
Model Checking
Timed UML State Machines and Collaborations

Alexander Knapp1, Stephan Merz1, and Christopher Rauh2

http://www.pst.informatik.uni-muenchen.de/projekte/hugo/

1 Institut für Informatik, Ludwig-Maximilians-Universiẗat München
{knapp, merz}@informatik.uni-muenchen.de

2 Institut für Informatik, Technische Universität München
rauh@in.tum.de

Abstract. We describe a prototype tool,HUGO/RT, that is designed to automati-
cally verify whether the timed state machines in a UML model interact according
to scenarios specified by time-annotated UML collaborations. Timed state ma-
chines are compiled into timed automata that exchange signals and operations
via a network automaton. A collaboration with time constraints is translated into
an observer timed automaton. The model checkerUPPAAL is called upon to verify
the timed automata representing the model against the observer timed automaton.

1 Introduction

Object-oriented methods are widely accepted for software development in the business
application domain and have also been advertised for the design of embedded and real-
time systems [20]. The standard object-oriented software modelling language UML
(Unified Modeling Language [3]) accounts for the description of real-time systems by
including timed versions of the diagrams used to specify dynamic behaviour [7, 2].
Moreover, specialised, UML based real-time modelling tools like Rose RealTimeTM or
RhapsodyTM provide testing and code generation facilities to support the development
process of object-oriented real-time systems, but they lack support for verification.

The UML offers mainly two complementary notations for the specification of dy-
namic system behaviour: the state/transition-based notion of state machines, and the
notion of collaborations that is based on the exchange of messages. In practise, collabo-
rations describe scenarios of desired or unwanted system behaviour and are used in the
early phases of software development. The detailed design is later described by state
machines. It should therefore be ensured that these two views of a system are indeed
consistent by verifying that the state machines may exchange messages according to
the test scenarios.

Several tools provide verification support for the state machine view of an untimed
UML model via translation into the input languages of model checkers [14, 16]. In pre-
vious work [19], we have reported on a tool that additionally addresses the problem of
consistency between the state machine view and the collaboration view in the untimed
fragment of UML.

This paper describes a prototype tool,HUGO/RT, that is designed to automatically
verify whether scenarios specified by UML collaborations with time constraints are

indeed realised by a set of timed UML state machines. The timed state machines of
a UML model are compiled into timed automata, as used by the model checkerUP-
PAAL [13]. A time-annotated collaboration is translated into an observerUPPAAL timed
automaton using basically the same techniques as described by Firley et al. [8]. The
model checkerUPPAAL is called upon to verify the timed automata representing the
model against the observer timed automaton. We illustrate the translation and verifi-
cation procedure by a benchmark case study in real-time systems, the “Generalised
Railroad Crossing” (GRC) problem introduced by Heitmeyer et al. [12]. Although our
translation is not based on a formal semantics for timed UML state machines, we at-
tempt to be faithful to the informal specification of the UML [18] by following its
semantic requirements as closely as possible.

Related work.The semantics of timed Harel-Statecharts, the main basis for UML state
machines, has been investigated in detail by Damm et al. [5]. In the context of UML,
Lavazza, Quaroni, and Venturelli [15] propose a translation of timed state machines
into the real-time specification language TRIO, which, however, is not directly model
checkable. The translation procedure is demonstrated for the GRC problem, using some
extensions of the UML for testing the absence or presence of events, as is possible
in Harel-Statecharts. However, compliance of their translation with the UML seman-
tics for state machines, in particular regarding run-to-completion steps, is not obvious.
Muthiayen [17] describes the verification of timed UML state machines with the theo-
rem prover PVS. Again, the GRC problem serves as a case study. A translation of UML
collaborations with time-constraints intoUPPAAL timed automata has been presented
by Firley et al. [8], though no implementation seems to be available. Also related is the
translation of hierarchical timed automata into flatUPPAAL timed automata by David
and Möller [6]. The direct use of this approach for the compilation of UML state ma-
chines is limited by the rather different notions of run-to-completion step.

Overview. The remainder of this paper is structured as follows: In Sect. 2 we briefly
review the notation and semantics of timed automata as used by the model checker
UPPAAL. In Sect. 3 we describe a case study, the GRC problem, and provide a UML
solution, in passing explaining the UML notation and informal meaning of static struc-
tures, timed state machines, and collaborations with time constraints. A more detailed
account of the semantics of timed UML state machines and, in particular, of our as-
sumptions on the timing behaviour is given in Sect. 4. The translation of timed UML
state machines intoUPPAAL timed automata is explained in Sect. 5, the translation of
UML collaborations with time constraints into observerUPPAAL timed automata is re-
capitulated in Sect. 6. We report on the verification results for the GRC case study in
Sect. 7. We conclude with a discussion of some loose ends and of future developments.

2 Timed Automata

The framework of timed automata was originally defined by Alur and Dill [1]. The
model checkerUPPAAL that serves as the back end forHUGO/RT expects models to be
described as systems of timed automata, extended by primitives for two-way synchro-
nization. We briefly recall the main concepts ofUPPAAL timed automata.

A timed automaton is a non-deterministic finite state machine, extended by finitely
many real-valued clocks. States may be associated with invariants of the formx∼ c
wherex is a clock,c is an integer constant, and∼∈ {<,≤}. Transitions between states
are labelled with triples(gd,sy,ac) where

– gd represents the guard of the transition, expressed as a conjunction of timing con-
straintsx∼ c or x− y∼ c wherex andy are clocks,c is an integer constant, and
∼ ∈ {<,≤,=,≥,>} is a binary relation,

– sy is a (possibly void) synchronization annotation of the forma! or a? that denotes
an offer or an acceptance to synchronize over the channela, and

– ac is a set of reset operationsx := c on clocks.

Moreover,UPPAAL allows integer variables as well as one-dimensional integer arrays
to be declared locally (i.e., for a single automaton) or globally. Transition labels may
include constraints on integer variables and array components in their guards, similar
to timing constraints, and may specify assignments to variables in their actions, which
are executed sequentially. However, clocks and integer variables represent different,
incomparable types. In particular, it is not possible to compare the values of a clock and
an integer variable, or to assign an integer variable to a clock or vice versa.

The state of a system of timed automata consists of the control state for each au-
tomaton, plus a valuationν of the clocks and variables. Runs of timed automata are
infinite sequences of system states that satisfy the invariants, separated by actions that
represent either the passage of time or the (instantaneous) execution of transitions. A
transition can be taken only if its guard evaluates to true in the current system state. If
the transition carries a synchronization annotation of the forma? ora! then some corre-
sponding transition (labelled bya! or a?) of some other timed automaton has to be taken
simultaneously. Finally, the resulting system state is obtained by updating the control
states of the timed automata involved in the transition, and by updating the valuationν
according to the action part of the transition label(s), i.e. by resetting clocks and assign-
ing values to variables. Note that the transition is not allowed to occur if the resulting
system state would violate the invariant associated with the target location(s). In the
case of a synchronization action, the assignments specified by the “sending” automaton
(whose transition is labelled bya!) are performed before those of the “receiving” au-
tomaton. This allows synchronous binary communication to be modelled with the help
of global variables. Time passage actions do not affect the control state or the values of
the variables, but increase the valuation of all clocks by the same amount, reflecting the
assumption of perfect clocks. Again, the resulting system state is required to satisfy all
relevant state invariants. In particular, time-outs can be modelled by state invariants that
disallow passage of time beyond the specified deadline.

As an additional modelling element, automata locations may be classified as either
committedor urgent. Both of these annotations disallow the passage of time while the
location is active. Additionally, committed locations require the next system action to
involve a transition whose source state is the committed location. In this way, atomic
transactions that involve more than a single transition can be modelled by labelling the
intermediate locations as being committed. In particular, multiway synchronization can
be modelled with the help of an atomic sequence of binary synchronizations. A channel

can be declaredurgentto disallow the passage of time as soon as synchronization over
the channel is enabled.

3 GRC Case Study

We illustrate our translation of UML state machines and collaborations intoUPPAAL

timed automata by means of a UML model for the “Generalised Railroad Crossing”
(GRC) case study [12].

The GRC problem asks for a system operating a gate at a railroad crossing: A gate
for several railroad tracks lies in a critical section of the tracks, see Fig. 1(a). All trains
pass the critical section in the same direction. The critical section is guarded by two sen-
sors for each track indicating whether a train is entering or exiting the critical section.
For every track at most one train passes the critical section, but trains on different tracks
may pass at different speeds and overtake each other. Whenever the gate is occupied,
i.e., some train is passing the gate, the gate must be closed (safety property). A utility
property specifies that within certain tolerance intervals, prior and past being occupied
the gate must be open; moreover, when the gate initiates opening, it must become fully
open and must stay open for a certain period.

Timing annotations.We more concretely assume, see Fig. 1(b), that the minimal resp.
maximal time a train may take to pass the distance between entering the critical section
atA (the position of the entry sensor) and arriving at the gate atD is ta resp.Ta; and that
the minimal resp. maximal time a train may take to pass the gate fromD to E is tg resp.
Tg. The gate bars take the timegu to go up from fully closed to fully open, and take the
time gd to go from fully open to fully closed. The minimal period the gate has to stay
open is denoted bygo. Thus, taking into account possible delays in communication, it
is atg+

d = gd + ∆ before the fastest train may reach the gate after entering the critical
section that the gate must initiate closing, that is, at locationC determined byta−g+

d .
Moreover, in order to avoid the gate opening partly and then closing immediately again,
the gate may only initiate opening when at leastg+

u = gu + go + ∆ time units remain
before the next closing is scheduled, that is, when the train that is closest to the gate
is guaranteed to be before locationB determined byta−g+

d −g+
u . We assume that the

gate

tracks

critical section

(a) Railroad crossing

ta tg

gd
+gu

+

EA

gate

DB

critical section

C

(b) Timing annotations

Fig. 1. “Generalised Railroad Crossing” problem

Track

−num : int

Gate

+«signal» open
+«signal» close

Control

+«signal» enter(i : int)
+«signal» exit(i : int)

−trains: int

−«signal» doOpen
−«signal» doClose

1

ctl

k

1 1

gate

(a) Class diagram

Open Closing

ClosedOpening

gdafter()guafter()

open

close

(b) Gate state machine

NoTrain
/ ^ctl.enter(num)

Approach Approach2

after(−)taTa

Crossing
tgafter()

taafter()

after(−)tggT / ^ctl.exit(num)

/ ^ctl.exit(num)

Crossing2

(c) Track state machine

Open Closed
/ ^gate.close

doClose doOpen

[else]

/ ^gate.open
[trains == 0]

Away1 Entered1

kAway Entered k Nearby k Critical k
after(+)gu ogkenter()

Nearby1 Critical1
after(+)gu og

at gd
+ gu

+after(− −)

at gd
+ gu

+after(− −)

.........

exit(1) / trains−−, ^doOpen

enter(1)

kexit() / trains−−, ^doOpen

/ trains++ / ^doClose

/ ^doClose/ trains++

(d) Control state machine

Fig. 2.UML model of the Generalized Railroad Crossing.

thereby determined distance betweenA andB must at least allow for the communication
delay, i.e.ta−g+

d −g+
u > ∆, in order to prevent premature openings.

UML model. Our UML model for the GRC problem is presented in Fig. 2. Thestatic
structureis set out in the class diagram in Fig. 2(a). Every (instance of)classControl
refers to a singlegate and, vice versa, everyGate is controlled by a single control.
Moreover, everyControl is connected tok instances ofTrack, each track knowing its
control viactl and holding its number innum. A Control records the number of trains
currently in the critical region in the attributetrains. A Gate reacts to two public signals
open andclose by initiating opening and closing of the gate. AControl reacts to the
public signalsenter(i) and exit(i) for an integeri reporting a train entering or exiting
the critical section on tracki, as well as to the private signalsdoOpen anddoClose that
represent internal requests to open or close the gate.

The dynamics is described bystate machinesfor the classesGate, Track, andControl,
see Fig. 2(b)–(d). Each instance of these classes is governed by a separate instantiation
of the respective state machine. The state machine forGate in Fig. 2(b) shows aninitial
stateand foursimple statesOpen, Closing, Closed, andOpening. The transition from
source stateOpen to target stateClosing can only befired when asignal eventfor close
is present as itstrigger. The transition fromClosing to Closed will be fired when atime
eventoccurs, which is raised aftergd time units have elapsed sinceClosing has been
activated. Thus, in particular, closing and opening a gate takes the required amount
of time. Analogously, the state machine forTrack in Fig. 2(c) sojourns, once having
activatedApproach, in this state for the timeta before firing the transition toApproach2.
However, the state machine may dwell inApproach2 for up toTa− ta time units or leave
this state prematurely via the alternative transition, triggered by acompletion event
which occurs when all activities of a state, of which there are none in this case, have
been finished. In the same vein, the transition fromNoTrain to Approach may be fired
immediately afterNoTrain has been activated, as there are again no activities; but this
transition also shows aneffect, viz., that signalenter(num) is raised for the instance of
Control referred to asctl. Hence, the state machines for the tracks simulate the entering
and exiting of trains in the critical section; the minimal time a train may take for this
distance ista+ tg, the maximal time isTa+ Tg. Finally, the state machine forControl in
Fig. 2(b), shows aconcurrent composite stateconsisting of severalorthogonal regions
which are againcomposite, though sequential,states. The upperk orthogonal regions,
the ith region handling the entering and exiting of a train on theith track, all provide
the same behaviour, ensuring that when a train on tracki has entered the critical region,
an internal signaldoClose requesting the closing of the gate is raised afterta−g+

d −∆,
and that when a train on tracki leaves the critical region an internal signaldoOpen
requesting the opening of the gate is raised. The last orthogonal region actually handles
closing and opening of the gate: When inOpen and receiving a signal event fordoClose,
a signal event forclose to the instance ingate is sent. However, when inClosed only a
signal event fordoOpen is reacted to—should a signal event fordoClose arrive in this
state it is discarded by the whole state machine as there is no other transition taking
such an event as its trigger. The transition fired by a signal event fordoOpen has two
possible target states, linked by ajunction pseudo-state: If the guard trains==0 is true
on firing the transition indeed a signal event foropen on gate is raised andOpen is

track1 : Track track2 : Track ctl : Control gate : Gate

tab a{ − <= }

d c{ − <= }∆

enter(1)

close

enter(2)

b

exit(1)

exit(2)

open
d

a

c

(a) Sequence diagram for the safety property

ctl : Control gate : Gate

b a{ − < + }ug og

open

close

a

b

(b) Sequence diagram for the utility property

Fig. 3.UML model of the Generalized Railroad Crossing (cont’d.).

activated; otherwise the other branch is taken:Closed is first deactivatedbut becomes
activated immediately again.

Finally, two test cases for the system behaviour are depicted in thecollaborations,
shown as sequence diagrams, in Fig. 3 that partially describe the safety and utility prop-
erties for the UML model.

The sequence diagram in Fig. 3(a) describes a safe behaviour. The diagram specifies
that, given two trackstrack1 andtrack2 for a controlctl surveying the gategate, when a
stimulusfor the firstmessage, carrying anenter(1) signal, is received byctl from track1
at time pointa it is possible that the gate receives a stimulus for the third message,
carrying signalclose, at time pointb within ta, independently of when a signalenter(2)
is sent fromtrack2 to ctl in-between. Analogously, after the last train exited the gate,
as indicated byctl receiving a signalexit(2) from track2 at time pointc, the gate may
receive a signalopen from ctl at time pointd such that at most the communication delay
∆ has elapsed afterc.

The sequence diagram in Fig. 3(b) describes a behaviour that is not allowed to occur:
it must be impossible that after the gate received anopen signal, aclose signal arrives
before at least timegu + go has elapsed, as this would contradict the second part of the
utility property.

4 Model of Computation

The UML specification of the semantics of state machines [18, Ch. 2.12] can be sum-
marized as follows: The actual state of a state machine is given by itsactive state config-
uration and by the contents of itsevent queue. The active state configuration is the tree
of active states; in particular, for every concurrent composite state each of its orthogonal
regions is active. The event queue holds the events that have not yet been handled by
the machine. Theevent dispatcherdequeues the first event from the queue; the event
is then processed in arun-to-completion(RTC) step. First, a maximal consistent set of
enabled transitions is chosen: a transition isenabledif all of its source states are con-
tained in the active state configuration, if its trigger is matched by the current event, and
if its guard is true; two enabled transitions areconsistentif they do not share a source
state. For each transition in the set, itsleast common ancestor(LCA) is determined,
i.e. the lowest composite state that contains all the transition’s source and target states;
the transition’s main source state, that is the direct substate of the LCA containing the
source states, is deactivated, the transition’s actions are executed, and its target states
are activated.

The UML semantics deliberately does not prescribe the timing assumptions that
underly the computation of timed state machines. For example, it is left unspecified
whether state transitions are instantaneous or durative, although the zero-time assump-
tion adopted for Harel-Statecharts [10, 11] is explicitly mentioned as a possible model
[18, p. 2-161]. Similarly, arbitrary queueing delays are allowed to occur between the
time an event is received by a state machine and the time it is dispatched for processing.

Because we are interested in a precise analysis of timed UML state machines, we
have to assume a specific computational model. Following ideas from timed automata
and synchronous languages, our basic assumption is that noticeable delays are only
due to communication between objects whereas local computation is (infinitely) fast.
Formally, we make the following assumptions:

1. The run-to-completion (RTC) step performed locally by a state machine takes no
time. Similarly, the event queue is eager to dispatch events it has received.

2. The delay between the sending of an event and its reception at the target object is
bounded by a constant∆.

3. A state machine may delay arbitrarily before generating completion events, unless
that delay is restricted by an explicit constraint.

Our basic tenet is that the specifier should have complete control over the behavior
of the model. For example, the event queue is an implicit part of every state machine
and is outside the control of the specifier. If we allowed the event queue to introduce
arbitrary delays it would obviously be impossible to guarantee any lower bounds on
the response time. We have therefore chosen to impose a zero-time assumption on the
behavior of the queue. Should the specifier wish to allow for delays, these can always
be modelled explicitly.

Assuming zero-time behavior of the event queue and the RTC step implies that
usually, the times of reception, dispatch, and consumption of an event are the same.
However, after sending a synchronous call event to another object, a state machine will
be blocked until the notification about the dispatch of the event at the receiver machine

has arrived at the sender. During this period, events may be received by the event queue,
but they will be dispatched only after the synchronous call event has been handled.

Our second assumption is similar in spirit because, again, the mechanism for inter-
object communication is an implicit part of the model and cannot be controlled by the
specifier. Although we model inter-object communication as being time-consuming, we
introduce a user-definable constant∆ to represent the maximum network latency. We
assume, however, that messages that represent internal signals or operations are not
sent over the network, and therefore do not incur any communication delay. Obviously,
this model of communication could be refined, for example by imposing a minimum
communication delay or by distinguishing several degrees of “remoteness” (e.g., faster
communication within a single package etc.).

Finally, we do not restrict the delay before raising completion events because these
concern a part of the model that is under the control of the modeller, using either time
events or clock constraints. For example, the transition fromNoTrain to Approach in the
track state machine of Fig. 2(c) can be delayed arbitrarily. On the other hand, once the
completion event has been raised, it will be inserted into the event queue without any
further delay.

5 Representation of UML State Machines inUPPAAL

We now describe in detail our approach to compiling a system of UML state machines
into a set ofUPPAAL timed automata. For simplicity, the current version ofHUGO/RT
assumes that there is only a single instance of any class declared in the UML model, that
the names of operations and signals are distinct, and that events do not carry parameters.
These assumptions could be easily removed at the expense of a slightly more elaborate
naming scheme.

5.1 State configurations and transitions

Although both UML state machines and timed automata describe state transition sys-
tems, the hierarchical state configurations of UML state machines have to be encoded as
states of “flat” timed automata. The original implementation ofHUGO described in [19]
was based on a translation of untimed UML state machines toPROMELA, the input lan-
guage of theSPIN LTL model checker, that represented each substate of a UML state
machine by a separate process. The main benefit of that strategy was a high degree of
modularity and flexibility, at the cost of an inefficient state representation, which was
largely offset by the state-space compression techniques available inSPIN. Because
UPPAAL offers neither compression nor structured data types beyond one-dimensional
integer arrays, we decided to flatten the state configurations and to compile each UML
state machine into only two timed automata that represent, respectively, the transitions
of the state machine and its associated event queue. A state configuration of the UML
state machine, described as a tree of states, is encoded by a single location of the first
timed automaton, and any attributes that are declared in the UML class diagram are
translated into local variables of theUPPAAL timed automaton.

Possible transitions of the UML state machine are represented in theUPPAAL model
as sequences of transitions. Given a location of a timed automaton that represents a con-
figuration tree of the UML state machine, we first determine the set of events (including
time and completion events) that may trigger a transition, starting at the leaves of the
configuration tree. Whenever a higher-level state may react to the same event as a lower-
level state, the negation of the guard associated with the lower-level transition is added
to the guard of the higher-level transition. This ensures that transitions originating from
inner states take priority over outermost transitions, as prescribed by the UML seman-
tics. For each evente, we compute the sets of transitions that may be triggered byeand
successor configurations, by calculating the transition’s main source and target states.
In particular, we must consider the case that the same event is consumed by states in
several orthogonal regions. All pertinent guards are copied to the first transition of the
UPPAAL model, as is a synchronization that indicates consumption of the event.

We then consider the effects of the UML transition. First, we model the deactiva-
tion of states, beginning at the leaf states of the source configuration tree, and working
upwards towards the main source state. Updates to instance variables are again copied
verbatim as assignments to the corresponding local variables of theUPPAAL model. For
every signal sent in the UML model, we generate an intermediate committed state to
let theUPPAAL model synchronize over an appropriate channel (observe thatUPPAAL

transitions may carry at most one synchronization annotation). Next, we translate the
effects that are explicitly given by the UML transition in a similar way. If the transition
generates a synchronous call theUPPAAL model enters a non-committed intermediate
state, awaiting the notification of dispatch to arrive from the receiving machine. Our cur-
rent prototype does not allow sequences of call actions to occur in a transition. Finally,
target states are being activated, and any entry actions are translated to corresponding
actions in theUPPAAL model. This part of the translation is symmetric to deactivation,
but starting at the main target state and working downwards towards the leaves. The
current version ofHUGO/RT, unlike the untimed version, does not support “do” activ-
ities associated with states; this is partly offset by the possibility to delay, abstracting
from changes of attribute values.

Finally, we add loops for all events that occur as input events of the state machine
but do not trigger a transition from the current state configuration. These transitions cor-
respond to situations where the current state configuration does not react to the current
event; the UML semantics prescribes that the event should then be discarded.HUGO/RT
does not currently handle deferred events.

Figures 4(a) and 4(b) show an excerpt of the translation of a hypothetical UML
state machine into the correspondingUPPAAL timed automaton that exhibits some of
the difficulties that can arise. In particular, eventa may trigger two different transitions
in the state configuration that consists of the statesA andC that lead, respectively, to
the target configurationsBD and F. The first of these transitions is represented by a
sequence of transitions in theUPPAAL model that involve consumption of the trigger
event, updates of local variables, and network communication. For this example, we
have assumed thatb is a call event that should be sent to the objecto. After sending the
event over the network (cf. Sect. 5.3), the timed automaton waits in a non-committed
intermediate state for the corresponding acknowledgement to arrive.

F

E A B

C D

G

a
b

[x>0]

a /

a /

x:=x+1

b
o^b

(a) UML state machine

G

AC

F

BD
bAck?x:=x+1 bToNet!

c cEC

aDispatch?

bDispatch?
x<=0

x>0

aDispatch?bDispatch?

(b) UPPAAL timed automaton (fragment)

Fig. 4.Translation of UML transitions.

The same state configurationAC may react in two different ways to eventb. The in-
nermost transition (resulting in configurationEC) is prioritized; therefore, the outermost
transition can be taken only if the guardx>0 is false.

Completion events.Transitions of a UML state machine for which no trigger event is
shown are triggered by an implicit completion event. Simple states raise a completion
event after all internal activity has terminated. Composite states raise a completion event
when all orthogonal regions have reached a designated final state.

SinceHUGO/RT does not consider “do” activities or non-atomic entry actions, we
generate a completion event for any simple state with outgoing completion transitions
via a transition to an intermediate “completion” state.1 Similarly, a completion event
for a composite state with outgoing completion transitions is generated whenever all its
orthogonal regions have reached final states; this can be readily seen from the configura-
tion. Consumption of completion events is similar to the consumption of regular events
discussed above, except of course that the same completion event cannot be consumed

1 One may be tempted to suppress the completion event altogether in such a simplified model,
but note that a completion event should nevertheless be handled in a separate RTC step.

c <= c <=

NoTrain
/ ^ctl.enter(num)

Approach Crossing
tac >=

tgc >= / ^ctl.exit(num)

TgTa

c := 0 c := 0

Fig. 5.Track state machine with clock.

by different states. Completion events are discarded if the state to which it corresponds
is no longer active; this may occur if another (completion) event has caused some con-
taining composite state to be deactivated. As explained in Sect. 5.2, the implementation
of event queues ensures that completion events take priority over signal and call events.

Compound transitions.The UML allows several transitions to be connected by pseudo-
states; in particular, the resulting compound transition may have several source or target
states. The translation of fork and junction transitions poses no particular problems. Join
transitions are required by the UML to be triggered by completion transitions from all of
its source states. OurUPPAAL translation uses a similar technique as for the completion
of composite states: for each source statesof a join transition, we add an auxiliary state
that indicates thats has completed; completion of the last source state, which is again
evident from the active state configuration, fires the join transition.

Time events.Transitions of timed UML state machines may be triggered by the elapse
of time, indicated by an annotation of the formafter(d) whered is a non-negative integer
constant.HUGO/RT defines a clockcs for every stateswith an outgoing time transition.
Every location of the timed automaton that corresponds to a state configuration con-
taining s is required to satisfy the invariantcs ≤ d; incoming transitions to any such
locations resetcs to 0. A time event is raised during a transition froms to an intermedi-
ate state, guarded by the conditioncs = d. Consumption of time events is analogous to
that of completion events.

The support UML offers for time annotations in state machines is rather limited,
and it can be cumbersome to model real-time systems using only basic time events
of the form after(d), which represent precise deadlines. For example, the track state
machine shown in Fig. 2(c) combines time transitions and completion transitions to
specify upper bounds on the occurrence of transitions, and introduces auxiliary states to
specify lower bounds. We therefore extend the UML notation by allowing clocks to be
declared explicitly in a UML class diagram. These clocks can be tested for in transition
guards, and can be reset as the effect of transitions, in the same way as this is possible in
UPPAAL timed automata. Similarly, clock invariants may be associated with the states
of a UML state machine to model timeouts. For example, Fig. 5 shows an alternative
presentation of the track state machine using an explicit clockc. This modest addition
makes the notation more expressive because strict comparisons such asx< c can not
be expressed using triggers of the formafter(d). Besides, time constraints become more
localized, which should make the models easier to understand.

5.2 Representing the event queue

The second timed automaton that is generated for every state machine of the UML
model represents its associated event queue. A local array variable of user-definable
capacity holds the current contents of the queue such that the first array element rep-
resents the head of the queue (event types are encoded as integer constants). A local
integer variable indicates the number of events in the queue. The queue reacts to in-
coming events by synchronizing on its input channel and appending the transmitted
event to the current contents of queue. A possible overflow is indicated by moving to a
distinguished overflow (sink) state. Completion events are enqueued similarly, but are
prepended to the contents of the queue, shifting all array elements by one position to-
wards the end. This ensures that completion events take precedence over regular events,
as prescribed by the UML semantics. Observe that the event queue is always ready to
accept a new event unless an overflow has occurred.

For every input event of the state machine, theUPPAAL model declares an urgent
channel shared by the automata representing the event queue and the proper state ma-
chine. The queue communicates the event at the head of the queue to the associated
state machine by offering a synchronization on the associated channel. The event is
then dequeued by shifting all array elements one position towards the head of the queue,
decrementing the length of the queue, and assigning a null value to the last array posi-
tion. Because the channels representing input events are declared urgent and the state
machine accepts synchronization on all these channels in every location where an RTC
step can be started, no time is allowed to elapse whenever an RTC step is enabled. Fig-
ure 6 shows a sample event queue automaton with capacity two that can hold two types
of events.

Our style of implementation of the event queue, which would be inefficient in a
conventional programming language, ensures that identical configurations of a state
machine are mapped to a unique system state of theUPPAAL model, and that state
repetitions can therefore be reliably identified. If we used a more conventional imple-
mentation based on two index positions corresponding to the head and the tail of the
queue, identical state configurations could be mapped toUPPAAL states that differ in
the particular layout of the queue array.

Idle c Overflow

queue[1] := queue[2],
queue[2] := 0,
tail := tail−1

queue[0] := queue[1],
e1Dispatch!
queue[0] == e1

queue[0] == e2
e2Dispatch!
queue[0] := queue[1],
queue[1] := queue[2],
queue[2] := 0,
tail := tail−1

tail <= 2 tail <= 2

tail := tail+1, queue[tail] := e1
e1FromNet?

tail := tail+1, queue[tail] := e2
e2FromNet?

Fig. 6.Event queue with capacity two for two events.

buffer[0] == 0, buffer[1] == 0
eRcvd!

eRcvd!

buffer[0] != 0, buffer[1] == 0

buffer[0] == 0, buffer[1] != 0

eRcvd!

buffer[0] == e
eFromNet!
buffer[0] := 0

buffer[1] == e
eFromNet!
buffer[1] := 0

oe00:

oe01:

oe10:

de0:

de1:

buffer[1] := e
eToNet?

(clock0 <=)∆ (clock0 <= ,∆
clock1 <=)∆

c

de0

de1

de0

oe00
de1

oe10

oe01

(clock1 <=)∆

00 01

10 11

buffer[0] := e
eToNet?

buffer[0] := e
eToNet?

Full
eToNet?

Fig. 7.Network with capacity two (transition annotations to the right).

5.3 Representing the network

The final addition to complete theUPPAAL model associated with a system of state
machines is a timed automaton that represents messages in transit between different
state machines; recall from Sect. 4 that we consider remote communication to be time-
consuming. The network automaton essentially consists of a user-defined number of
buckets that may hold messages. For every evente it listens on a global channeleToNet
for ebeing sent by the state machines and then placese in the lowest-numbered unused
bucket. With every bucket we associate a clock that is reset when the bucket is filled,
and times out after∆ time units have elapsed. If the bucket is full it may offer syn-
chronization on the corresponding input channel of the receiving object’s event queue,
communicating the event to the receiving state machine. Notifications of dispatch of
call events are handled slightly differently, as they are communicated directly to the
state machine, bypassing the event queue.

For UML models that also specify a collaboration to be checked, the network also
informs the observer timed automaton generated from the collaboration (cf. Sect. 6
below) whenever it communicates an event to the receiving state machine so that the
observer automaton may react appropriately. Figure 7 presents a network with capacity
two.

The network described above only imposes an upper bound on the communication
delay, allowing messages to be reordered. We have also experimented with a more effi-
cient, though perhaps less realistic, network model where every message is delayed by
a fixed amount of time. Because both implementations offer the same external interface,
they can be exchanged for each other easily.

6 Representation of UML Collaborations in UPPAAL

We briefly describe the translation of UML collaborations with time constraints into ob-
serverUPPAAL timed automata. The translation is similar to the construction by Firley
et al. [8], but includes stuttering states, i.e., states that allow arbitrary stimuli to occur
in-between the stimuli that are required by the messages of the UML collaboration.

x < + ba gu go

x := 0ba

bax >= + ug go

closeRcvd?

Errorba
closeRcvd?openRcvd?

Final

Fig. 8.ObserverUPPAAL timed automaton for collaboration in Fig. 3(b)

Following the UML, we thus view collaborations as incomplete specifications of pos-
sible system runs where arbitrary message exchange may occur between the explicitly
specified messages.

We assume a total order on the messages in an interaction. Each messagem is
represented by anUPPAAL channelmRcvd over which the observer automaton learns
of a stimulus for messagem being received by an instance. A constraint of the form
v−u∼ c with ∼ ∈ {<,≤,≥,>} is associated with a clockxvu.

Each state of the observerUPPAAL timed automaton checks either the occurrence of
a reception of a stimulus according to the order of the collaboration or the violation of
a timing constraint. The automaton registers the reception of a stimulus complying to
messagem by a transition accepting communication on channelmRcvd. Furthermore,
if the reception of messagem is annotated byu for a timing constraintv− u∼ c the
clock xvu is initialised when a stimulus form is successfully registered. Conversely, if
the reception of messagem is annotated byv for a timing constraintv− u∼ c, there
are two transitions accepting communication on channelmRcvd: A transition guarded
by ¬(xvu∼ c) leads to an error state, indicating that the timing constraint is violated;
another transition guarded byxvu∼ c enables the remaining messages. Each state allows
for an arbitrary stuttering of stimuli. Reaching the final state indicates the successful
performance of the collaboration.

Figure 8 illustrates this construction for the GRC test case collaboration in Fig. 3(b)
where each looping transition abbreviates arbitrary stuttering, i.e., offering synchroni-
sation on every channel of the formmRcvd?.

The registering procedure for stimuli that we employ in our translation uses the
assumption that the sender and receiver of a stimulus are uniquely determined by the
stimulus. A more elaborate scheme checking the sender and receiver stored in additional
global variables is easily devised [8]. Note, however, that Firley et al. [8] check the orig-
inator of a stimulus before communication is accepted which may become problematic
when different instances send stimuli for the same signal to the same instance.

7 Verification

HUGO/RT analyzes a model by calling onUPPAAL to verify that the final state of the
observer timed automaton is reachable in the model that consists of the timed automata
representing the UML state machines and the observer automaton generated from the
collaboration. For our case study, the feasibility of the collaboration shown in Fig. 3(a)

Away1 Entered1 Nearby1 Critical1
after(+)gu ogat gd

+ gu
+after(− −)enter(1)

/ ^doClose/ trains++

exit(1) / trains−−, ^doOpen

enter(1) / trains−−, ^doOpen

Fig. 9.Corrected control state machine for the GRC problem (representative region).

is confirmed in a fraction of a second (all timings were taken on a Pentium III with
768MB of memory runningUPPAAL 3.2.2 on Linux 2.2.16).

Some correctness properties of systems can be expressed by requiring certain ex-
ecutions to be impossible. For example, we can check the second part of the utility
property that requires the gate never to open for less thango time units by verifying that
the collaboration shown in Fig. 3(b) is not feasible. The verification of this property
requires an exhaustive search of the model and takes approximately 11 seconds.

However, not all interesting properties are expressible using UML collaborations
with time constraints. In particular, UML collaborations do not allow to check for the
absenceof signals as can be done, for example, using live sequence charts [4]. We have
therefore resorted to model checking invariants to verify the safety and utility properties
stated for the GRC case study. The basic safety property requires the gate to be down
whenever a train is crossing, expressed as the formula

∀2
(
(Track1.Crossing∨Track2.Crossing)⇒ Gate.Closed

)
Our first attempt to verify this formula resulted in a counter-example where a train was
crossing but the gate was closing, with preciselygd time units elapsed since theClosing
state was entered. Rather than adding some safety margins, we deemed this behavior
acceptable and checked for a weaker invariant that also allowed for this boundary case.

Much to our surprise,UPPAAL again produced a counter-example: very briefly after
a train had left the crossing, a second train entered on the same track (this is allowed by
our model since a completion event for theNoTrain state may be generated immediately
after the state has been activated). Because of variable network delays, the correspond-
ing enter signal actually arrived at the controller before the precedingexit signal, that is,
when the corresponding region ofctl was still in itsCritical state. Because that state does
not define a transition for theenter signal, it was discarded, and the gate was opened
when theexit signal arrived, leaving the gate open while the second train was approach-
ing and crossing.

This counter-example represents an actual error in our gate controller, which none
of us had realized, and which would have been difficult to find by simulation alone. The
error can be fixed by adding a transition from theCritical to theEntered states of the
controller state machine of Fig. 2(d) that is triggered by anenter signal, decrements the
attributetrains, and raises adoOpen signal, cf. Fig. 9. (Observe that the followingexit
signal will be discarded at theEntered state.) Another solution, which is not currently
possible to analyze usingHUGO/RT, would be to mark theenter signal as deferred in

stateCritical. Rerunning the verification over the modified model establishes that the
invariant is now satisfied; the analysis takes ca. 2.5 seconds.

We would also like to verify the first part of the utility property of the GRC problem
that asserts that the gate is closed only if some train is crossing or close to the gate. A
first idea would be to express this property by the formula

∀2
(
Gate.Closed =⇒

∨
i=1,2

Tracki.Crossing∨ (Tracki.Approach∧Tracki.c≥ ta)
)

in terms of the track state machine shown in Fig. 5. Unfortunately, this property cannot
hold because the gate will still be closed for a short while after the trains have left. A
possible solution is to enhance the model by an additional clock measuring the time
since a train has left the gate.

Finally, we want to establish the absence of deadlocks in our solution of the GRC
problem.UPPAAL provides a designated state formuladeadlock to identify deadlock
states. Our translation, however, may introduce extra deadlocks: a full network cannot
accept any further stimuli, the event queues may overflow, and the observer automa-
ton may run into an error state. In all of these cases designated deadlock states (Full,
Overflow, Errorvu) are entered. In fact,UPPAAL reports that these are the only deadlocks
of the translated model, confirming the absence of deadlocks in the UML model.

8 Conclusions

We have described procedures for translating timed UML state machines and UML
collaborations with time constraints intoUPPAAL timed automata. The translation has
been implemented in a prototype tool calledHUGO/RT. The results of model checking
the translation of scenarios given by UML collaborations with time constraints against
timed UML state machines have been illustrated for the “Generalised Railroad Cross-
ing” case study.

The current prototype shows several limitations:HUGO/RT by now only handles a
subset of the possibilites of UML state machines. Most prominently, history pseudo-
states and deferred events still need to be implemented, events cannot have parameters,
and there can only be a single instance of any given class. Some optimizations for more
efficient analysis should also be considered. For example, the number of clocks could be
minimized by reusing clocks in different states. More importantly, the expressiveness
of UML collaborations to describe correctness properties is rather limited. We therefore
plan to integrate live sequence charts as a specification formalism intoHUGO/RT. For
specifying state-based properties on the level of state machines it would be useful to
integrate constraints in UML’s textual annotation language OCL.

Even so,HUGO/RT is a first step towards the application of model checking tech-
niques “behind the scenes” to real-time object-oriented designs, even spanning several
phases of software development. Both the design model and the properties of a system
are described in the unifying framework of the UML. For seamless integration with ex-
isting tools,HUGO/RT imports state machines and collaborations from the XMI (XML
metadata interchange) output produced by standard UML editors. The time overhead
for compiling intoUPPAAL models is tolerable and the time for verification is encour-
aging.

References

1. Rajeev Alur and David L. Dill. A Theory of Timed Automata.Theo. Comp. Sci., 126:183–
235, 1994.

2. Rodolphe Arthaud, Udo Brockmeyer, Werner Damm, Bruce P. Douglass, Francois Terrier,
and Wang Yi, editors.Proc. Wsh. Formal Design Techniques for Real-Time UML, York,
2000.http://wooddes.intranet.gr/workshop.htm.

3. Grady Booch, James Rumbaugh, and Ivar Jacobson.The Unified Modeling Language User
Guide. Addison–Wesley, Reading, Mass., &c., 1998.

4. Werner Damm and David Harel. LSCs: Breathing Life into Message Sequence Charts.For-
mal Methods in System Design, 19(1):45–80, 2001.

5. Werner Damm, Bernhard Josko, Hardi Hungar, and Amir Pnueli. A Compositional Real-
Time Semantics of STATEMATE Designs. In Willem-Paul de Roever, Hans Langmaack, and
Amir Pnueli, editors,Proc. Int. Symp. Compositionality (Revised Lectures), volume 1536 of
Lect. Notes Comp. Sci., pages 186–238. Springer, Berlin, 1998.

6. Alexandre David and M. Oliver M̈oller. From HUPPAAL to UPPAAL — A Translation from
Hierarchical Timed Automata to Flat Timed Automata. Technical Report BRICS RS-01-11,
Department of Computer Science, Aarhus Universitet, 2001.

7. Bruce P. Douglass.Real-Time UML. Addison-Wesley, Reading, Mass., &c., 1998.
8. Thomas Firley, Michaela Huhn, Karsten Diethers, Thomas Gehrke, and Ursula Goltz. Timed

Sequence Diagrams and Tool-Based Analysis — A Case Study. In France and Rumpe [9],
pages 645–660.

9. Robert B. France and Bernhard Rumpe, editors.Proc. 2nd Int. Conf. UML, volume 1723 of
Lect. Notes Comp. Sci.Springer, Berlin, 1999.

10. David Harel. Statecharts: A Visual Formalism for Complex Systems.Sci. Comp. Program.,
8(3):231–274, 1987.

11. David Harel and Eran Grey. Executable Object Modeling with Statecharts.Computer,
July:31–42, 1997.

12. Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Comparing Different
Approaches for Specifying and Verifying Real-Time Systems. InProc. 10th IEEE Wsh.
Real-Time Operating Systems and Software, pages 122–129, New York, 1993.

13. Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell.Int. J. Softw.
Tools for Techn. Transfer, 1(1–2):134–152, 1997.

14. Diego Latella, Istvan Majzik, and Mieke Massink. Automatic Verification of a Behavioural
Subset of UML Statechart Diagrams Using the SPIN Model-Checker.Formal Aspects
Comp., 11(6):637–664, 1999.

15. Luigi Lavazza, Gabriele Quaroni, and Matteo Venturelli. Combining UML and Formal No-
tations for Modelling Real-Time Systems. In8th Europ. Conf. Software Engineering, Wien,
2001.

16. Johan Lilius and Iv́an Porres Paltor. Formalising UML State Machines for Model Checking.
In France and Rumpe [9], pages 430–445.

17. Darmalingum Muthiayen.Real-Time Reactive System Development — A Formal Approach
Based on UML and PVS. PhD thesis, Concordia University, Montreal, Canada, 2000.

18. Object Management Group. Unified Modeling Language Specification, Version 1.4. Speci-
fication, OMG, 2001.http://cgi.omg.org/cgi-bin/doc?formal/01-09-67.

19. Timm Scḧafer, Alexander Knapp, and Stephan Merz. Model Checking UML State Machines
and Collaborations. In Scott Stoller and Willem Visser, editors,Proc. Wsh. Software Model
Checking, volume 55(3) ofElect. Notes Theo. Comp. Sci., Paris, 2001. 13 pages.

20. Bran Selic, Garth Gullekson, and Paul T. Ward.Real-Time Object-Oriented Modeling. John
Wiley & Sons, New York, 1994.

