

mutation of any of these components.

Examples of fault models possible to describe as mutation
rules are found in[18] that divides behavioral-level fault
models into eight fault classes: Stuck-Then, Stuck-Else,

Ex%?rlment Resufl.ttf] tracti hich i quided vassignment Control, Dead Process, Dead Clause, Micro-
€ purpose ot the extraction process, which is guide operation, Local Stuck-data and Global Stuck-data.

Extraction Rules generated by the user, is to extract an
convert to a convenient format the data needed to genera
the experimental results (e.g., error detection coverage ar
latency measures). The first step in the process of selecting a fault set consists in
The actual processing of the Experiment Data intothe analysis of the VHDL description to get information on
Experiment Results is application-dependent and must bpotential targets for fault injectiorarget group(e.g., signal,
tailored for each fault injection campaign. For instance, inyariable, component etcaftribute (e.g., boolean, integer,
one campaign the user may want to compute coveragetc.), etc. As mentioned earlier, because of its group
figures for a fault tolerance mechanism, while in anothelpelonging and attribute, each target implicitly defines one or
campaign he may want to obtain enough data to study thmore selectable AFMs.
error propagation in the system. After analyzing the VHDL description, the faults to be
injected are determined interactively and added to a fault set.
This is done by selecting targets and AFMs.

The Data Processing Phase involves two steps: (i) extractic
of Experiment Datafrom the raw data produced by the
simulations, and (ii) processing of the Experiment Data intc

4.3 Selection of the fault set

The fault injection tool provides three main categories o a b C
i i : ®
target _s_electlon mechz_anlsms. — [CC comp cc o
« explicit target selection, e 1@ ®
PC

* selection of targets that satisfy a given property, ©2 [ALU Register File
« random target selection. (3x32) (2x32) (256x32)
. . . 32 32
The properties for the second category concern (i) the entity L 2 2 Resﬁz)
instances relationship in the model (e.g., select mutate|| op2 pus OP1_bus
architectures for components that are instances of a specil R_bus
entity), (ii) the composition structure of the model (e.g., all ¥ 32) @32)
signals in a specific architecture, or all variables in a specifi(| ©P[R3 [R1[R2] [Buf. Ext | [Address | [DISP | [Buffer][Buffer |
, . Gl @] ®©l @ =
process), (iii) the VHDL semantics (e.g., all variables, all ® Data b
. B : ata_bus
signals, all processes, all variables or all signals that carr c la b Address bus
. . . K —> Control —
values of a specific type) and (iv) a given topological| ®1—»

—> FSM Bus t:orgmandI
property (e.g., all signals connected to a given component) (?2 : us ey
The selection criteria may be composed; for instance, it i Figure 5: Structural architecture of the DP32 processor

possible to select “all signals that are of a given type and atgnvironment to stop the simulation. When computed off-

A

connected to a given component”. line, the same means as those cited above are used to assess
)) a first predicat®1. However, onc®1has been satisfied, the
4.4 Selection of experiment parameters current simulation state is saved, the simulation is stopped

and a second, more thorough, analysis is performed to test a
second predicat®2. If P2 is not satisfied, the simulation
continues from the saved state.

The experiment parameters include preconditions, faul
activation conditions and termination conditions.

The preconditions specify the starting state of each
experiment. It can be (i) the zero state, i.e., the stat
corresponding to a reset of the target system, or (ii) the fineg5 A case study: the DP32 processor
state of a previous experiment. The preconditions also defin

the functional activation of the simulation model for each ThiS Section presents some preliminary results of fault
experiment. In particular, the functional activation of a Ni€ction experiments carried out with MEFISTO on two
microprocessor is also called the workload. models of a simple 32-bit processor. The main goals of the

Theactivationof the injected faults (i.e., AFMs associated €XPeriment consist in the analysis of the impact of the choice

with targets) can be triggered according to any mix of theOf the injection method and the m_o_del descriptio_n level on
following conditions provided by the simulation the error outcome. More specifically, the differences
environment: observed when using (i) signal or variable manipulation

« a given period of simulation time has elapsed methods, and (i) a structural model or a behavioral model
« a signal has changed (to a given value) ’ of the target system are studied. The next paragraphs present
« a given line of code has been executed’ or the design and the realization of the campaign. Finally, the

« one of the above conditions has occurred fonth¢ime. experimental results are given and analyzed.

All values in these definitions may be chosen at random.
The termination conditionsstate when an individual

experiment should complete. The completion of theqy, target system is a model of a very simple 32 bits
experiment is characterized by a predidamn the system’s processor, the DP32 described in [19], for which two
state. Depending on its complexity, the assessment & the 5 cpitectures, one behavioral and one structural, are
predicate can be performed on-line or off-line with respect i, 5ijaple. The structural model, on the register-transfer
a running simulation within an experiment. level, is depicted irFigure 5; it is mainly composed of a
When computed on-line, the predicate is expressed by finite state control machine (Control FSM), an ALU, a
means of simulation tool expressions or VHDL code. The, o am counter (PC), a register file and several buffers and
simulation environment provides the same means {\qiches. The behavioral model, on the procedural description
terminate a S|mulgt|on as for detecting the time for act.lvatlngjeveL mainly consists of a VHDL process containing a large
a fault as described above. Expressing the predicate ikcager statement that initiates the appropriate bus cycles

VHDL is a matter of embedding specific expressions, s respect to the operation code of the fetched instruction.
processes or even components in the original model. The 5| external operations are synchronized on two non-
activation may create events that satisfy one of the

conditions that can be monitored by the simulation

5.1 Design of the campaign

3saboteurs and mutants are not used in the study.

overlapping clocksb; and®, (a cycle is 4hg); @, is the described in Section 4.3 was used to reduce the initial set of

main clock which synchronize all bus accesses. (signal) targets resulting from the analysis of the structural
Figure 6 rates the “simulation efficiency”, the modelto a set of signals strictly internal to the procéssmr

“complexity” and the “average simulation duration” for the manual selection was used to exclude variables that were not

two models. This table shows that for the processor used iused during the execution of the activations from the

the experiments, less events are needed to complete t(variable) targets of the behavioral model. All output ports of

execution of the same workload on the behavioral modethe DP32 processor€., address byslata busread write,

than on the structural model, indicating that the structurafetcj were chosen as readouts for the fault injection

model is more complex than the behavioral model.experiments.

Furthermore, the simulator can simulate the events

generated by the behavioral model faster, i.e., mOrt,0teq from the experiment data by means of a two-step
efficiently, than those generated by the structural one. Thi

learlv illustrates the trade-off bet d and ‘procedure consisting of (i) the determination of the time and
clearly fllustrates the trade-off between speed and accuracy, iinn of the error manifestation on the output ports of the

processor and (ii) the classification of these observations

5.2.2 The Data Processing Phasethe final results were

#Simulated | # Generated | Average exec. with respect to a set of error classes integrating information
Model events per events per time (3600 clock . . .
sec nsec cycles) on latency, location and instruction cycle.
p—— 2636 06 P, _ Each |n].ected fault belongs to one of the fault classes
: listed in Figure 7. Each fault class corresponds to the
Behavioral 927 Lo s function of the target signal/variable.

Figure 6: Efficiency and complexity of the models

Structural Behavioral

The fault models used in the experiments share thj fultclass Target fault class Target

following characteristics: Buses Internal buses. PC Program cgunter
i Xfer Buffer control lines CR Control register (flags)

* the time of Injection — eXpressed n CyCIeS — IS awen Latch control lines IR Instruction register

uniformly distributed in the range [0, the execution time| select Mux control lines AR Address register

of the workload] and all injections are synchronized with| Func ALU control lines DR Data register

the raISIng edge Gbl, Misc OTHER UR User register
* the fault values are uniformly distributed in the range of Figure 7: Fault classes

permitted values for the target (e.g., [0,1] for targets of

typeBI T, [0,255] for targets of typBYTE, etc.). The first step of the data processing was achieved by

At the structural level, single random temporary stuck-aicomparing the readouts of each fault injection simulation
faults have been injected systematically on all atomic signalwith the readouts of a reference simulation. In the second
(compound signals, such as buses, were splitted into thestep, error classification predicates were used to classify the
basic bit components), with a fault duration of @neclock readouts of each experiment. The errors classes derive from
cycle. At the behavioral level, single random bit-flips werean a priori knowledge of the processor structure and
injected into variables. behavior. Figure 8 defines the predicates that characterize

Two fault injection campaigns with two different the considered error classes.
workloads — a Bubblesort (22 bytes) and a Heapsort (6.

bytes) sorting programs applied to a set of 16 values — wel Error class Predicates
run on each model. Direct Execution | PDE = an error on any output port during the execution of
instruction(i)

i i i Direct Flow PDF = an address bus error in the fetch phase of

5.2 Realization of the Campaign instruction(i+1)
. . . Indirect Flow PIF = an address bus error in the fetch phase of
In the following paragraphs, the implementation of the instruction(zi+2)
experlments |S descrlbed |n terms of the two ma|n phase Indirect Data PID = an add(ess l?US error in the read or Wfite phase of
A . A A A instruction(2i+1), or a data bus error in the write

that have been identified in Section 3, i.e., setup and dal phase of instruction(i+1)

i i i i Notes:
processing. The complet|on of the simulation phase tool (1)“indirect” refers to the fact that the error propagated from one instruction

about one week on two Sun IPC workstations. to the other through a storage device such as a user register or a condition
code bit, and stayed latent until the storage element was used;

P ; (2) instruction (i) refers to the instruction executed when the fault is injected,;
5.2.1The Se'[up Phasetn this C"flse' Itwas not necessary to (3) All predicate values equal 1 when they are asserted and 0 otherwise.
generate new AFMs as predefined AFMs corresponding t
signal and variables manipulation techniques could be use!

The analysis of both VHDL models resulted in a set of

target Slgnals and variables. The selection mechamsr“The input and output ports have been excluded from this selection.

Figure 8: Error classes

Error Latency Structural Model Behavioral Model
Class [instructions]
Heap Bubble Heap Bubble
min 2 2 2 2
Indirect max 13 20 63 129
Flow median 2 2 8 39
mean 3.42 2.93 10.96 41.21
std 2.79 3.37 9.58 31.26
of errors 52 42 267 253
min 1 1 1 1
Indirect max 18 5 105 6
Data median 3 3 5 2
mean 3.17 2.85 8.02 2.27
std 2.70 0.55 11.25 1.49
of errors 72 59 290 169

Class Total Buses Misc Xfer Latch Select Func
% # % # % # % % # | % |#| % |#
Injected| 100| 3433| 47.5|1632| 41.6/1428| 5.0|172| 4.5|155| 0.7|23| 0.7|23
Effective| 16.6| 568| 22.8| 372| 8.2| 117|23.3| 40| 18.7| 29|8.7| 2| 348| 8
Direct| 28.7| 163| 31.5| 117|15.4| 18|37.5| 15| 31.0 9| 0| 0|50.0f 4
Flow
Direct| 49.5| 281| 53.2| 198| 35| 41|45.0| 18| 65.5| 19(100| 2|37.5| 3
Execution
Indirect 91| 52| 62| 23|21.4] 25| 75| 3| 35 1| 05 0 0.0] O
Flow
Indirect| 12.7| 72| 9.1| 34|28.2| 33|10.0f 4| 0.0 0| 0| 0|125| 1
Data
a: Structural model for Heapsort
Class Total Buses Misc Xfer Latch Select Func
% # % # % # % | # % # % |#| % | #
Injected| 100| 3820|50.3| 1920|40.8|1560| 4.2|160| 3.7|/140| 0.5|/20| 0.5|20
Effective| 14.4| 550(20.1| 386| 6.3| 98(20.6| 33| 19.3| 27| 10.0| 2(20.0| 4
Direct| 29.8| 164|32.9| 127|225/ 22|15.1| 5|37.0| 10 0| 0 0| 0
Flow
Direct| 51.5| 283|54.4| 210(33.7| 33|54.5| 18|59.3| 16| 100| 2| 100, 4
Execution
Indirect| 8.0| 44| 754 29|122| 12| 61| 2| 3.7 1 0| 0 0| 0
Flow
Indirect| 10.7| 59| 52| 20/31.6/ 31|242| 8| 00| O 0| 0 0| 0
Data
b: Structural model for Bubblesort
Class Total PC CR IR AR DR UR
% # % # % | # | % # % # | % | #| % #
Injected| 100| 3664| 8.5| 313| 0.8 28| 11.0| 403| 18.2| 665| 0.3| 11| 61.2| 2244
Effective| 21.9| 803|45.7| 143| 3.6| 1| 7.2| 29| 29| 19| 0| 0|27.2| 611
Direct| 11.7 94|56.6| 81|100| 1|24.1 7 0 0 0.8 5
Flow
Direct| 18.9| 152|43.4| 62| 0| 0|51.7| 15| 100| 19 9.2 56
Execution
Indirect| 33.2| 267| 0.0 0| 0| 0| 34 1 0 0 43.5| 266
Flow
Indirect| 36.1| 290| 0.0 0| 0| 0]20.7 6 0 0 46.9| 284
Data
c: Behavioral model for Heapsort
Class Total PC CR IR AR DR UR
% # % # | % | #| % | # % # | % |#| % #
Injected| 100| 3626| 11.6| 421| 0.8 28| 12.8| 466| 21.0| 763| 0.6| 20| 53.2| 1928
Effective| 20.6| 746| 47.7| 201| 0.0/ O| 5.2| 24| 3.9/ 30| 10| 2|25.4| 489
Direct|19.2| 143| 65.7| 132 12.5 3 0 0| 0| 0] 1.6 8
Flow
Direct|24.3| 181| 34.3| 69 50.0/ 12| 100 30| O 0]|14.3 70
Execution
Indirect| 33.9| 253| 0.0 0 4.2 1 0 0| 0| 0|51.5| 252
Flow
Indirect| 22.6| 169| 0.0 0 33.3 8 0 0(100| 2|32.5| 159
Data

d: Behavioral model for Bubblesort

Figure 9: Error outcomes for the models and workloads

5.3 Results

5.3.1 Error behavior outcome: Figure 9 shows the error

Figure 10: Indirect errors manifestation latencies

the workload dependency for these errors appears to be low.
For the behavioral model, only 30-43% of all errors manifest
directly, and a workload dependency is observed for these
errors. For the indirect errors, both models exhibit a work-
load dependency. The major fault classes contributing to the
indirect errors are for the structural model, the fault classes
Buses and Misc, while the UR fault class is the major con-
tributor to indirect errors in the behavioral model.

5.3.2 Error manifestation latency: We focus our analysis

on the indirect error classes, i.e., errors which propagate
through the user register file, as the latency for direct errors
is by definition smaller than Eigure 10 shows the latency
due to indirect errors of both models and activations used in
the experiments. Latency is defined here as the time from the
injection of a fault to the manifestation of an error on any
output port, and is measured by the number of instructions
executed between the two events.

For the structural model, the mean latency is rather short
(approx. 3 instructions), while for the behavioral model the
latency is much longer. In the following paragraphs, we
provide an explanation for this observation.

The latency means shownHiyure 10 are estimates of the
mathematical expectation E[I] = > ixp(e(d)) ,
wherep (e(d)) represents the probability that an error
occurs on an output port when instruction numbetbeing
executed, given that a fault was injected during execution of
instructioni=0. The differences in the values of the latency
obtained for the two models originate from differences in the
values ofp (e(d)) .

Now, letr represent a register in the user register file, and
letri andr; denote a user register used as a destination and
source register, respectively, during instruction
Furthermore, lete(r) denote that is erroneous. Then,
p(e(d)) can be characterized by:

p(e(d)) = ple(d)|e(r)] = pre(r)] (1)

outcomes of both models for the two activations used in the The first term is completely determined by the workload
experiments. In the structural model, about 80% of all errorand characterizes the propagation of the error from a user
manifest as direct Flow or Execution errors. Furthermoreregister to an output port. The second term combines two

phenomena: (i) the propagation of the errors among th: In our case, since the sorting workloads perform mainly

registers, and (ii) the potential overwrite of errors. This termindexed transfers between registers and memory, there is a

depends on both the workload and the fault injectionhigh probability for the content of an erroneous register to

method. appear either on the data or address buses. Consequently, the
For the structural model we assume that the effect of thfirst term of expression (1) can be expected to be close to 1

injected fault during execution of instruction 0 is one of fourand thus:

possible events. The term9,...p, represent the p(e(d)) =ple(r)] (4)

probabilities of occurrence of each of these events: As a result, the error latency for both workloads is mainly

* p, corresponds to the occurrence of an error in registerdetermined by the access delay, which has been
roandr (r9#r) due toincorrect register selection; demonstrated to be shorter for errors caused by signal

* p,corresponds to the occurrence of an errain due ttmanipulation faults than variable manipulation faults. This
a fault on the data lines; explains why the error latency is much shorter for the

* pzcorresponds to the occurrence of an errafin due to istructural model compared to the behavioral one.
fault on the control line (no latch);

* p,corresponds to the occurrence of an errar ifr # r0) .
due to a fault on the control line (unexpected latch). 6 Summary and concluding remarks

As the fault can affect at most two user registers during]:rh'lS p.ap\e/rl_gfsentds I(I) a descnonp of n;ethqu Itoimject
instruction 0, it can be easily verified that: aults In models, (ii) an overview of a simulation-

based fault injection tool, called MEFISTO and (iii) a case

ple()] + 5 ple(n] - Y ple(r©) Oe(n] =1 study where signal and variable-related faults are injected
o oEr into a structural and behavioral model of a 32-bit processor,
The three terms can be respectively developed as: respectively.
ple(r)] = p;+p,+p;, Y ple(n] = p,+p, and The case study has proven the capability of both the signal
s and variable manipulation methods to inject faults in VHDL
> ple(r) Oe(n] = p;. models. Signal manipulation can be used on a VHDL model,
o in a similar way as pin-level fault injection is used on

As the fault locations are uniformly distributed among thephysical systems. Using the former technique, it is possible
set of signals and since the data and register selection lingg inject a fault on any signal, not just on the IC pins. The
are much more numerous than the control lines (32+24 Vvyariaple manipulation technique also makes it possible to
1), it can be stated that bof, ~ apg are much smallejpject faults that are injectable on physical systems; it can be
than p, andp, . More specifically, if an error propagatesyseq to simulate the effect of bit-flips in registers, as caused
into the user register file, it is very likely that it will py heavy-ion fault injection. Simulation-based fault
propagate into the destination register of instruction Cinjection provides perfect controllability over where and
(i.e.,ro). In other words, at the end of the execution ofyynen a fault is injected, in contrast to the heavy-ion
instruction O: technique.
Urozr, ple(r)]>>ple(n] (2) In the case study, the fault effects are classified into two
For the behavioral model, the fault locations are alscerror classes: direct errors, which manifest directly on the
uniformly distributed. In this case, almost all indirect errorsoutput ports, and indirect errors which stay dormant for
are caused by bit-flips injected into the user registers. Fcsome time in the user registers before manifesting. The
these errors, the error occurrences are totally decoupled frosignal-related faults injected into the structural model are
the activity of the system, i.e., there is an equal probabilityshown to result in direct errors in 80% of the cases, while the
to hit any of the user registers. Therefore, variable-related faults injected into the behavioral model
Orozr ple(r)] =ple(n] (3) only result in direct errors in less than 45% of the cases.

Expression (2) implies that faults injected by means offurthermore, the error manifestation latency for indirect
signal manipulation arkkely to affect a registem¢) which €rrors is much shorter for faults related to signals than
is, by application of the temporal locality principle [20], Variables.
likely to be used soon. Thus, the mean time until the nex The variation in error latency with respect to the fault type
access of the affected register will be short. is analyzed in detail. It is argued that the faults related to

On the other hand, expression (3) implies that faultsSignals will spread inside the processor, as well as to its
injected by variable manipulation affect arbitrary userOutput ports, more rapidly than those related to variables. It

locality does not shorten it. can be extended to include a comparison between pin-level

(signal) and heavy-ion (variable) induced errors.

Simulation speed and accuracy are important factors t[2] R. K. lyer and D. Tangzxperimental Analysis of Computer
account for when considering fault injection for error ~ System Dependabilityniv. of lllinois at Urbana-Champaign,
propagation studies. The execution times of the sorting,, 1ech- Report CRHC-93-15, September 1993.

. . . [3] C. R. Yount,The Automatic Generation of Instruction-Level
programs are much smaller using an instruction-leve” " pgrror Manifestation of Hardware Faults: A New Fault

simulator, as in the experiments (Efgure 6), than using a Injection Model,Ph.D. Dissertation Thesis, Carnegie-Mellon
more accurate gate-level simulator, thus making it possible University, Pittsburgh, PA, May 1993.

to simulate much longer instruction sequences. Furthermord4] K.K.Goswamiand R. K. lyeQEPEND: A Simulation-Based

it can be noted that the behavioral model is more efficien Efnl\llllif;r;g?bfgaﬁg?éehrgnl;gggn[,)?ggrqggbelggrt%gl&:?gé- n
(faster) than the structural one. June 1992.

Both the structural and behavioral models are abstraction[s] J. A. Clark and D. K. Pradhan, “Reliability Analysis of
of the same processor at an abstraction level significantl Unidirectional Voting TMR Systems Through Simulated
above the gate and circuit level. It is possible to inject only ¢ ~ Fault-Injection,” inProc. Workshop on Fault Tolerant Parallel
subset of all possible bit-lip faults using the behavioral., ?.”O'O'ﬁl'zg('ﬁ:ftﬁ_ Sgisr;eé?z&;meﬁ,.t, ('\;"lﬁ} rﬂ:f‘)(;}?ﬁ@g%@-fiolf- the
model, as it only includes a subset of all “real” registers " Eftects of Transient Fault Injection into a 32-bit RISC with
(variables) that would be present in a physical Built-in Watchdog,” in Proc. FTCS-22 Boston, MA,
implementation of the DP32. Likewise, it is possible to July 1992 pp.316-325.
inject temporary stuck-at faults on only a subset of all “real’[7] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki,
signals using the structural model. This limits the use of J:Barton, D. Rancey, A. Robinson and T. Lin, "FIAT — Fault

. . . S Injection based Automated Testing Environment,”Froc.
simulation models on these abstraction levels for validatior FTCS-18 Tokyo, Japan, June 198.102-107.

of fault tolerance mechanisms. [8] R.Chillarege and N. S. Bowen, “Understanding Large System
It should be noted that all faults which are injectable using Failures — A Fault Injection Experiment,” Froc. FTCS-19

SWIFI on a physical system, also are injectable usin¢ Chicago, Ml, June 1989p.356-363.

instruction-level simulation models, such as the structural® &:_A. Kanawati, N. A. Kanawati and J. A. Abraham,

. FERRARI: A Tool for the Validation of System
and behavioral models used here. Clearly, more research Dependability Properties,” ifroc. FTCS-22 Boston, MA,
needed to investigate the accuracy of fault injection Jjuly 1992 pp.336-344.
experiments at these levels (and using SWIFI), with respe(10] J. M. Voas, “PIE: A Dynamic Failure-Based TechniquEEE
to more detailed ones. Such an investigation could possibl___Trans. on Software Engl8 (8), August 1992, pp.717-727.
identify classes of faults that can be injected at these highd1 J-Arlat, M. Aguera, - L.Amat, Y. Crouzet, J.C.Fabre,

. . . J.C. Laprie, E. Martins and D. Powell, “Fault Injection for
levels without loss of accuracy; MEFISTO is well suited for Depenc?ability validation — A Methodology ajnd Some

this type of experiments. Applications,” IEEE Trans. on Software Englé (2),
An important point demonstrated by this study is the February 1990, pp.166-182.
relative ease in performing fault injection campaigns usinc[12]J. Karlsson, P.Lidén, P. Dahigren, = R.Johansson and

e o U. Gunneflo, “Using Heavy-lon Radiation to Validate Fault-
VHDL models._ This is due to the ability of thg used fault Handling Mechanisms,JEEE Micro, 14 (1), February 1994,
injection techniques to take advantage of available VHDL pp.8-23.

models, without requiring any model modifications. [13] H.-P. Juan, N. D. Holmes, S. Bakshi and D. P. Gajski, “Top-
Further work with MEFISTO will address the early test of Down Modeling of RISC Processors in VHDL,” iroc.
fault tolerance mechanisms imbedded in fault tolerani EURO-VHDL'93Paris, France, September 1988.454-459.

; : s [14]1 3. H. Aylor, R. Waxman, B. W. Johnson and R. D. Williams,
systems. In particular, the favorable error tracing capabilities “The Integration of Performance and Functional Modeling in

depicted in this paper will be used to monitor the fault \yp| " in performance and Fault Modelling with VHDL,
activation/error propagation processes in order to: (J. M. Schoen, Ed.), Prentice-Hall, 1992, pp.22-145.
« monitor the sensitization of the fault tolerance [15]A. Miczo, “VHDL as a Modeling-for-Testability Tool,” in

mechanisms, when the fault injection experiments are __Proc. COMPCON'9DIEEE, February 199(pp.403-409.

. . . - [16] IEEE Standard VHDL Language Reference ManL@88.
szsd atremoving potential fault tolerance deficiency [17]M. Rimén, J. Ohlsson, J. Karlsson, E. Jenn and J. Arlat,

)) “Design Guidelines of a VHDL-based Simulation Tool for the
* study the mapping between the set of faults in the faul validation of Fault Tolerance,” ifProc. 1st ESPRIT Basic
tolerant system and the error models used to test the fau ~ Research Project PDCS-2 Open WorkshbpAS-CNRS,

tolerance mechanisms, in orddgp evaluate their Toulouse, France, September 1993461-483. _
[18] J. R. Armstrong, F.-S. Lam and P. C. Ward, “Test Generation

coverage and Fault Simulation for Behavioral Models,”"Rerformance
and Fault Modelling with _VHDL,(J. M. Schoen, Ed.),
References Prentice-Hall, Englewood Cliffs, 1992, pp.240-303.

19] P. J. Ashenderf,he VHDL CookbogkJniversity of Adelaide,
[1] J. Arlat, “Fault Injection for the Experimental Validation of []South Australia, Tech. Report, 19%0' y

Fault-Tolerant Systems,” iProc. Workshop Fault-Tolerant [20]J. L. Hennessy, D. A. Patterso@pmputer Architecture A
SystemsEICE, Kyoto, Japan, June 1992, pp.33-40. Quantitative ApproachMorgan Kaufmann Publishers, 1990.

