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Within the last two decades, a substantial amount of research efforts has been directed at the 
application of Soft Computing (SC) techniques in engineering. This paper provides a systematic review 
of the literature emanating from these efforts with particular focus on materials engineering. The 
primary aim is to provide background information, motivation for applications and an exposition to the 
methodologies employed in the development of soft computing technologies in engineering. Our review 
shows that all the works on the application of SC to materials engineering have reported excellent, 
good, positive or at least encouraging results. In our opinion, the lack of negative results might be due 
to the simplification of materials engineering problems to manageable and predictable situations. We 
draw particular attention to the strengths and weaknesses of soft computing techniques in the context 
of materials engineering applications. Our appraisal of the literature suggests that the interface 
between materials engineering and intelligent systems engineering techniques, such as soft 
computing, is still blur. The need to formalise the computational and intelligent systems engineering 
methodology used in materials engineering, therefore, arises. We also provide a brief exposition to our 
on-going efforts in this direction. Although our study focuses on materials engineering in particular, we 
think that our findings applies to other areas of engineering as well. 
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INTRODUCTION 
 
The pervasive use of soft computing in various engineer-
ing applications makes it an indispensable tool in the de-
velopment of products that have implications for the hu-
man society. A case in hand, which is the focus of this 
paper, is soft computing applications in the areas of ma-
terials engineering. The significance of engineering mate-
rials to the functioning and technological development of 
human society is well documented (Dobrzanski, 2006). 
Natural materials have physical, chemical and mechani-
cal properties that have been studied and well documen-
ted in the materials science literature. Materials science 
literature also documents knowledge that aids the under-
standing of the causative relationships between materials 
constituents, structure and properties at a level that al-
lows composition and processing parameters to be selec-
ted to create composite  materials  with  target  properties 
 
 
 
*Corresponding author. Email: t.odejobi@4c.ucc.ie. Tel: 
+353-21-4902795 Fax: +353-21-4274390. 

(Zhang et al., 2008; Ashby, 2000). Such relationships can 
be discerned by empirical experiments or by the use of 
mathematical and/or computational models. 

Modern engineering materials, from those used to 
make simple things such as our tooth brush to complex 
things such as the computer and the airplane, do not oc-
cur naturally. The need to engineer materials that meets 
specific human needs then arises. To achieve this, mate-
rials engineers apply the knowledge generated in mate-
rials science. Materials engineering encompasses the 
science and art involved in the conceptualisation, specifi-
cation, design, analysis, fabrication and evaluation of ge-
neric materials in their various forms and in different ope-
rating conditions with the aim of developing materials for 
an application. The materials engineer's job is constrain-
ed by the technology available, the environment in which 
the materials will be used as well as the type of applica-
tion that the materials will be put. For example, nuts and 
bolts that will be used in computer hardware will have dif-
ferent requirements from those that will be used in com-
mercial vehicles. The requirements for the computers and 



 
 
 
 
vehicles meant for civil applications are different from 
those meant for military applications. The same require-
ments will not apply if the nuts and bolts will be used in 
different environment: for example those that will be used 
in warm and humid weather, such as sub-Saharan Africa, 
and those meant for cold and wet weather, such as some 
European countries or Canada. The nature, frequency 
and kinds of loading and unloading of the materials are 
another crucial component of the materials engineering 
decision. For example, the crash of BOAC Flight 781 in 
1954 was attributed to ”metal fatigue” caused by the re-
peated pressurisation and de pressurisation of the aircraft 
cabin". The job of the materials engineer is to develop 
new materials by taking into consideration these very 
complex constraints, while bearing in mind non-functional 
constraints, such as price and aesthetic values emanate-
ing from cultural preferences. Another interesting dimen-
sion to the constraint is the current trend in technological 
advances and the need to develop more user friendly 
technologies that is functional, economical, and easy to 
dispose as well as with low environmental footprint. 

There is a huge and growing amount of materials (Er-
molaeva et al., 2002; Mates, 2008) available to modern 
materials engineers. The many features used to describe 
these materials, together with the confounding nature of 
the interaction between these features, makes manual or 
adhoc approach to materials engineer impractical. Also, 
the volume of output suggest the need to reduce fabrica-
tion costs by deploying tools and techniques that will re-
duce the gaps between users' requirements and the spe-
cifications of fabricated materials. These complexities, 
and the accompanying rapid rate of change in the de-
mand for new materials, present new challenges to mate-
rials engineers (Dobrzanski, 2006). This motivates the 
development and application of more versatile techniques 
on the one hand; and on the other hand, the need to au-
tomate specific aspects of the materials engineering pro-
cess. At the moment, soft computing (SC) based techni-
ques and methods are becoming more popular as they 
are gaining prominence in various areas of engineering. 
In materials engineering, SC techniques have been suc-
cessfully applied in materials design, improvement, and 
selection as well as in the control of the processes for 
materials fabrication. This paper has three main object-
tives, which are to: 
 
- Provide a short background to the SC methods that are 
relevant to materials engineering.  
- Provide a review of the state of the art in the application 
of these methods in materials engineering. 
- Present a brief discussion on our proposed framework 
within which the SC methods could be more productively 
deployed in materials engineering. 
 
In the following Subsection 1.1, we describe the materials 
engineering problem, from a computational perspective, 
as a multi-criteria decision process and we discuss the li-
mitations of the analytical  approach  at  adequately  add- 
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ressing this problem in Subsection 1.2. We provide a 
background to the soft computing approach to materials 
engineering in Section 2. In Sections 3, 4, 5 and 6 we 
provide a review of the artificial neural networks, fuzzy lo-
gic and genetic algorithms and the hybrid techniques, re-
spectively, as applied in materials engineering. Section 7 
documents our ongoing work on the formalisation of SC 
for application in materials engineering while Section 8 
concludes this paper. 
 
 
The materials engineering problem 
 
The processes that underlay the materials engineering 
decisions can be recast as a linear programming problem 
(Sen and Yang, 1995; Balcom and Curtner, 2000; Ermo-
laeva et al., 2002; Goupee and Vel, 2007). Suppose that 
there are a set of n generic or constituent materials, M = 
{m1, m2,.., mn}, from which a composite, C, is to be creat-
ed. Let (a1, a2,.., an), be the amount of each materials. 
For each combinations of {m1, m2,.., mn} we can deter-
mine properties, e.g. tensile strength, young modulus, 
that will give a desired attribute of the composite C. For 
example, if our goal is the tensile strength, we can use 
the above information to mathematically express the ten-
sile strength, t, of the target material C as follows: 
 

 
 
Where each ti is a quantitative representation of the ten-
sile strength of materials mi.  
 
The salient assumption here is that the tensile strength of 
materials is additive. Note that some of the ti may actually 
be zero, for example if a material does not exhibit the 
property of interest. The aim is to choose only from 
among those materials which meet the minimum require-
ment, say t units of tensile strength, in the target compo-
site materials C. We, therefore, demand that Equation 1 
satisfies the linear inequalities of the form: 
 

 
 
The above expression is only for one attribute of the com-
posite C, that is, tensile strength. To account for other at-
tributes, similar mathematical expressions must be con-
structed. Of course Equation 2 can be solved easily by 
choosing sufficiently large quantity of material values. 
However, when engineering constraint (Gutteridge and 
Waterman, 1986) such as materials cost and weight, are 
factored in, then the problem becomes a combinatoric 
one. For example, if the aim is to reduce material cost in 
terms of price, P, and the unit price of each material amo-
unt (a1, a2,..,an),  is (p1, p2,..,pn), then the aim will be to 
solve Equation 2 subject to the constraint in the linear 
cost expression given by: 
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The problem is to choose a combination of generic mate-
rials so as to satisfy the requirement (that is, the linear 
inequalities) of the composite at the minimum cost (that 
is, linear cost expression). This is clearly a multi-objective 
optimization problem and there are analytical tools that 
can be used or adapted for its solution (Goupee and Vel, 
2007; Balcom and Curtner, 2000; Ermolaeva et al., 2002; 
Akinola, 2001). For example, if we use the following ob-
jective compound function (Ashby, 2000): 
 

 
 
Where �i and ci are weight coefficient and material index, 
respectively, for the ith objective, then each of the 
objectives can be viewed as a constraint on the property 
of the desired composite material, that is, C.  
 
This problem generally involves three engineering 
decision tasks: 
 
- The acts of generating design options, each of which 
consist of the specific choice of n generic materials and 
fabrication processes;  
- The design feasibility conditions, which constraint the 
possible design options generated; 
- An index associated with each design option, which re-
presents a weighted average of cost (in terms of benefit) 
for the design options. 
 
The problem is to find a design that satisfies 2 and mini-
mises 3. 
 
 
Analytical approach to materials engineering 
 
In the analytical approach to materials engineering, the 
properties of materials are measured and specified as 
numbers or points, which then become data reflecting 
certain states of materials. Mathematically, such data are 
modelled as a realization of an appropriate variable using 
a suitable data type (Bandemer and Lorenz, 1998). Altho-
ugh, the process for generating the data is not random, 
random or pseudo-random data are frequently used 
when building models in materials engineering.  

Analytical approach to materials engineering uses tech-
niques developed around mathematical models. This in-
cludes finite elements method (FEM) (Jeffreys, 1988; 
Zienkiewicz and Taylor, 1994; Sampath and Zabaras, 
1999), statistical approach based on the Analysis of Va-
riance (ANOVA) as well as regression analysis techni-
ques (Montgomery, 1997). The limitations of these appro-
aches to materials engineering arose from the low cardi-
nality (Freeman, Antonucci, and Lewis, 2000) of materials 
data as well as the set of a priori assumptions for their 
application. It is well known that analytical methods are 
poor at handling data with low cardinality or data express- 

 
 
 
 
ed in linguistic form (Graebe, Goodwin, and Elsley, 
1995). The materials data provided in materials science 
literature must, of necessity, be augmented with material 
behaviour information which agrees closely with experi-
mental observations, for them to be useful in materials 
engineering. These observations are expressed linguisti-
cally and the complexity of the problem requires simplifi-
cation, resulting in a manageable but less accurate mo-
dels. In Rao and Mukherjee (1996), for example, it was 
shown that analytical models for simulating the macro-
mechanical behaviour of ceramic-matrix composite is dif-
ficult, necessitating the use of simplifying assumptions 
which compromised accuracy. The design approach em-
ployed by materials engineers in real-life involves con-
ception and reasoning about abstract objects using their 
cognitive ability, which is neither numerical nor random. 
This process is best modelled linguistically as such is clo-
ser to the uncertainty, imprecision and vagueness that 
characterises natural materials properties. Indeed Lee 
and Kopp (2001a) argued that it is difficult to construct a 
mathematical model when automating metal forming pro-
cesses, owing to their non-linear and non-stationary cha-
racteristics. Also Elishakoff and Ferracuti (Elishakoff and 
Ferracuti, 2006) observed that: 
 

“On one hand, most engineers, as it were, neglect 
uncertainty, but on the other hand, the allowable 
stress level was introduced long time ago as a ratio 
of the yield stress to the so-called safety factor to 
provide the region for the safe utilization of the struc-
ture. Thus the uncertainty is introduced into practice 
by the back door” (Elishakoff and Ferracuti, 2006). 

 
The discussions above indicate that the materials engi-
neering process is complex as design decisions have to 
be based on incomplete and uncertain information or da-
ta. Sometime, the design decisions are based on uncer-
tain and incomplete understandings of the process thro-
ugh which the final product will result. Most of such pro-
cess are intuitive and cannot be described in a definitive 
manner that facilitates mathematical rendering. For 
example, the mechanical properties of metals reveal the 
elastic and inelastic reaction when force is applied. This 
involves relationship between stress and strain, as repre-
sented by elasticity, tensile strength as well as fatigue li-
mit. In the metal industry, these variables are typically de-
rived from a micro-structural investigation of materials, 
usually analyzed visually (Voracek, 2001a). The beha-
viour of composite, for example, is highly sensitive to a 
number of design variables such as percentage reinforce-
ment, interface shear strength, geometrical and material 
properties of the constituent materials and how they map 
onto the mechanical behaviour of the composite. This 
behaviour cannot be accurately modelled using simple li-
near relations, even when the number of the design va-
riables is small. The degree of non-linearity and the ex-
tent of interaction of the constituent is also not clearly 
known (Rao and Mukherjee, 1996). 



 
 
 
 

The sensitive behaviour of materials and their process-
ing, as highlighted above, account for why the materials 
engineering process employs design judgments and ex-
pert opinion that are qualitative, often combinatorial and, 
in most cases, can only be represented heuristically 
(Trawlers et al., 1995a). Computer simulations have be-
come essential in the development of modern materials 
(Abreu, 2007) as they facilitate experimentation with va-
rious ideas before the final product is fabricated. In recent 
times, however, tools from Artificial Intelligence (AI) have 
become popular in materials engineering. This includes: 
artificial neural networks and fuzzy logic. In Wang, Feng, 
Yan, and Fuh (1996) neural networks representing the 
mapping function for an expert system was used for pro-
duction rules in materials design. It was shown that, com-
pared with the traditional production rule based expert sy-
stems, neural network based expert systems are more ef-
fective in approximate reasoning. In Voracek (2001b), a 
method based on inductive learning and classification 
principle was selected and justified as a suitable tool for 
predicting the mechanical properties of cast irons. It was 
shown that the intelligent approach to materials prediction 
is a good alternative to the traditional ways of laboratory 
investigations and processing of experimental data. In the 
domain of optimisation and nuclear production process-
ing, Trauwaert, Reynders, and Roy (1995b) have also 
shown that classical clustering problems are better mode-
lled using fuzzy logic rather than with a crisp based me-
thod. 

The work summarised above suggests that researchers 
are becoming more aware of the uncertain characteristics 
of natural materials and the limitations of mathematical 
and analytical tools at modelling them realistically. In ad-
dition to numerical data, modern methods also integrate 
verbal and textual expression, graphics as well as objects 
and frames (Dym, 1998) into the materials properties de-
scription process. A new trend, evolving in material engi-
neering, is a paradigm which exploits a systematic inte-
gration of the traditional analytical and modern intelligent 
techniques in the development of computational solu-
tions. The relevance of this paradigm is documented in 
the literature, which indicates that the number of success-
ful computing-based materials engineering applications is 
increasing (Oduguwa, Tiwari, and Roy, 2005; Mantere 
and Alander, 2005; Hoffmann et al., 2005; Kamiya et al., 
2005; Mellit and Kalogirou, 2008; Flintsch and Chen, 
2004). 
 
 
Soft-computing techniques 
 
The term Soft Computing (SC) encompasses many tech-
niques which include: Fuzzy Logic (FL), Neuro-Comput-
ing (NC), Probabilistic Reasoning (PR), Evolutionary 
Computing (EC) or Genetic Algorithms (GA), Chaotic Sy-
stems (CS), Belief Network (BN) and part of Learning 
Theory (LT) (Zadeh, 1965, 1994, 1995; Mellit and Kalo-
girou, 2008). SC techniques are different  from  analytical  
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approach in that they employ computing techniques that 
are capable of representing imprecise, uncertain and va-
gue concepts (Voracek, 2001a; Kulak et al., 2005; Kahra-
man, 2007; Guarino et al., 2009). Analytical, also called 
hard computing, approaches on the other hand use bina-
ry logic, crisp classification and deterministic reasoning. 
In their editorial review, (Hoffmann et al., 2005) observed 
that: 
 

“In contrast with hard computing methods that only 
deal with precision, certainty, and rigor, soft comput-
ing is effective in acquiring imprecise or sub-optimal 
but economical and competitive solutions. It takes 
advantage of intuition, which implies the human 
mind-based intuitive and subjective thinking is imple-
mented here”. 

 
Techniques in SC are able to handle non-linearity and 
they offer computational simplicity when compared with 
the analytical methods. These techniques have been 
shown to be able to manage large amount of information 
and mimic biological systems in learning, linguistic con-
ceptualisation, optimisation and generalisation abilities. 
Soft computing techniques are finding growing accep-
tance in materials engineering and three of them are po-
pular, namely: (i) Fuzzy Logic (FL), (ii) Artificial Neural 
Networks (ANN) and (iii) Genetic Algorithms (GA). There 
are well established methodologies for integrating SC 
techniques to realise synergistic or hybrid models with 
which better results could be obtained (Zadeh, 2001). 
The use of hybrid techniques is also growing. The litera-
ture on the application of soft computing to materials en-
gineering (ME) is so vast and so rich that it will be im-
practical to attempt a complete review in a journal article. 
To this end, we focus on those papers that we consider 
to be of interest, not only in terms of their contribution to 
knowledge and good practice, but also those that help us 
to draw attention to some observed or perceived lapses 
in the application of SC techniques.  

Specifically, we consider papers written in the English 
language and of the following types:  
 
i) Journals 
ii) Con-ference proceedings and preceding 
iii) Workshop pre-sentations and 
iv) Standard text-books. 
 
The majority of the work cited in this paper is journal arti-
cles. The reason for this is that we want to report on soft 
computing applications that are established in ME. Our 
review methodology focuses on:  
 
i) The justification for the application of SC method. 
ii) The specification of the problem and its significance. 
(iii) The model development (design, implement and eva-
luation). 
v) The outcomes and values of the solutions developed. 
In the following  subsections,  we  summarise  the  funda- 
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Figure 1. Model of a neuron. 

 
 
 

Table 1. Artificial neural network activation functions. 
 
Function name  Mathematical expression 
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mentals of each of the SC techni-ques and review their 
applications in modern materials engineering tasks (Eich-
horna et al., 2005) based on the above stated criteria. 
 
 
ARTIFICIAL NEURAL NETWORKS 
 
Artificial Neural Network (ANN) is also called connectio-
nist model, neural net, or parallel distributed processor 
(PDP) model (Wang, 1997). Underlying the computatio-
nal power of the ANN is the motivation to model the neu-
rological activity in the human biological system. How-
ever, the ANN is a gross simplification of the human neu-
rological system as the human nervous system com-
prises billions of various types of neurons whose struc-
ture, length and functionality depend on their location in 
the body (Schalkoff, 1997). Good reviews of the ANN 
technique are documented in (Basheer and Hajmeer, 
2000; Waszczyszyn and Ziemianski, 2001; Mellit and Ka-
logirou, 2008) from which much of the materials presen-
ted here are drawn. The ANN comprised of interconnect-
tion of simple, non-linear computational elements (Wang, 
1997; Lippmann, 1989) which are  called  nodes  or  neu- 

 
 
 
 
rons. A neuron typically consists of three components: (i) 
a group of weights, (ii) a summation function, and (iii) a 
non-linear activation function f(R) (Figure 1). An ANN can 
contain a large number of neurons. These neurons are 
linked with variable weights. 

The computational behaviour of an ANN model is de-
termined by the values of the weight associated with 
each neuron. To derive the behaviour of an ANN, it is 
usually trained on sample data. The sample data is nor-
mally represented in the form of an input matrix, X, and 
the corresponding output vector, Y. The job of the ANN is 
to learn the input-output relations embedded in X � Y 
through a learning process. The operations of the pro-
cessing units consist of a number of steps.  First, each 
input field xi is multiplied by a corresponding wei-

ght . The product of each input field and its cor-
responding weight are then summed to produce the cu-
mulative weighted combination R, as shown in Equation 
5: 
 

                    (5) 
 
In order to adjust the behaviour of the neurons a quantity 
�, called the bias, can be used as threshold. In that case 
Equation 5 will take the form: 
 

         (6)            
 
The result, R, is further processed by an activation func-
tion f (:) to produce one output signal y. We can express 
the computation of y mathematically as: 
 

                                  (7) 
 
Depending on the behaviour of the system being modell-
ed, the function f() can take many forms, e.g. linear, sig-
moid, exponential (see Table 1). The sigmoid, linear, and 
Gaussian functions are popular in materials engineering 
(Haykin, 1999; Mellit and Kalogirou, 2008; Tsai and 
Wang, 2001). 

The computed value of y can serve as input to other 
neurons or as an output of the neural network depending 
on its position in the network configuration. Each node in 
the ANN is responsible for a small portion of the pro-
cessing task and they are able to perform this task after a 
training session. The training process usually involves mi-
nimising the sum of square error between actual and pre-
dicted output. The ANN captures the behaviour in the 
available training data by continuously adjusting and fi-
nally determining the weight connecting neurons in adja-
cent layers. The most commonly used learning  algorithm 



 
 
 
 
is the backward error propagation (also called the back-
propagation or back-prop) algorithm. This algorithm uses 
the gradient descent method in its implementation (Ana-
raki et al., 2008). Theoretically, a limited amount of train-
ing data points does not guarantee that a neural network 
will generalise the “true" behaviour desired. In order to 
verify the result of generalization, therefore, cross-valida-
tion (Jeffreys, 1988) is used.  

The cross-validation process involves the sectioning of 
the parent database into three subsets (Basheer and Haj-
meer, 2000): training, test, and validation. The training 
subset usually includes all the data belonging to the pro-
blem domain and is used in the training phase to update 
the weights of the network. The test subset is used during 
the learning process to check the network response for 
untrained data. The data used in the test subset are 
usually distinct from those used in the training. Based on 
the performance of the ANN on the test subset, the archi-
tecture may be changed and/or more training cycles ap-
plied. The third portion of the data is the validation subset 
which usually includes sample data different from those 
in the other two subsets. This subset is used after select-
ing the best network to further examine the network or 
confirm its accuracy before being implemented in real-life 
systems. There are no definitive rules for determining the 
required sizes of the various data subset; however a rule 
of thumb is to use the ratio 60: 20: 20 for sectioning of the 
parent database into the training, test, and validation sub-
sets. 

ANN with one hidden layer have been found to be ef-
fective for most practical applications in ME. Several ANN 
architectures and algorithms have been developed and 
documented in the literature (Haykin, 1999; Cheroutre-
Vialette and Lebert, 2000; Mellit and Kalogirou, 2008). 
Three of such architecture that was used in the materials 
engineering include: (i) the multilayer perceptron (MLP); 
(ii) the radial basis function network (RBN); and (iii) the 
recurrent neural network (RNN). The structure and algo-
rithm for these ANN architectures are briefly discussed in 
the following subsections. 
 
 

Multilayer perceptron 
 

The Multi-layer Perceptron (MLP) is perhaps the most po-
pular ANN model in materials engineering. This is proba-
bly due to its simplicity and the availability of software for 
its implementation. MLP has been described as a univer-
sal approximator (Hornik, Stinchombe, and White, 1989) 
due to its robustness at approximating real-world data. 
The structure of a typical MLP is shown in Figure 2. The 
basic MLP networks consist of neurons arranged in 
layers. Connections are established between two succes-
sive layers only and from neurons in a preceding layer to 
another in a succeeding layer only. The connections have 
weights associated with them and their operations as 
discussed in artificial neural networks 

The first layer is the input layer, and it establishes the 
first contact points to the data. The output layer is the last 
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Figure 2. Multi-layered perceptron architecture. 

 
 
layer in the network and it is responsible for presenting 
the result of the ANN to the outside world. There is at 
least one layer, called the hidden layer, between the input 
and the output layers. In a chain-like formation, the output 
of the neurons in the input layer is fed into the input of the 
neurons in the hidden layer neurons. The output of the 
last hidden layer neurons are fed into the input of the out-
put layer neurons. Succeeding layers in the network 
sums the inputs of previous layers, adds a bias to the 
sum and apply the activation function to produce its own 
output. The last layer in the MLP architecture often has li-
near activation function. 
 
 
Radial basis function network 
 
The Radial Basis Function (RBF) Network is a 2-layer 
network in which the learning process is achieved in two 
different stages (Lippmann, 1989; Schalkoff, 1997; Wang, 
1997). In the first stage, the input data set X alone is 
used to determine the parameters of the basis functions, 
that is, the first-layer weights. As only the input data are 
used, this training method is called unsupervised. The 
first layer weights are then kept fixed while the second 
layer weights are determined in the second phase of the 
training. The second stage is supervised as both input 
and target data are required. Optimal training parameters 
are achieved using the classic least squares approach. 
Figure 3 shows the configuration of a typical RBF.  
 
 
Recurrent neural network 
 

The Recurrent Neural Networks (RNN) is not as popular 
as the MLP and RBF network architecture in ME applica-
tions. RNN have however, been shown to possess po-
werful computational capabilities for modelling behaviour 
commonly associated with materials dynamics (Haykin, 
1999; Elman, 1990; Draye et al., 1996; Parlos et al., 
1994; Seker et al., 2003; Giles et alk., 1995). Several 
RNN architectures have been proposed in  the  literature, 
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Figure 3. Radial bias architecture 
(Haykin, 1999) 

 
 
 

 
 
Figure 4. RNN-Jordan architecture. 

 
 
 

 
 
Figure 5. RNN-Elman architecture 

 
 
however three of them are more commonly used in engi-
neering applications: Fully RNN, Jordan, and Elman 
(Giles et al., 1995; Cheroutre-Vialette and Lebert, 2000; 
Seker et al., 2003). The basic structures of these RNNs 
(Figures 4,5 and 6). The important aspect of RNN is that, 
unlike the MLP and RBN, it allows the output of neurons 
in succeeding layers to be connected to those in the pre-
ceding ones. The learning process in RNN comprises in-
put neurons, processing  neurons,  feed-forward  and  re- 

 
 
 
 

 
 
Figure 6. RNN-fully connected architecture. 

 
 

current connections. Some of the processing neurons are 
assigned as output neurons. The output of a processing 
neuron may be connected to all processing neurons in 
the model. For example, in a fully connected recurrent 
network, every processing neuron is connected to all pro-
cessing neurons including itself. The training and opera-
tion of the RNN is dynamic in that it depends on time 
step. The output of a processing neuron at the current 
time step depends on the input signals and feedback sig-
nals in the previous time step. 
 
 

Applications of the ANN technique 
 

As shown in Figure 7 the application of ANN in materials 
engineering is increasing in popularity from only about 3 
papers in 1995 to more than 20 papers reporting the ap-
plication of ANN in 2007. In most of the papers we re-
viewed, the process of developing an ANN based model 
consists of the following stages (Rao and Mukherjee, 
1996; Basheer and Hajmeer, 2000): 
 

- Generation of training data. 
- Selection of a network type. 
- Selection of the input and the output for the network. 
- Design of a suitable network configuration. 
- Selection of a suitable training strategy. 
- Training and validation of the resulting network. 
 
As shown in Figure 8, ANN based tools have been ap-
plied in prediction, modelling, control, identification design 
and optimisation areas of materials engineering. The ma-
jority of the applications we reviewed, about 48%, have 
been in the area of materials properties prediction. This is 
closely followed by materials properties modelling, about 
37%. Works in the areas of materials properties optimisa-
tion and design account for 5 and 3%, respectively, and 
model identification and materials process control repre-
sent 1% each of the reviewed work (Table 3). Most of the 
publications used the parameters in Table 2 to describe 
their models. The majority of the work review used the 
MATLAB software for implementing their models. For 
example, in some work, (Chakraborty, 2004), the number 
of input to the 
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   Figure 7. Graph of number of publications by year. 

 
 
 

 
 
 Figure 8. Application of ANN in ME 

 
 
 
ANN is very large. This choice of ANN design makes it 
difficult to adequately analyse the model behaviour and 
explain its operation. We are of the opinion that, if the in-
put to an ANN model is more than five, the model should 
be modularised for effective analysis. Some work (Gues-
sasma et al., 2004; Guler and Artir, 2007) used ANN ar-
chitecture with more than two hidden layers. The practi-
cability of such model in materials engineering application 
in terms of economy of tool is diff cult to justify as it is well  

 
known that ANN with one layer will produce a good ap-
proximation. In most of the work we reviewed, however, 
ANN models have been shown to generate better pre-
dictions than the classical linear regression (Rao and 
Mukherjee, 1996; Cai et al., 2008). One of the reasons 
frequently cited for the use of ANN in materials engineer-
ing is its ability to recognise and learn the underlying non-
linear relations between input and output without the 
need to construct an explicit mathematical model. This  is 
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Table 3. Applications of ANN in ME. 
 

Applications Publications % of Total 

Prediction 

(Luong and Spedding, 1995; Rao and Mukherjee, 1996; Wang et al., 
1996; Waszczyszyn and Ziemianski, 2001; Chen, 2001; Lu et al., 
2003; Genel, 2003; Fotovati and Goswami, 2004; Altinkok and Koker, 
2004; Seyhan et al., 2005; Song et al., 2005; Chakraborty, 2005; 
Durmus and Ozkaya, 2006; Altinkok and Koker, 2006; Cai et al., 
2007; Col et al., 2007; Erzurumlu and Oktem, 2007; Guler and Artir, 
2007; Yilmaz and Ertunc, 2007; Forouzan and Akbarzadeh, 2007; 
Selvakumar et al., 2007; Ates, 2007; Umbrello et al., 2008; Martn et 
al., 2008; Ozerdem and Kolukisa, 2008; Kazan, Firat, and Tiryaki, 
2008; Jiang et al., 2008; Raj and Daniel, 2008; Lin et al., 2008; Altun 
and OKisi, 2008; Bezerra et al., 2008; Zhang et al., 2008). 

48 

Modelling 

(Malinov et al., 2001; Zeng et al., 2002; Smith et al., 2002; Wong and 
Hamouda, 2003; Guessasma et al., 2004; Guessasma and Coddet, 
2004; Guo and Sha, 2004; Parlos et al., 1994; Guo et al., 2005; 
Altinkok and Koker, 2005; Koker et al., 2007; Su et al., 2005; Bahrami 
et al., 2005; Saltan and Sezgin, 2007; Demirhan et al., 2007; Kafkas 
et al., 2007; Karatas et al., 2007; Nemati and Moetakef, 2007; 
Okuyucu et al., 2007; Karnik et al., 2008; Mirzadeh and Najafizadeh, 
2008; Anaraki et al., 2008; Karatas et al., 2008; Zhao et al., 2008) 

37 

Control (Guessasma et al., 2003) 1 
Identification (Xu et al., 2004) 1 
Design (Dym, 1998; Cai et al., 2005) 3 
Optimisation (Liujie et al., 2007; Xu et al., 2007 ;Cui et al., 2008) 5 

Critique (Sha and Edwards, 2007; Smets and Bogaerts, 1992; Cottis et al., 
1999) 5 

 
 
 

Table 2. Important ANN architecture description 
variables. 
 

Parameter Data type 
Number of layers Integer 
Number of input layer neurons Integer 
Number of hidden layer neurons Integer 
Number of hidden layers Integer 
Number of output layer neurons Integer 
Momentum rate Real 
Learning rate Real 
Error after learning Real 
Learning cycles or Epoch Real 

 
 
 
This is why the ANN technique is considered to be mo-
del-free and useful in the modelling of complex input-out-
put relationships. Also the ANN is tolerant to data con-
taining noise and measurement errors. Conventional 
ANNs have a number of limitations which must be borne 
in mind when applying them in materials engineering. 
First, there is the need to manage a large number of pa-
rameters used for controlling variable in ANN model. This 
process is not systematic but intuitive. Inability to appro-
priately manage ANN model parameters accounts for the 
difficulty in obtaining stable solutions and danger of over-
fitting resulting in the lack  of  generalization  capability  In  

 
addition, ANN models are not expressive as they could 
not be used to explain, in a comprehensible manner, the 
process underlying their results. ANN, therefore, results 
in “black box" models which are not very useful in situa-
tion when it is important to understand the operation of 
the system, such as in the design of materials meant for 
use in safety critical systems. 
 
 
FUZZY LOGIC 
 
Zadeh (1965, 1973) laid the foundation for the engineer-
ing applications of fuzzy logic (FL). FL has been applied 
in diverse areas like control systems, pattern recognition, 
forecasting, reliability engineering, signal processing, mo-
nitoring, and medical diagnosis (Zimmermann, 1996; Ta-
kagi and Sugeno, 1985; Bezdek, 1993; Perzyk and Mef-
tah, 1998; Arroyo-Figueroa et al., 2000; Karray and silva, 
2004; Mellit and Kalogirou, 2008). Fuzzy logic, upon 
which fuzzy models are based, is a generalization of the 
binary logic. Unlike the binary logic, however, truth-values 
in the range (0; 1) are assigned to variables. The mem-
bership of element in classical set theory is binary, that is 
an element x must belong to a set S or not. In fuzzy set, 
on the other hand, a class admits the possibility of partial 
membership in itself. For example, if X = {x} denotes a 
space of objects, the fuzzy set A over X is a set of order-
ed pairs A = {x; �A(x)}, where A(x) is the degree to which x 
belongs to A. If  the  function  �A(x)  returns  the  value  0:0  
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Table 4. Tropical screw specification. 
 

A screw for fasting computer components together should have shafts 
and blades made of high carbon steel. Steel is used because it has 
high modulus; the modulus measures the resistance of the materials to 
elastic deflection or bending. The shafts must also have high yield 
strength; this will prevent the screw from bending plastically or 
permanently if used to drive bolts against a hard or dusty casing. Such 
situation arise when the bolts is stuck into a casing that has become 
rusty due to high humidity and dust. The blade must have a high 
hardness; this will prevent the screw from being indented by the 
materials of the computer bolts. The screw materials must also have a 
high fracture toughness to prevent it from breakage when twisted. In 
addition, it must have low tendency for rust in humid environment. 

 
 
 

Table 5. A comparison of materials properties for different fibres (Chen et al., 1995). 
 

 E-glass S-Glass 
Carbon / graphite 

H.M.) 
Carbon / graphite 

(H.S.) 
Specific tensile strength Low Moderate Moderate High 
Specific Young’s modulus Low Low Very High High 
Specific compress strength - Low Moderate High 
Specific shear strength - Good Fairly-good Good 
Impact strength Fair Fair Poor Poor 
Elongation Moderate Moderate Low Moderate 
Fibre cost Very-Low Very-Low High Moderate 

 
 
 
then x does not belong to A at all. If the value returned is 
1:0 then x is totally a member of A. Partial membership of 
an element x to a set A is modelled by numbers between 
0:0 and 1:0. The closer �A(x) is to 1:0, the more x belongs 
to A. For example, a �A(x) of 0:5 indicate that x's member-
ship in A is 50%. 

Fuzzy set, therefore, provides a powerful computational 
paradigm for extending the capability of binary logic in 
ways that enables a much better representation of know-
ledge in materials engineering. This is because fuzzy lo-
gic facilitates the expression of continuum by way of as-
signing numerical grade of membership. The multi-value 
attribute of FL allows intermediate values to be defined 
between conventional binary evaluation points, such as 
the degree of presence or absence of a material consti-
tuent in a composite. This facilitates the intuitive assign-
ment of numerical values in obtaining exact solutions 
even when vague or imprecise concepts are used to des-
cribe materials properties. 

While designing materials for computer hardware repair 
tools meant for use in topical areas, the description in 
Table 4 formed part of the requirement we generated 
based on our interactions with technicians. As can be 
seen in that table, all the variables were expressed with-
out stating specific numerical values, but their degree of 
strengths. In (Chen et al., 1995) the comparison of mate-
rials properties for some fibres and matrices in aerospace 
structures are described as having high strength-to- wei-
ght and stiffness-to-weight ratio properties  (Tables 5 and 

 
 

Table 6. A comparison of materials properties for different 
matrices (Chen et al., 1995). 
 
 Epoxy Peek Polyimide 
Service temperature Low Moderate High 
Water absorption Fair Excellent - 
Electrical properties Excellent Good Excellent 
Thermal expansion Excellent Excellent - 

 
 
6). The FL technique facilitates the development of a po-
werful method for modelling this kind of vague and impre-
cise knowledge. Fuzzy values are different from probabi-
lity values. For example, when we say that a material with 
stress value of 210:00 MPa has a fuzzy value �(x = 
210:00) = 0:95 in the High class we do not mean that 
there is 95% chances of the stress been categorised as 
High. What this implies is that on a scale of 0:0 to 1:0, a 
stress value of 210:00 MPa is 0:95 compatible with the 
linguistic description High. This is similar to classifying a 
student that scores 95% in an examination as among the 
very best in a class. The value 0:95 is therefore not an 
expression of the probability of occurrence but a confi-
dence value which allows us to represent the compatibi-
lity between a linguistic label and a numerical value. 

To develop a FL based model, there is the need to first 
design the membership functions (MF). MFs convert crisp 
inputs into linguistic terms. The membership functions 
can take different forms depending on  the  model  design  
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strategy and how the behaviour of the materials is des-
cribed. Trapezoidal, triangular, and sigmoid functions are 
most commonly used in materials engineering. In some 
situation the membership functions are determined auto-
matically by using data summarisation or optimisation 
techniques (Mohamed et al., 2004). Linguistic variables 
are the core element of concept description in fuzzy logic. 
Formally, a linguistic variable, defined over a continuous 
universe of discourse UoD, can be characterised by five 
attributes and formally defined by a 5-tuples; 
 

   
 
where x is the name of the variable; T(x) is the term set of 
x, that is, the set of linguistic values of x with each value 
being a fuzzy number on U; G is the syntactic rule for as-
sociating the names of values x; and M is a semantic rule 
for associating with each value its meaning.  
 
For example, if x is the tensile strength as represented in 
Table 5 then the linguistic terms Low, Moderate, and 
High, will form the term set, T(x). Hence T(x) = (Low, Mo-
derate, High). If T(x) is characterised by a fuzzy UoD with 
numerical values in the range U = [90.00; 400.00] g/mm2 
then a membership functions can be defined over UoD 
with each linguistic variable occupying portions of the 
UoD. A triangular membership function defined over this 
UoD is shown in Figure 9(a). The tensile strength with va-
lues 120.50 g/mm2 is computed as � (120.50) = 0.5 in the 
fuzzy class Medium as shown in Figure 9(b). 

Membership function can overlap. Usually, the UoD is 
normalised into the interval [0:0; 1:0] for convenience and 
ease of membership function derivation. As the tensile 
strength property of materials is a vague concept that it is 
difficult to represent by a numerical measure, especially 
for a higher temperature (Tien, 2005), the use of such lin-
guistic description can be most useful. Membership func-
tions that are popularly used in materials engineering are 
listed in Table 7. A description of a FL based model is 
shown in Figure 10. The model comprises four principal 
components: a fuzziffication process, fuzzy knowledge 
base, decision-making logic and de-fuzziffication unit. 
Crisp data in the form of numerical values are usually the 
input and output of fuzzy logic based systems. 
 
 
Input fuzzification process 
 
The fuzziffication process performs a scale mapping that 
transfers the range of numerical or crisp input values into 
linguistic values using the membership function. The 
membership function actually converts the numerical va-
lues into suitable values which are associated with some 
linguistic terms. The mapping is done over the universe 
of discourse of the respective input variable. The fuzzifi-
cation process uses predefined membership functions to 
map input into linguistic terms. Specifically, the fuzzifica-
tion process permits a binding to take place between lin-
guistic  terms  and  membership  functions,   making   the  

 
 
 
 
terms amendable to fuzzy computation. 
 
 
Inference process 
 
The inference process uses a fuzzy knowledge base 
(FKB) to compute the output corresponding to the fuzzy 
input. The FKB comprises of a knowledge base for the 
application domain in the form of fuzzy membership func-
tion (FMF) database and linguistic rules. The FMF data-
base provides the necessary definition that must be used 
by the linguistic rules to generate decision. The fuzzy 
rules characterises the decision goals, usually, as speci-
fied by a domain expert. A set of predefined rules are ap-
plied to the output of the fuzzification process. The rules 
are in the form of if-then statement. The inside of a rule 
contains one or more conditions, called antecedence. 
The then side contains one or more implications or ac-
tions call precedence. The inference process evaluates 
the rules by computing the degrees to which each of the 
rules should activated to form the output. The then part of 
a fuzzy rule can be a mathematical function that compu-
ter crisp value as in the Takagi and Sugeno, 1985 model. 
The choice of process state variables, the fuzzy partition 
of the input space and the choice of membership function 
in this case is done using a trial-and-error approach. The 
fuzzy decision process is done using computations over 
linguistic terms. Each rule in the FKB is considered and 
its output is activated in accordance with the degree of 
truth that is evidence in its premise. To infer the output of 
the fuzzy system, the output of each rule is combined in a 
process called aggregation. 
 
 
Defuzzification process 
 
The output of the inference process is in linguistic form. 
To be useful, this output must be converted to its crisp or 
non-fuzzy form. The defuzzification process computes 
the outputs by mapping the rule strengths computed by 
the predefined rules (D'Errico, 2001) to real number va-
lues. The Mean of Maximum (MOM) and the Center Of 
Gravity (COG) formulae are commonly used in the de-
fuzzification process used in materials engineering. To 
illustrate the COG, assuming that the discrete fuzzy set 
Af = (�(x1), �(x2)…� (xn)), is given and the following func-
tion is used to weight its membership functions;  
 

                                      (8) 
 
If we consider Equation 8 as cost function, then we can 
minimise it by taking its first derivative and equating it to 
zero as follows: 
 

                   (9) 
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Figure 9. Fuzzy membership functions illustration. 

 
 

Table 7. Fuzzy membership functions. 
 

Function name  Mathematical expression 
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Figure 10. Fuzzy logic model. 
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Figure 11. Graph of fuzzy logic based models in materials engineering. 

 
 

Making   the subject of Equation 9 we have: 
 

                                     (10) 
 
Equation 10 is the center of gravity (COG) defuzzification 
formula. This formula has been extended to obtain the 
weighting function COG (WFCOG) defuzziffication me-
thod, which can represent subjective attitude of design 
decision. An expansion of the COG method using a para-
meterized defuzzification method with maximum entropy 
weighting function was proposed in (Liu, 2007). 
 
 
Application of fuzzy logic in materials engineering 
 
As shown in Figure 11 the application of FL in materials 
engineering is increasing but not as popular as ANN. 
There are about 3 papers in 1995 which increased to 9 
papers reporting the application of FL in 2008. As shown 
in Figure 12 fuzzy logic has been applied in the areas of 
materials properties modelling, selection, prediction, eva-
luation, design, clustering, optimisation, control, monitor-
ing and model identification. The majority of the paper fol-
lows the procedure we described above for the member-
ship function generation and defuzziffication module de-
sign. As shown in Table 13 FL technique is more fre-
quently applied in materials properties model and selec-
tion, which account for 21% each of the paper we review-
ed. This is followed closely by materials properties pre-
diction which accounts for 20% of the paper reviewed. 
The application  of  FL  in  materials  process  control  ac- 

counts for 13% and applications in materials properties 
optimisation accounts 8%. Few publications have also re-
ported the application of ANN in materials properties eva-
luation and clustering, about 2%. In all the publications 
we reviewed, the use of FL in materials engineering, par-
ticularly in materials properties modelling and prediction, 
seems to be motivated by the fact that it makes the ma-
terials development process more expressive and its so-
lution easier to interpret. Fuzzy modelling makes certain 
types of problems easier to handle and often yields more 
information than does the ANN. However, in some of the 
work reviewed, (Wong et al., 1999; Wong and Hamouda, 
2002; Zhu et al., 2003), the number of input variables is 
large making the justification for the application of FL as a 
solution that is easier to interpret, difficult. The confound-
ing nature of variable interaction, when their number is 
larger, that is greater than five makes it difficult to ana-
lyse the effect of the input on the output obtained from 
the model. We think that when the number of input is 
large a good engineering option is to modularise the mo-
del. 

Apart from the limitations we highlighted above, the FL 
technique has some inherent limitations that should be 
considered when being applied to materials engineering. 
First, the process for membership functions generation is 
context dependent and may be influenced by many de-
sign preferences adopted by the engineer. This is not a 
good enough process as it is desirable in practical appli-
cations of materials to use a systematic technique that 
has a well laid out structure. Second, the design of the 
defuzzification process is dependent on experience and it 
is often accomplished by a trial-and-error method  (Borto-
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Figure 12. Application of fuzzy logic based models in materials engineering. 

 
 

Table 13. Applications of Hybrid in ME. 
 

Applications Publications % of Total 

ANN-Fuzzy 

(Tsai and Wang, 2001; Shuiping et al., 2002; Hancheng et al., 2002; 
Miaoquan et al., 2002; Lin et al., 2002; Kuo et al., 2002; Lezanski, 2001; Lu 
et al., 2003; Chen et al., 2003; Zhu et al., 2003; Jalham, 2005; Vitanov and 
Voutchkov, 2005; Garca, 2005; AsiltÄurk and UnÄuvar, 2008; Uros et al., 
2008; Topcu et al., 2008) 

57 

Fuzzy-GA (Tarng et al., 1997; Kojima et  al., 2001; Zhao and Zhang, 2002; Nandi and 
Pratihar, 2004a; Yan and Fang, 2008) 18 

GA-ANN (Aijun et al., 2004; Oktem et al., 2006; Anijdan et al., 2006 ; Zakeri et al., 
2007; Zhou et al., 2008) 18 

ANN-Fuzzy-GA (Tuma et al., 1996; Inal 2008) 7 
 
 
 
lan and Pedrycz, 1997; Roychowdhury and Pedrycz, 
2001). It is well known that defuzzification process can 
produce counter-intuitive results even when they have 
been carefully designed (Wang, 1996; Mizumoto, 1988). 
Although fuzzy logic provides an effective tool for linguis-
tic knowledge representation and manipulation which is 
transparent, an efficient, definitive and systematic method 
for capturing this knowledge into practical systems is yet 
to be developed. In addition to this, the number of rules in 
a fuzzy rule base can quickly grow and become complex 
to manage if the number of inputs or the fuzzy sets de-
fined of the inputs is large. These situations make it diffi-
cult to guarantee certain fundamental engineering mate-
rials properties, such as consistent performance. To this 
end, we posit that the fuzzy logic based technique should 
be used bearing in mind that it only provide a paradigm to 
manage some kind of fuzziness observed in human  cog- 

nition. Its application to materials engineering should, 
therefore, not be misconstrued as definitive in conception 
and absolute in practicality. 

The prototype and exemplar theories (Rosch et al., 
1976; Wang, 1996) in psychology portend that people ju-
dge some instances to be better examples of a concept 
than some other, and can intuitively assign a number 
equivalent to degree of membership relation. This finding 
could be exploited for formalising fuzzy model in order to 
achieve the level of consistence required in materials en-
gineering. 
 
 
GENETIC ALGORITHM 
 
The principles of Genetic Algorithms (GA) and the mathe-
matical framework  underlying  it  were  developed  in  the 
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late 1960s (Holland, 1962; Kristinson and Dumont, 1992; 
Koppen et al., 2006). GA is normally discussed in the 
context of Evolutionary Computing (EC). The core metho-
dologies of EC are Genetic Algorithms (GA), Evolutionary 
Programming (EP), Evolution Strategies (ES) and Gene-
tic Programming (GP) (Oduguwa et al., 2005). In GA, at-
tempt is made to model the processes underlying popula-
tion genetic theory by using random search. GAs uses 
the survival-of-the-fittest strategy, where stronger indivi-
duals in a population have a higher chance of creating an 
offspring. To achieve this, the current input (population) is 
used to create a new and better population based on 
specified constraints. The inputs are normally represent-
ed as string and they model chromosome in human ge-
netics. In materials engineering, for example, the input 
string will represent some properties of materials that are 
of interest. 

The success of GA application in materials engineering 
task is dependent on the encoding of variables that des-
cribe materials attributes in the form of strings. The num-
ber and types of the variables that will be encoded as 
string depends on the resolution of the data and scale of 
the problem. Each input variable can be viewed as a 
gene in the chromosome that represents the input space. 
It seems more intuitive to represent the genes as real-
numbers since the representation is close to how variable 
are used in engineering. In that case a chromosome will 
be a vector of floating point numbers and the length of 
the chromosome is the vector length of the solution to the 
problem. In many applications of the GAs including those 
in materials engineering, however, the input variables are 
encoded as integers or binary strings. Encoding multiple 
real-value continuous variables consists of converting the 
numbers into integer and concatenating them. The result-
ing integer values then become the input variables to the 
GA process. After the GA processes is completed, the re-
sulting integer string are decoded using a complimentary 
data conversion process. A four level data processing 
scheme that could be used to achieve this is depicted in 
Figure 13. The four levels comprised of: real number, 
normalised number, integer and binary strings. Real num-
bers representing the two variables Variable1 and Variable2 
with values 12.50 and 0.72, respectively, are first norma-
lised. The normalised values are converted to integer and 
then encoded as binary strings. The GA processes the bi-
nary strings and its output is converted back to real num-
bers. The input string is subjected to a number of pro-
cessing steps before the final output is generated, name-
ly: selection, crossover or mating and mutation (Figure 
14). The selection process determines which string in the 
current generation will be used to create the next genera-
tion. This is usually achieved through a bias random-se-
lection (BRS) method (Chen et al., 2007; Baumes and 
Collet, 2008). In the BRS method, parents are randomly 
selected from the current population in such a way that 
the best strings in the population have higher chances of 
being selected. By using the best points to determine the 
next population, the algorithm is expected to move in  the 

 
 
 
 

Table 9. Fitness function types. 
 

Typical fitness function 
Number of Hits 
Sensitivity/Specificity 
PPV/NPV 
R-square 
MSE (mean squared error) 
RMSE (root mean squared error) 
MAE (mean absolute error) 
RSE (relative squared error) 
RRSE (root relative squared error) 
RAE (relative absolute error) 

 
 
most promising direction towards an optimal solution. 

To determine the fitness of a chromosome, a fitness 
function is used. Fitness functions are objective functions 
that quantify the optimality of a chromosome. It facilitates 
the ranking of a chromosome against all the other chro-
mosomes. Generating a robust fitness function for an ap-
plication is a major challenge in the development of GA 
based models. For example, a minimisation problem that 
has the fitness function F(c), for chromosome variable c, 
can take the form: 
 

                                            (11) 
 

Where O(c) is the objective function and P(c) is the 
penalty function.  
 

The determination of O() and P() require the use of intui-
tive, and often non-trivial trial-and-error, approach which 
are difficult to test. Their usefulness can only be deter-
mined based on the results they produce during experi-
mentation and simulation. The fitness function is some 
kind of error minimisation function over a set of input data 
modelled using one or more of the error functions listed in 
Table 9. GAs models do not require the optimization 
function to be continuous or derivable, or even be a ma-
thematical formula (Mantere and Alander, 2005). For 
example, it is possible to define a fitness function f (me) = 
1/me, where me is the mean absolute error in the training 
set. In that case the best individual in the population 
would be the chromosome with the minimum error. 

During the mating process, the strings that describe 
materials properties are selected and paired. This pair is 
called the parent string. In the basic crossover operator, if 
the length of the parent strings is l, an integer number be-
tween 1 and l is randomly selected. Assuming that the 
randomly selected number is s, the mating process 
swaps bits s + 1 through r of the first parent with string 
s+1 through l of the second parent. This swapping pro-
cess is called also crossover (Figure 15). In this way, two 
new strings (called offsprings) are created for the current 
generation. More complex crossover operators such as, 
flat, arithmetic, and blend (Herrera et al., 1998) can also 
be used to achieve the operation but the basic  crossover
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Figure 13. Variable processing in genetic algorithms. 

 
 

 
 
Figure 14. Genetic algorithms process 
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Figure 15. The crossover process 

 
 
 
operator described above is frequently used in materials 
engineering. In the final step called mutation, bits in all 
the new strings or chromosome are subjected to changes 
based on a mutation probability. A fixed small mutation 
probability is usually set at the beginning of the algorithm. 
The bits at specific location in the chromosome are flipp-
ed by replacing the 0s by 1s and the 1s by 0s. To illus-
trate this process, given a chromosome; 
  
   
 
and the gene cj is a gene to be mutated. A simple muta-

tion algorithm computes   using the formula: 
 

                                    (12) 
 
There are other more complicated mutation operators 
such as non-uniform mutation and random mutation but 
the fixed number bit swapping operator discussed above 
is frequently used in materials engineering. The resulting 
strings from this process forms the new population for the 
next generation of the GA process. Mutation is conducted 
to prevent the premature convergence of the design va-
riables. Convergence occurs when the bit structures of 
strings in the mating pool become identical in an early 
stage of the GA evolution process. The GA process conti-
nues until a set of stop criteria are met. Such stop criteria 
may be when an individual recognises all the examples 
or when a maximum number of generations have been 
run. In materials engineering such criteria may corre-
spond to specified material yield strength or hardness of 
a composite. 

 
 
 
Applications of the genetic algorithm in materials 
engineering 
 

As shown in Figure 16 the application of GAs in materials 
engineering is increasing but not as popular as FL. There 
are about 4 papers in 2004 which increased to 20 papers  
2008. The majority of the papers in 2008 appear in the 
special issue of Computational Materials Science Jour-
nal. As shown in Figure 17, the GAs techniques have 
been applied in the areas of materials properties model-
ling, optimisation, identification, prediction and design. 
The majority of the application is in materials properties 
modelling and optimisation which account for about 32% 
each of the total paper reviewed. Model identification ac-
counts for 10% while materials properties prediction and 
design accounts for 4%. From all the papers reviewed, it 
was shown that GAs have proven effective in the mate-
rials properties optimisation problems and areas that re-
quire parameter training such as function optimization, 
materials processing and system identifications (Holland, 
1962; Goldberg, 1989; Michalewicz, 1996; Fang et al., 
2008). Since the GA process proceeds from several 
points, the method has a better probability of locating a 
global minimum as opposed to ANN and FL models that 
proceed from one point to another. Also GAs work on a 
coding of design variables rather than on the variables 
themselves, which allows for an extension of these algo-
rithms to design space consisting of a mix of continuous, 
discrete, and integer variables (Tarng et al., 1997). The 
application of GA in materials engineering is growing al-
though not as popular as those of ANN and FL. Two 
reasons account for the limitations of the application of 
the GAs in materials engineering. The first is the use of 
randomness in obtaining optimal solution. From an engi-
neering point of view, the concept of randomness is diffi-
cult to explain and justify in real-life  applications,  particu-
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Figure 16. Graph of GA application by year. 

 
 
 

 
 
Figure 17. GA application histograms. 

 
 
 

larly in safety critical systems. The second limitation re-
lates to the intuitiveness of evolution theory in problem 
solving. FL and ANN seem intuitive as a model for human 
learning and linguistic knowledge used in solving real-life 
problems. How the theory of human genetic factors into 
human problem solving is not very clear. 
 
 

HYBRID MODELS 
 

The soft-computing techniques, particularly those dis-
cussed here, are complementary rather than competitive 
(Zadeh, 2001, 1994). This implies that a hybrid model 
employing a combination of artificial neural networks, fuz- 

zy systems, and/or genetic algorithms should produce 
better results. The various combinations of these approa-
ches have proven useful in the development of robust in-
telligent systems (Zadeh, 2001). For example, the fuzzy 
logic based technique can be combined with neural net-
works to form neuro-fuzzy model. There are at least four 
hybrid models that can be created from the above SC 
techniques:  
 
i) Neuro-fuzzy 
ii) Fuzzy-genetic 
iii) Neuro-genetic, 
iv) Neuro-fuzzy-genetic.  
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  Table 11. Soft computing constituents (Hoffmann et al., 2005). 
 

 Methodology Strength 
1 Artificial neural networks Learning and approximation 
2 Fuzzy systems Approximate reasoning 
3 Evolutionary algorithms Systematic random search/optimisation 

 
 

Table 12. Comparison of soft computing techniques features. 
 

Methods Learning 
capacity 

Knowledge 
representation 

capacity 

Real-Time 
operation 

functionality 

Optimisation 
capacity 

Data 
requirements 

Expert 
input 
level 

ANN VH H H M VH VL 
FL M VH M VH M VH 
GA M M H VH M M 
FL-ANN M H M L M VL 
FL-GA M M M L M M 
ANN-GA M M H M M VL 
FL-ANN-GA M M M L M VL 
 

V L = Very Low; L = low; M = medium; High= V; H = Very High 
 
 
 
The strength of each of the SC techniques is summarised 
in Tables 11 and 12 summarises a subjective assignment 
of the capabilities of the hybrid SC techniques. We briefly 
summarise them in the following subsections.  
 
 
Neuro-fuzzy 
 
The neuro-fuzzy model, which involves the integration of 
ANN and FL techniques are perhaps the most popular 
hybrid technique used in materials engineering. Neuro-
fuzzy models are able to take advantage of the fuzzy in-
ference mechanism capabilities in fuzzy logic and the 
learning ability of neural networks. The ANN technique is 
usually used as the learning algorithm for the defuzzifi-
cation process in FL based models. Neuro-fuzzy models 
are regarded as black-box models which provide little in-
sight to help understand the underlying process. Figure 
18(a) illustrates a simple configuration of a neuro-fuzzy 
model. 
 
 
Fuzzy-genetic 
 
When the FL and GA techniques are combined to deve-
lop a solution, the fuzzy-genetic model results. The aim 
here is to exploit the ability of the fuzzy logic at know-
ledge description and the optimisation capability of the 
genetic algorithm. Usually, the defuzzification process in 
fuzzy logic based model are developed using optimal se-
lection of elements from a fuzzy set. Aside from GA, tech-
niques that employ the concepts of interaction, variability, 
and voting techniques are also used to optimise the de-
fuzzification and membership generation process. Figure 
18(b) illustrates a simple configuration of  a  fuzzy-genetic  

 
 
 
algorithms model. 
 
 
Neuro-genetic 
 
When the ANN and GA techniques are combined to de-
velop a solution, the neuro-genetic model results. The 
aim here is to take advantage of the learning ability of the 
ANN and optimisation ability of the genetic algorithm. Fi-
gure 18(c) illustrates a simple configuration of a neuro-
genetic algorithms model. No application of neuro-genetic 
algorithms model in materials engineering has been re-
ported in the literature we reviewed. 
 
 
Neuro-fuzzy-genetic 
 
When the three SC techniques discussed here are com-
bined to develop a solution, the neuro-fuzzy-genetic mo-
del results. Usually, the GA approach is used to optimise 
the performance of a neuro-fuzzy system. The develop-
ment of this approach is usually guided by heuristics, 
based on the experiences of an expert materials engi-
neer. In (Huang, Gedeon, and Wong, 2001) the architect-
ture in Figure 19 was proposed for developing a neuro-
fuzzy-genetic model for predicting the permeability in pe-
troleum reservoirs. The vector Xc and matrix Zc are the 
training pattern and Yc is the target output. The following 
heuristics was proposed for its realisation: 
 
- Select appropriate well data set. 
- Generate fuzzy rules by neural networks. 
- Generate hyper-surface membership function by neural 
network. 
- Optimise defuzziffication operator parameters  by  gene- 
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Figure 18. Hybrid soft computing models. 

 
 
 

 
 
Figure 19. ANN –fuzzy-GA hybrid (Huang et al., 2001). 

 
 
ric algorithms; 
- Interpolate fuzzy rules to provide estimates. 
 
 
Applications of the Hybrid methods in materials 
engineering 
 

As shown in Figure 20 the application of SC  hybrid  tech- 

niques in materials engineering is increasing but not as 
popular as FL and ANN. There are about 3 papers in 
2001 which increased slightly to 5 papers 2008. As 
shown in Figure 21 hybrid models have been used in ma-
terials properties modelling, optimisation, identification, 
prediction and design. ANN-fuzzy model is the most po-
pular hybrid as it accounts for 57% of the  total.  The  rea-
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Figure 20. Graph of hybrid application by year. 

 
 

 
 
Figure 21. Histogram of hybrid application. 

 
 
son for this is not far fetch as the aim in most engineering 
application is to produce an expressive system that is 
easy to understand and update. The ANN-fuzzy model 
facilitates these aims. The Fuzzy-GA and ANN-GA ac-
count for 18% each of the total applications while the 
neuro-fuzzy-genetic model accounts for 7% of  the  appli- 

cations. Although the hybrid models in materials engi-
neering has been shown to produce better results (Ermo-
laeva et al., 2004) the processes underlying the develop-
ment and implementation of such models is very com-
plex. There is no veritable method to guarantee that the 
methods will  always  perform  well.  Other  intelligent  sy- 



 
 
 
 
stems engineering techniques that have been applied in 
materials engineering include, decision trees (Georgilakis 
et al., 2007; Shao et al., 2001), expert system (Long et 
al., 2004; Buggy and Conlon, 2004; Faura et al., 2001; 
Alitavoli and McGeough, 1998; Vitanov et al., 1995) and 
probability based decision model such as the Monte Car-
lo model (Lin et al., 1997).  
 
 
FORMALISING THE SOFT COMPUTING APPLICA-
TION METHODOLOGY 
 

Soft computing techniques provide appealing alternatives 
for supporting the materials engineering process. Al-
though the soft computing constituents have several ad-
vantages when used individually, a synergistic integration 
of these complementary techniques into hybrid models 
have the potential for the development of practical and 
efficient intelligent materials engineering tools. However, 
the application of SC in materials engineering is evolving. 
Our review of the literature revealed that different resea-
rchers are employing different views of concepts as well 
as varying implementation approaches. This makes it dif-
ficult to assess, in a definitive manner, the overall implica-
tions or outcome of a given implementation. There is no 
doubting the fact that materials are potentially life critical 
due to their pervasiveness. Qualities of engineering ma-
terials are crucial to the performance of modern safety 
critical systems and a number of materials related failures 
have been recorded in recent times. It will not be out of 
place to speculate that the root cause of a large number 
of these failures is the ambiguous, incomplete and/or in-
consistent specification of materials. This factor includes 
inadequate consideration for the loading characteristics 
and physical environment where the materials could be 
used. During the development of new materials, there is 
the possibility of gaps between materials requirements 
and the engineers' conception of those requirements. 
This will result in the generation of compromised specifi-
cation and hence an unrealistic application of SC solu-
tion. This misunderstanding could go undetected in the 
absence of a practical automated or formal method that 
adequately supports process life cycle activities in mate-
rials engineering. Some form of standardisation then be-
comes very crucial in order to achieve manageable and 
acceptable engineering practise (Zadeh, 2001; Hoole, 
Mascrenghe, and Navukkarasu, 2007; Erdik, 2008). In 
our ongoing research, we are developing a formal techni-
que for eliciting and refining materials specification. The 
fundamentals of the specification process are similar to 
the principles used in modern software engineering. The 
aim of our formal approach to the engineering of mate-
rials is as follows: 
 
- To support a framework for materials specification that 
is amenable to computational rendering. 
- To achieve precise and consistent designs. 
- To improve the accuracy and testability of the materials 
specification task. 
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- To improve the cost-effectiveness of the materials engi-
neering process by reducing the disparity between users' 
requirements and materials design specification hence 
reducing the possibility of errors in the fabricated mate-
rials; 
- To support the sharing of materials engineering know-
ledge between and among engineers, technicians and 
materials fabricator. 
 

For computational conveniences, we viewed each engi-
neering materials as an object which has properties or at-
tributes that can take values, for example in the real or in-
teger number space. An object can be subjected to 
events, as part of an engineering process. When an ob-
ject is subjected to an event, the object changes state. 
The state change may results in another object with diffe-
rent properties from the original object. Objects are rela-
ted to each other by way of attribute association predi-
cates. For example, if the process P (.) is applied to ob-
ject OSi in state Si, the object will eventually get to state 
OSi. The relation between object OSi and OSf is modelled 
by the process predicate P (.). This requirement can be 
formally specified as OSf � P (OSi) which can be process-
ed computationally. Within the proposed framework (see 
Figure 22), materials design specifications namely: func-
tional and non-functional, are extracted from the user re-
quirements. The non-functional specifications, which 
have more consequence for materials design, seems to 
be the most difficult to formalise. The functional specifica-
tion are less demanding, as the generic properties of 
materials on which they are based, are accurately docu-
mented in materials science and engineering physics. 
The procedural knowledge underlying materials engineer-
ing can be specified as a series of procedures, and re-
presented in the form of rules. These rules can be impe-
rative or heuristic. They can therefore be viewed as con-
ceptualised information domain knowledge, attributes, re-
lationships between attributes and the constraints on the 
attributes. A computational representation of this know-
ledge structure using a formal language model presents a 
number of interesting challenges. Our approach starts 
with the formulation of objectives and constraints about 
materials which are then translated into heuristics. Within 
this context, the materials engineering problems can be 
recast as constraint-satisfaction problem (Freuder, 1982; 
Nadel and Lin, 1991; Kumar, 1992) which can be stated 
as follows. Assuming we are given a set of variables that 
describe materials properties, a finite domain for each va-
riable, and a set of constraints that must be satisfied. 
Each constraint is defined over some subset of the origin-
nal set of variables and limits the combinations of values 
that the variables in this subset can take. We define four 
types of constraints on materials attributes and proper-
ties: 
 
 
State dependent constraints 
 
Once a material enter a state, say SF, the set  of  proper- 



126        Afr. J. Math. Comput. Sci. Res. 
 
 
 

 
 
Figure 22. Overview of proposed framework. 

 
 
 
ties F must be activated; conversely when the state SF 
has been left, the properties F are deactivated; 
 
 
Causal dependent constraints 
 
Once a materials property f1 is activated, another proper-
ty or property set f2 must be activated, i.e. the activation 
of property set f1 causes f2; 
 
 
Mutually exclusive constraints 
 
Once a set of properties f1 is  activated,  another  proper- 

 
ties f0 cannot be activated; 
 
 
Timing constraints 
 
A set of properties F is to be activated before another 
property or set of properties are activated. 

The activation or deactivation of materials properties 
can be triggered by a number of events, including the ap-
plication of a process or change in environment. The goal 
is to find one assignment to variables such that all the 
constraints defined in a materials requirement are satis-
fied. In materials analysis problem, the goal could be to 
find all the assignments that satisfy a  set  of  constraints. 



 
 
 
 
Issues of soundness and completeness of materials spe-
cification is being addressed in the context of model veri-
fication and validation. Our on-going work employs the al-
gebra of descriptive mathematics provided by CASL 
(Common Algebraic Specification Language) (Bidoit and 
Mosses, 2004) and the fuzzy automata (Gupta et al., 
1977) to realise a formal method for materials engineer-
ing. 
 
 
Conclusion 
 
In this paper, we have presented a review of the applica-
tions of soft computing techniques focusing on materials 
engineering. Although, this paper is by no means an ex-
haustive review of the literature in the application of soft 
computing to materials engineering, we hope that we 
have given an adequate overview of what is currently 
happening in this evolving and dynamic area of research. 
As stated earlier in this paper, the decision process un-
derlying the development of engineering systems re-
quires that a compromise be struck between several, 
usually conflicting, objectives. This process involves deci-
sion that utilises intuitively obvious mental (or cognitive) 
models but that are difficult to articulate mathematically. 
The soft computing approach is appropriate to support 
this type of decision because its techniques are very effi-
cient at handling imprecise, uncertain, ambiguous, incom-
plete, and subjective data and information. Soft comput-
ing techniques make it possible to create models and sy-
stems by exploiting the approximate reasoning and par-
tial truth in order to mimic the remarkable decisions mak-
ing ability of humans in real-life situations (Flintsch and 
Chen, 2004). 

Three soft computing techniques are prominently used 
in materials engineering: artificial neural networks, fuzzy 
logic and genetic algorithms. The neuro-fuzzy systems 
seem to be the most popularly used hybrid of these tech-
niques in materials engineering. However, neuro-genetic, 
fuzzy-genetic, and neuro-fuzzy-genetic applications are 
also emerging. All researchers that have used SC based 
approach in materials engineering have reported “excel-
lent", “good", “positive" or at least “encouraging" results. 
The lack of negative results might be partly due to the 
fact that materials engineering problems are simplified to 
manageable and predictable applications. 

Modern materials engineering tasks involves the deve-
lopment of products presenting design challenges that in-
volves complex situation with overwhelming data and in-
formation which are further constrained by confounding 
materials processing and fabrication decisions. This com-
plexity seems to have motivated the recent cross-fertili-
sation of ideas between diverse areas of research: such 
as materials engineering, computer engineering, intelli-
gent systems engineering and engineering physics. The 
tool of the trade is also changing from the traditional ma-
thematical and analytical approaches to modelling, simu-
lation and computational approaches. 
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The interface between materials engineering and intelli-
gent systems engineering techniques, such as the soft 
computing, is still blur. There is, therefore, the need to put 
in place some formal structure that remove or reduce 
grey areas. As the computer is becoming an indispensa-
ble tool in modern materials engineering, it becomes de-
sirable to have a computational framework within which 
various materials could be explored from conceptual-iza-
tion, to design through evaluation to fabrication using the 
computer. How this can be achieved through computation 
and formal methods is the focus of our ongoing research. 
Our computational approach to materials engineering has 
the potential of making materials engineering process 
more effective and efficient. For example, in composite 
materials development, this approach can facilitate an al-
gebraic exploration and experimentation, which includes 
proofs, with various composite models before the com-
mitment of more important materials engineering resou-
rces. This will, in effect, facilitates an appropriate ma-
nagement of human efforts as well as natural materials 
and resources, particularly those that are susceptible to 
depletion. 
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