
 
 
 
 
 
 
 
 
 
 
Abstract--K-means is a popular clustering algorithm that 
requires a huge initial set to start the clustering. K-means is an 
unsupervised clustering method which does not guarantee 
convergence. Numerous improvements to K-means have been 
done to make its performance better.  Expectation 
Maximization is a statistical technique for maximum likelihood 
estimation using mixture models. It searches for a local maxima 
and generally converges very well.  The proposed algorithm 
combines these two algorithms to generate optimum clusters 
which do not require a huge value of K and each cluster attains 
a more natural shape and guarantee convergence. The paper 
compares the new method with Fuzzy K-means on benchmark 
iris data.  

 
I.    INTRODUCTION 

 
Information or knowledge can be conceptualized as data 

that represents some meaning. Given a set of objects to be 
categorized, they are certain attributes of those objects that 
distinguish them from others, thus forming smaller object 
groups. Clustering aims at finding smaller similar groups, 
from a larger collection of items. Computer-assisted analysis 
must partition objects into groups, and must provide an 
interpretation for this partitioning [2]. Clustering data has 
been core to many scientific and engineering problems. Due 
it’s wide applicability in areas of pattern recognition, 
computer vision and numerous other fields, simple, fast and 
efficient methods are desirable. Many clustering methods 
exist to partition a data set by some natural measure of 
similarity [1].  This similarity measure places similar objects 
close to one another forming a group, thus several clusters 
related to objects are formed.   An ideal clustering algorithm 
is one that classifies data such that samples that belong to a 
cluster are close to each other while samples from different 
clusters are further away from each other. 

Many algorithms for clustering are available.  A popular 
algorithm is the K-means where, based on a given number of 
clusters the algorithm iterates to find best clusters for the 
objects. Another well used approach is Expectation 
Maximization algorithm (EM) [15]. The Expectation 
Maximization algorithm is the most frequently used 
technique for estimating class conditional probability density  
functions (PDF) in both univariate and multivariate cases 
[23].   

This paper discusses both the methods for clustering and 
presents a new algorithm which is a fusion of fuzzy K-
means and EM. The approach desires to come up with a 
better clustering algorithm. 

 

 
 
 
 
 
 
 
 
 
 
Section 2 discusses the importance of clustering, its 

problems and earlier approaches. In section 3, the new 
approach is presented. Section 4 shows the results obtained 
and in Section 5 these results are compared with other 
approaches and analyzed. Finally, Section 6 presents the 
future work. 

 
II.    PREVIOUS WORK 

 
A lot of algorithms have been developed that suit 

specific domains. K-means clustering is a simple and fast 
approach to cluster data. The algorithm starts with a large 
number of seeds (initial prototypes) for the potential clusters.  
The samples are assigned to each cluster based on its 
distance from the seed. The centroid is computed for each 
set and the data points are reassigned.  The algorithm runs 
until it converges or until desired number of clusters is 
obtained. Though the algorithm does not guarantee 
convergence, in practice it often converges. 

K-means has been widely used in pattern recognition 
problems. Several variations and improvements to the 
original algorithm have been done. K-means algorithm by 
MacQueen [3] is widely used for its simplicity. Another 
variation of K-means was proposed by Forgy [5]; this 
algorithm has been shown to converge to a local minimum 
[6]. Elsewhere it has been showed that there is no guarantee 
for optimal clustering, since the convergence depends on the 
initial seeds selected [7]. A large number of seeds can 
generally lead to an optimal solution, but again this cannot 
be guaranteed. Improvements to the K-means algorithm 
were made which dealt with some problems in the simple K-
means [7, 8]. K-means however is not considered as the best 
choice for clustering due it its time performance and 
requirements. K-means typically requires that clusters be 
spherical, that the data be free of noise and that its operation 
be properly initialized [18]. 

Fuzzy Logic formularizes an intuitive theory based on 
human reason of approximation. It differs from the 
traditional logic methods where crisp or exact results are 
expected. The concept of fuzzy logic was first put forth by 
Zadeh [17]. Fuzzy Logic is used in problems where the 
results can be approximate rather than exact. Hence, the 
principles of fuzzy logic suit well to clustering problems. 
The results are determined by some degree of closeness to 
true or to false.  Clustering problems generally measure 
some kind of closeness between similar objects. Fuzzy Logic 
has been widely used in various fields to provide flexibility 
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to classical algorithm, due to its applicability to problems 
that do not require hard solutions.  Earlier well known 
approach to classify data using fuzzy classification is the 
fuzzy c-means [26]. An improvement of K-means using the 
fuzzy logic theory was done by Looney [7] in which the 
concept of fuzziness has been used to improve K-means. 
Another improvement of fuzzy K-means with crisp regions 
was done by Watanabe [8]. Fuzzy K-means improves the 
basic K-means in finding good centers for clusters. An 
improved version of Fuzzy K-means was proposed and used 
[25]. This method is divided into steps, where K-means is 
performed at the first step and a fuzzy maximum likelihood 
is estimated at the second step. Then performance is 
measured and the number of clusters increased until 
convergence. This method combined fuzzy methods with 
statistical techniques to give optimal clusters. 

EM is a model based approach to solve clustering 
problems. It is an iterative algorithm that is used in problems 
where data is incomplete or considered incomplete. EM is 
widely used in applications such as computer vision, speech 
processing and pattern recognition [20, 21, 22]. EM clusters 
data, in a manner different than K-means. Unlike distance-
based or hard membership algorithms (such as K-Means) 
EM is known to be an appropriate optimization algorithm for 
constructing proper statistical models of the data [19].  EM 
aims at finding clusters such that maximum likelihood of 
each clusters parameters is obtained. EM starts with an 
initial estimate for the missing variables and iterates to find 
the maximum likelihood (ML) for these variables. 
Maximum likelihood methods estimate the parameters by 
values that maximize the sample’s probability for an event. 
EM is typically used with mixture models.   

Unlike in K-means, in clustering via EM the number of 
clusters that are desired are predetermined. It is initialized 
with values for unknown (hidden) variables. Since EM uses 
maximum likelihood it most likely converges to local 
maxima, around the initial values. Hence selection of initial 
values is critical for EM. Several techniques have been 
adopted to overcome these problems some of them are 
discussed [23]. Few techniques deal with the selection of 
initial components based on some criteria. The expectation 
maximization algorithm is an iterative technique with three 
major steps. The first step is initializing the hidden variables. 
The second step estimates the unobserved variables with 
respect to the known variables. In the third step we compute 
the maximum likelihood for the unobserved data and then 
finally check for the stop condition. 

The EM algorithm extends the basic approach to 
clustering in two important ways. Instead of assigning cases 
or observations to clusters to maximize the differences in 
means for continuous variables, the EM clustering algorithm 
computes probabilities of cluster memberships based on one 
or more probability distributions [9]. The goal of the 
clustering algorithm then is to maximize the overall 
probability or likelihood of the data, given the (final) 
clusters. Unlike the classic implementation of K-means 
clustering, the general EM algorithm can be applied to both 

continuous and categorical variables (note that the classic K-
means algorithm can also be modified to accommodate 
categorical variables) [4].  

The K-means clustering algorithm has been proven to 
be a good approach to classify data. But K-means does not 
assure the best representation or fit for the data in the model. 
K-means algorithm uses distances from the centers of 
clusters to determine which sample belongs to which class. 
The EM algorithm works well on clustering data when the 
number of clusters is known. In EM, each observation 
belongs to each cluster with a certain probability. Our 
approach combines the two above method to come up with a 
new method for better clustering. The initial clusters centers 
are found using K-means algorithm. These give us centers 
that are widely spread within the data. EM takes these 
centers as it initial variables and iterates to find the local 
maxima. Hence, we get clusters that are distributed well 
using K-means and clusters that are compact using EM. Iris 
data, which is a well known benchmark for classification 
problems, is used to test the algorithm.  

 
III.    APPROACH 

A.  Fuzzy K-means  

The K-means clustering algorithms are the simplest 
methods of clustering data. The K-means algorithm 
presented by Forgy [5] uses a set of unlabeled feature 
vectors and classifies them into k classes, where k is given 
by the user. From the set of feature vectors k of them are 
randomly selected as initial seeds. The feature vectors are 
assigned to the closest seeds depending on its distance from 
it. The mean of features belonging to a class is taken as the 
new center. The features are reassigned; this process is 
repeated until convergence. 

Due to its simple method of using feature vectors as 
seeds and arithmetic mean as center for the clusters, K-
means algorithm suffers from drawbacks. An improvement 
to this approach was to start with a huge random population 
of seeds [8]. This has been shown to find better seeds, since 
the initial seeds are more than K, and are distributed in the 
data set. Even though this was an improvement on the 
simple K-means, it still lacked in finding better centers, 
since mean does not always represent the center of a given 
data.  A modified K-means [7] was used which uses 
weighted fuzzy average instead of mean to get new cluster 
centers. Let {x1,…, xP} be a set of P real numbers. The 
number of iteration is given as r. The weighted fuzzy 
average (WFA) is given by 
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An initial mean is taken and a Gaussian is centered over 

the mean and weight wp is obtained for xP. Feature vectors 
are assigned to each seed, empty or small sets are 
eliminated. Cluster centers are replaced with weighted fuzzy 



averages and feature vectors are reassigned. This process is 
repeated until convergence. 

  
B.   Expectation Maximization 

The main steps of the EM algorithm are shown below. 
We follow the procedure that was shown earlier [10]. The 
steps for our implementation of EM are as follows. We have 
to initialize with a guess for mean and standard deviation. 
The EM algorithm then searches for a ML hypothesis 
through the following iterative scheme. 

 
• Initialization step: initialize the hypothesis θ0=( µ0
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Where: K is the current number of Gaussians. σ is the 

standard deviation, θ0 is the estimate at 0th iteration, µ is the 
mean. 

• Expectation step: estimate the expected values of 
the hidden variables zij ( mean and standard deviation)  using 
the current hypothesis θt=( µt
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Where: t is the number of the iteration, ( )

ik
zE  is the 

expected value for the hidden variables (namely mean and 
standard deviation), k is the dimension, σ is the standard 
deviation. 

• Maximization step: provides a new estimate of the 
parameters. 
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• Convergence step: if || θ t+1 - θ t|| < e, stop (finish 

iteration); otherwise, go to step 2.  
 
The hidden variables are the parameters of the model. In 

our case we use mixtures of Gaussians; hence our hidden 
variables are the mean and standard deviation for each 
Gaussian distribution. We start with an initial estimate of 
those parameters and iteratively run the algorithm to find the 
maximum likelihood for our estimates. For convergence we 
run it number of times so that the values stop increasing. 

The reason we are using EM is to fit the data better, so 
that clusters are compact and far from other clusters, since 
we initially estimate the parameters and iterate to find the 
maximum likelihood for those parameters. EM uses the 
Maximum likelihood, in which it assumes that the 
parameters are fixed; the best estimate of their value is 

defined to be the one that maximizes the probability of 
obtaining the samples actually observed. In most cases the 
observed data could be the samples that are used for training. 

 

C.  Fuzzy K-Means Expectation Maximization (FKEM) 
Algorithm 

We use the approach similar to the one presented by 
Looney [7] to obtain the initial clusters using weighted fuzzy 
averages, since this method works better than using simple 
average. We start with the weighted fuzzy K-means 
averaging algorithm to classify the data into the number of 
clusters desired, based on its features. The weighted fuzzy 
K-means algorithm given described above is combined with 
EM. A large number K of uniformly distributed random seed 
vectors for the cluster centers are selected. Then we 
eliminate any seed vectors that are too close to other seed 
vectors and reduce K (the number of clusters) accordingly. 
That is done by computing the distance between all the 
clusters, and eliminating the clusters that their distances are 
less than !(a value that is selected experimentally). 

Assigning each of the feature vectors to the nearest 
random seed vector, is the next step, and it can be achieved 
by computing the distance between each feature vector and 
all other seed vectors. Then the feature vector will be 
assigned to the seed vector such that the distance between 
them is the shortest. Also, each time an assignment happens 
the number of feature vectors assigned to that seed vector 
will be incremented. All seed vectors that are the centers of 
empty clusters, or have fewer vectors that selected p vectors, 
are eliminated and K is reduced. 

Each cluster is then given a new prototype with the 
current K, and that would be the weighted fuzzy average 
(WFA) of each class, by initially taking the sample mean 
µ(0) and variance σ2 to start the process. Then center a 
Gaussian over the current approximate WFA µ(r) and iterate 
as follows: 
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In this step, we calculate the WFA for each cluster to be 

the new class prototype. The next step is to compute the 
Maximum Likelihood estimation for the current K clusters 
using EM as described above and get new centers for each of 
the clusters. Then each of the feature vectors should be 
assigned to the class with the nearest weighted fuzzy 
average. After that, every two clusters whose prototypes are 
closest are merged, the average of the two prototypes will be 
used as the new prototype (seed) and K will be reduced 
accordingly. Next, empty clusters are eliminated, and the 



Method         # Initial Seeds (K)     # Points Classified   
Incorrectly              

 
 Fuzzy K-means 150   8 
 FCFM  150   0 
 FKEM  150   0
    

 
Fuzzy K-means 50   15 
FKEM  50     0
    
Fuzzy K-means    30   29 
FKEM              30   0 
 
FKEM  10   0 
 

number of clusters K is reduced. This process is repeated 
until we reach the desired number of clusters. 

 
IV. RESULTS 

 
In this section we present the results obtained by the 

proposed algorithm FKEM. The algorithm is tested on IRIS 
data. Finally the section compares the results with Fuzzy K-
means.  

IRIS data first used by Fisher is considered to be a well-
known benchmark for classification problems [24], and has 
been used in several classification tests [13, 14, 16]. The iris 
data set is a well known data set used for demonstrating the 
performance of classification algorithms [14]. IRIS data is a 
standardized data that has 150 feature vectors and can be 
described to be noisy and non-separable. IRIS data broadly 
represents two classes (Setosa, Versicolor, and Virginica) of 
flowers, in which Setosa is in one class and Versicolor and 
Virginica in the second class. Each sub-class has 50 feature 
vectors, and each vector has four features: sepal length, sepal 
width, petal length, petal width. The data needs to be 
classified in three classes with 50 samples in each class. 
Each sample has four features. The data needs to be 
classified into two clusters.  

Analyzing the data is a very important step that should 
be done before any implementation work, and in this case it 
is important to determine which attributes or variables need 
to be used as determinants of the different classes. The 
parameters for our problem are the mean for the centers 
(equation 5). We start with an initial estimate of those 
parameters and iteratively run the algorithm to find the 
maximum likelihood for our estimates. This is an 
unsupervised method and hence the data is not trained. We 
use only three features for classification since only three of 
them can classify the IRIS data. 

A Fuzzy K-means was used to classify the data and a 
comparison of results obtained from Fuzzy K-means and the 
algorithm proposed in the paper is given. The Initial seeds in 
both the cases were generated randomly from the feature set.  

 
 

Table 1.  Comparison of results of FKEM with other clustering 
methods 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Number of feature vectors that were incorrectly classified is 
given in the third column. The table shows results obtained 
from a Fuzzy K-means clustering and FKEM. Results are 
also compared with a Fuzzy Clustering and Fuzzy Merging 
(FCFM) approach to clustering [12]. FCFM is an interactive 
approach that asks users to make choices such as merging 
clusters, elimination of small clusters, etc. 

 
 

V. CONCLUSIONS 
 
The paper reviews the problems with simple K-means, 

and suggests improvements to the method. We desire to 
obtain optimal clusters with a method that is stable. K-means 
is considered to be one of the simple/fast methods to cluster 
data. Expectation Maximization is used to fit data better 
when the distribution or model of the data is known. When 
these two are combined we will get a clustering method that 
not only fits the number of clusters but also tries to make 
them compact and more meaningful. Statistical techniques 
have been combined before with fuzzy logic theory and have 
shown to yield good results. K-means can find seeds in the 
global space, whereas EM finds local maxima. Using the 
approach to get the maximum likelihood of the seeds found 
by K-means, we start with a big set and get local maxima 
around each one of them, thus increasing the chances of 
finding the best centers. Using the new approach, the 
Gaussian for the clusters fits the data better, since their 
parameters (mean and standard deviation) are computed 
based on the data and not randomly. Using EM along with 
Fuzzy K-means will make the classification process slower. 
Since the new method finds results for small value of K 
selected initially we can argue that we reduce the number of 
iterations overall.  

From the results obtained we can conclude that Fuzzy 
K-means was not able to cluster data correctly when the 
initial value of K was small. If these K seeds are not good 
(far from the optimal centers, not scattered well), Fuzzy K-
means may not find optimal clusters, since the algorithm 
uses the average (WFA) of these initial K seeds. If these K 
seeds are scattered well enough the algorithm may perform 
well, but this cannot be guaranteed. Hence, if good seed 
centers are not chosen, Fuzzy K-means will not perform 
very well. Since we only use the centers chosen initially and 
get centroids for the data. If the correct random seeds are not 
chosen, EM can still perform to make the K-means work 
correctly, since EM will iterate to find best centers for the 
given data. This suggests that Fuzzy K-means along with 
EM gives a better clustering, than Fuzzy K-means.  K-means 
has been used widely to initialize seeds for EM, we combine 
these methods and hence can get both good initial clusters. 
With K-means convergence is not guaranteed and EM 
guarantees elegant converges.  

 
 
 
 



VI. FUTURE WORK 
     
Both EM and K-means require the number of clusters to 

be known. It is ideal to have an approach that determines the 
number of clusters based on the data. EM uses fixed number 
of mixtures (Gaussians) to represent data. We would like to 
expand this idea to use weighted fuzzy average in EM to 
determine the number of mixtures/clusters. Another 
extension would be to use validation methods to find the 
right number of clusters. Using a log likelihood function 
could be a possible cluster validation method. 
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