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• 1970’s - SRI to design a “fly by wire” fault tolerant system for
the space shuttle.

• Reaching Agreement in the Presence of Faults [PSL 1977/8]
• Lamport coins the name “Byzantine Agreement” [PSL 1982]

• n processes or players, P1 ,…Pn , each with an input bit bi

• Want all non faulty players to reach agreement on a a bit b
such that
! All non faulty players agree on the same b
! If all Pi start with the same bi then output b=bi

• Pairwise communication channels
• This talk mostly synchronous communication networks

http://en.wikipedia.org/wiki/Enver_Hoxha
http://en.wikipedia.org/wiki/James_Callaghan
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Motivation
• Reaching agreement in the presence of faults is a natural

and fundamental problem in distributed computation.

• Demonstrates remarkable differences between what is possible

with deterministic, randomized and quantum protocols!

We model faults by a computationally unbounded Adversary

• Computer crash, no electricity – Fail-Stop fault model

• Software or undetected hardware errors, incoherent or

wrong data, malicious players – Byzantine fault model



Assuming we have n players and at most t faults

Lower Bounds:
• A deterministic lower bound of t+1 rounds for fail stop faults
• For Byzantine faults  t<n/3 [PSL78]. 
• No deterministic protocols even for t=1 in the asynchronous 

setting [FLP82].

Protocols:
• There are efficient deterministic t+1 rounds protocols 

tolerating t<n/3 Byzantine faults in the synchronous model
[PSL77-78,GM93]

Deterministic Protocols



Weak Global Coin
• We reduce agreement to weak global coin flipping
• Decide when there is a large majority of players suggesting 

the same value b !
 

{0,1}.

• If the coin flip succeeds with probability p the expected 
number of round to reach agreement is O(1/p).

Randomized Protocols

0 n(n-t)/2 (n+t)/2 (n+3t)/5(n-3t)/5
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n/2



Adversary can react to players’ random selections:
• static or adaptive failures
• private communication or full information about the system
• fail stop or Byzantine type faults

Examples: 
• Static, fail stop, full information adversary:

Each player Pi selects a random ri !

 
[0,n3). Declare the player with 

the min as the leader. Leader flips an unbiased coin.
O(1) rounds protocol.

• Adaptive, Byzantine, full information (even asynchronous) 
adversary: Use majority voting on local random bits.

Exponential time, but just O(1) for   t < !(n1/2).

Randomized Protocols



• Adaptive, fail-stop, full information adversary:
Majority gives for all  t < n

matching the lower bound [BB98].

• Static, Byzantine, full information adversary:
First try: Use functions that minimize the influence of each variable. 

Given f : {0,1}n" {0,1} the influence of S#
 

[n]

If (S) = Prx [ $
 

s0 ,s1 !
 

{0,1}S s.t. f(s0 ,x)"
 

f(s1 ,x) ]
If (k) = max { If (S) : |S|=k }

[KKL] If Prx [ f(x)=0 ] %
 

½ then If (1)=#( (log n)/n )
and $

 
S, |S|%

 
n/log n,  such that If (S) > 1- $

Randomized Protocols – More Examples

% & )log(/2log/ n
nntnt '()



[BKKKL] showed that If (1)=#( (log n)/n ) for general 
balanced f

f:X1×
 

X2× × Xn " {0,1}
The question whether always a small subset can control 
the function remains open, leaving the possibility of an 
O(1) round protocol open [for the static, Byzantine, full 
information adversary model].

More than one round coin flipping games:
• For t >

 
n/2 there are always t faulty players that can 

force either 0 or 1 (not true for quantum coin flipping!)
• There are games where the maximal bias by t players is 

bounded by O(t/n), and this is optimal.

Classical Coin Flipping Games



Feige’s log*n Leader Election Game

Each player selects a random bin.

The smallest bin is selected, and they continue recursively, 
until a single leader is elected [RZ98,F99].

Using just one round of Feige’s trick [BPV06,GPV07 and 
KSSV06] achieve O(log n) time protocols for static, 
Byzantine, full information adversary.

Classical Coin Flipping Games

1 2 3 …. n/logn



Coin Flipping with an Adaptive Adversary

Note: All known robust coin flipping games select an almost 
random leader, and then the leader flips a coin.
All this is useless in the adaptive setting. 
Are there better games than the “Majority” game for 
adaptive adversaries?

Classical Coin Flipping Games



• Adaptive, Byzantine, private comm. adversary:
Each player Pi selects a random ri !

 
[0,n3). Declare the player with 

the min as the leader. Leader flips an unbiased coin.
Problem: A bad player can choose 1 and get elected.
First try:
Independently for player P: Each Pk , k=1…n, selects random         

ri !

 
[0,n3), and set

r = *k=1
n rk (mod n3)

Problem: A bad player can select rk after other values are known 
and control r.

Idea: Use Verifiable Secret Sharing (VSS)
Problem: VSS requires Byzantine Agreement !?

Idea:[FM88] A two round “weak agreement” protocol is 
good enough for here           O(1) time protocol.

Randomized Protocols – More Examples



• Adaptive, Byzantine, full information adversary:

Players have pairwise quantum channels
“full information” in the quantum setting: The adversary knows 

the description of the current pure state of the system.

Toy Example: Adaptive, fail-stop, full information adversary
Each player prepares

|+i  =  *k=0
n3-1 |k,k,…,ki

and a GHZ state
|,i = |0,0,…,0i

 
+ |1,1,…,1i

and distributes the pieces to all n players.

Quantum Protocols



|+i  =  *k=0
n3-1 |k,k,…,ki

|,i = |0,0,…,0i
 

+ |1,1,…,1i

At the next round all players measure all the pieces they have; a 
leader is selected according to the shared minimum; and the 
corresponding measured bit serves as the “global coin”.

Cor: We get an O(1) expected round agreement protocol.
By delaying the measurements until all the quantum messages have 
arrived the adversary has to stop messages before the outcome is 
known, and so effectively the adaptive adversary isn’t stronger than 
the static one.

Quantum Protocols



• Adaptive, Byzantine, full information adversary:

Idea: replace random shared secrets by a superposition on all 
possible n3 secrets and all possible polynomials.

• This is just an encoding of the superposition of all secrets 
using a standard CSS quantum error correcting code.

• We can use the QVSS procedure of [CGS02] replacing 
Byzantine agreements with the “weak agreements” of 
[FF88]

• We get an O(1) round quantum Byzantine agreement 
protocol in the adaptive, Byzantine, full information 
adversary model, tolerating an optimal t<n/3 faults.

Quantum Protocols



Open Problems

• In the asynchronous setting we can handle only t<n/4 
faults, while BA is possible for t<n/3. The classical 
“private channel” solution of [CR93, see also BCGHS07] 
uses secret authentication codes and this can’t work 
here.

• Is the majority coin flipping game asymptotically optimal 
with an adaptive adversary ?

• Extend KKL lower bound to general functions.
• Can we beat the O(log n) for the static, Byzantine, full 

information adversary ?
• Scalable large network protocols [see KSSV06]. 
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A and B do not agree - contradiction 
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S1 ,...,Sn are processes, each composed of a group of players. 
While the S’s are trying to reach agreement a bad player P in a 
good set can leak information to bad players in a bad set

A process is “good” is less than 1/3 of its players are faulty.

P


