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Abstract: Ambient Intelligence (AmI, shortly) gathers best re-
sults from three key technologies, Ubiquitous Computing, Ubiq-
uitous Communication, and Intelligent User Friendly Inter-
faces. The functional and spatial distribution of tasks is a natu-
ral thrust to employ multi-agent paradigm to design and imple-
ment AmI environments. Two critical issues, common in most
of applications, are (1) how to detect in a general and efficient
way context from sensors and (2) how to process contextual in-
formation in order to improve the functionality of services. In
this work we experiment a framework where hybrid techniques
(distributed fuzzy control, mobile agents, fuzzy rules induction
algorithms) are mixed to gain flexibility and uniformity.
Keywords: Distributed Fuzzy Control, Markup Languages,
Agents, Fuzzy Rule Induction Algorithms.

I. Introduction

When designing AmI Environments [Aarts2004], different
methodologies and techniques have to be used, ranging from
materials science, business models, network architectures, up
to human interaction design. However, as key technologies,
AmI is characterizes by:

• Embedded.Devices are (wired or unwired) plugged into
the network [Ditze2004]. The resulting system con-
sists of several and multiple devices, compute equip-
ments and software systems that must interact among
them. Some of the devices are simple sensors, other
ones are actuator owning a crunch of control activity
on the environment (centralheating, security systems,
lightning system, washing machines, refrigerator, etc.).
The strong heterogeneity makes difficult a uniformed
policy-based management.

• Context aware. This term appeared for the first time
in [Schilit94], where the authors defined context as
location, identities of nearby people and objects, and
changes to those objects. Many research groups have

been investigating on context-aware applications, but
there is no common understanding what context and
context awareness exactly means. Roughly, the system
should own a certain ability to recognize people and the
situational context.

• Personalized.AmI environments are designed for peo-
ple, not generic users. This means that the system
should be so flexible to tailor itself to meet human
needs.

• Adaptive. The system, being sensible to the user’s
feedback, is capable to modify the corresponding
actions have been or will be performed[Astrom1987].

We have designed and implemented an intelligent home en-
vironment populated by intelligent appliance agents skilled
to perform distributed and adaptive transparent fuzzy con-
trol. The agents interact and coordinate their activities using
the Fuzzy Markup Language (FML) [Loia2005] as abstract
protocol over shared resources, independently from hard-
ware constraints. The agents compose an abstract layer that
binds the instrumental scenario with the services, assuring ef-
ficiency and adaptivity. This approach allows AmI designers
to achieve useful goals:

• to customize the control strategy on specific hardware
through an automatic procedure;

• to distribute fuzzy control flow in order to minimize
global deduction time and better exploit the natural dis-
tributed knowledge repositories;

• to acquire, at run time, the user’s behavior and environ-
ment status in order to apply context-aware adaptivity.

In the remainder of this paper, we will describe our solution
that attempts to solve these complicated problems. First, we
will describe how we have used XML-derived technologies
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in order to define FML, a markup language skilled for defin-
ing detailed structure of fuzzy control independent from its
legacy representation. Then, we will show the gain achiev-
able in terms of distribution and concurrent execution by
means of agent technology. As last issue, we will describe an
adaptive methodology, based on inductive computation, that
allows fuzzy rules to modify themselves according to user’s
behaviors.

II. Fuzzy Markup Language

Initially, FML has been designed to act like a middleware
between the Legacy Fuzzy Environment and the real imple-
mentation platform. Legacy Fuzzy Environment module al-
lows to create a fuzzy controller using a legacy representation
[Acampora2005]. An example of Legacy Fuzzy Environ-
ment module is MatlabTM that produce a.fis file to represent
the fuzzy control system. The obtained legacy fuzzy con-
troller is passed to the FML Converter module that translates
it into a markup-based description (FML language). Next
step concerns the real implementation of the fuzzy controller
on specific hardware. Initial version of FML used XSLT
[XSLT2001] languages translator to convert FML fuzzy con-
troller in a general purpose computer language using an XSL
[XSL2003] file containing the translation description. At this
level, the control is compilable and executable for proposed
hardware.
Actually, FML can be considered a standalone language used
to model the fuzzy controllers from scratch. Now, the FML
compiler is based on the integration of different techonolo-
gies able to istantiate a runtime fuzzy controller without ad-
ditional work. These technologies are : theTCP/IP Clien-
t/Server applicationand theJAXB XML Binding technology.
In particular, the JAXB XML Binding technology allows to
generate a Java classes hierarchy starting from the FML con-
trol description. The TCP/IP Client/Server application al-
lows to separate the real control from the controlled devices
in order to obtain the total independence of the devices from
the language used to code the fuzzy controller. In particular,
a TCP Server instantiates a Java objects collection represent-
ing the FML controller starting from the classes hierarchy
generated by JAXB module. Using this object collection, the
Server will be able to apply the inference operators on the
objects representing the fuzzy rule base, generating, in this
way, a set of defuzzificated values representing the control
results.
The TCP Client, hosted on the controlled devices, is a simple
standard TCP Client able to send the sensors value to Server
and to receive the control results; from this point of view, the
Client does not know the details about the fuzzy control, it
sees only a bidirectional data flow. The Client/Server com-
munication is performed, obviously, by TCP Sockets. Figure
1 shows the architecture of proposed system. This choice al-
lows to obtain an high level of abstraction showing an only
gap: the client and the server have to be agree on the ex-

change data format. In particular, the server have to know,
exactly, the data format coming from the client and vice
versa. The proposed systems uses the classic string data type
to solve the problem. In particular, in order to exchange the
sensors values and the inferred results, the client and server
have to choose a special character to create a communication
data string. While the client uses this character to compose
a string containing the sensors data, the server uses the same
character to infer and to create a string containing the fuzzy
control results. Client and Server, simply, have to split the
received string in order to use the data in a normal fashion.
Figure 2 shows the communication step performed during a
control iteration by the system.
In order to accomplish the JAXB/TCP/FML Controller is
necessary to create a TCPendpointable to identify in a di-
rect and unambiguous way the FML Server on the Internet.
TCP defines an endpoint to be a pair of integers(host, port),
where thehost is the IP address for the FML Server host
andport is a TCP port where the server is executed on that
host. The IP address depends from the network which hosts
the FML Server; the TCP port has to be defined in uni-
vocal way to allows the FML clients to contact the Server
without problems. The FML Server port is defined con-
sidering the concatenation of ASCII codes related toF, M
and L characters modulo 65536(available TCP ports) ob-
taining, in this way, the integer port number 12330. Some
examples of FML/TCP endpoint are:(192.168.0.4, 12330),
(193.205.186.85, 12330).

A. Fuzzy Markup Language(FML) and Fuzzy Logic Con-
trol(FLC)

Since Zadeh’s coining of the term fuzzy logic [Zadeh65]
and Mamdani’s early demonstration of Fuzzy Logic Control
(FLC) [Mamdani74], an enormous progress has been done
by the scientific community in the theoretical as well as ap-
plication fields of FLC. Trivially, a fuzzy control allows the
designer to specify the control in terms of sentences rather
than equations by replacing a conventional controller, say,
a PID (proportionalintegral- derivative) controller with lin-
guistic IF-THEN rules. The main components of a fuzzy
controller are:

• Fuzzy Knowledge Base

• Fuzzy Rule Base

• Inference Engine

• Fuzzification sub-system

• Defuzzification sub-system

The Fuzzy Knowledge Base contains the knowledge used by
human experts. The Fuzzy Rule Base represents the set of
relations among fuzzy variable defined in the controller sys-
tem. The Inference Engine is the fuzzy controller component
able to extract new knowledge from fuzzy knowledge base
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Figure. 1: FML TCP/JAXB Architecture
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and fuzzy rule base. Extensible Markup Language (XML)
[DuCharme99] is a simple, very flexible text format derived
from SGML (ISO 8879). Originally designed to meet the
challenges of large-scale electronic publishing, nowadays
XML plays a fundamental role in the exchange of a wide
variety of data on the Web, allowing designers to create their
own customized tags, enabling the definition, transmission,
validation, and interpretation of data between applications,
devices and organizations. If we use XML, we take control
and responsibility for our information, instead of abdicating
such control to product vendors. This is the motivation under
FML proposal:to free control strategy from the device.FML
uses:

• XML in order to create a new markup language for
FLC;

• XML Schema in order to define the legal building
blocks of an XML document;

• XSLT in order to convert fuzzy controller description
into a programming language code.

Initially, FML used the XML Document Type Definition
(DTD) to realize the context free grammar for the new
markup language. Actually, the FML grammar is defined
by the XML Schema in order to allows a direct integration
with the JAXB techonology used in the FML compiling step.
Using XML Schema and JAXB is possible to map a detailed
logical structure of a fuzzy controller basic concepts of FLC
into a tree structure, as shown in figure 3, where each node
can be modeled as a FML tag, and the link father-child rep-
resents a nested relation between related tags. This logical
structure is calledFOM(Fuzzy Object Model).
Currently, we are using FML for modeling two well-known
fuzzy controllers: Mamdani and Takagi- Sugeno-Kang
(TSK) [Takagi85].

Fuzzy Controller


Knowledge
 Rules


Fuzzy Variable


Fuzzy Variable


Fuzzy Rule


Fuzzy Rule


Figure. 3: Fuzzy Control Tree

In order to model the Controller node of fuzzy tree, the
FML tag <FUZZYCONTROL > is created (this tag opens
any FML program). <FUZZYCONTROL > uses three

tags: type, defuzzifyMethodand ip. The type attribute
permits to specify the kind of fuzzy controller, in our
case Mamdani or TSK; defuzzifyMethod attribute defines
the defuzzification method; ip can be used to define the
location of controller in the computer network and, in
the case of<FUZZYCONTROL > tag it defines the
first member of TCP endpoint pair. Considering the left
sub-tree, the knowledge base component is encountered.
The fuzzy knowledge base is defined by means of the
tag <KNOWLEDGEBASE > which maintains the set of
fuzzy concepts used to model the fuzzy control system.
<FUZZYVARIABLE > defines the fuzzy concept, for ex-
ample Luminosity;<FUZZYTERM > defines a linguistic
term describing the fuzzy concept, for example low; the set
of tags defining the shapes of fuzzy sets are related to fuzzy
terms. The attributes of<FUZZYVARIABLE > tags are:
name, scale, domainLeft, domainRight, type, ip. Thename
attribute defines the name of fuzzy concept (i.e. time of the
day); scale defines how to to measure the fuzzy concept
(i.e. hour);domainLeftanddomainRightmodel the universe
of discourse of fuzzy concept in terms of real values (i.e.
[0000, 2400]); the role of variable (i.e. independent or
dependent variable) is defined bytype attribute; ip locates
the position of fuzzy knowledge base in the computer
network. <RULEBASE> permits to build the rule base
associated with the fuzzy controller. The other tags related
to this definiton are: <RULE>, <ANTECEDENT >,
<CONSEQUENT>, <CLAUSEA>, <CLAUSEC>,
<VARIABLE >, <TERM >, <TSKPARAM >. The
meaning of these tags appears evident and we do not further
detail here.

B. Distributed Fuzzy Control

Just to give a concrete example, considering automatic
lighting system, we can model the knowledge base and rule
base FML code portion, and in particular the lamp light level
as shown in listing 1 (Mamdani method).

<!DOCTYPE FUZZYCONTROL SYSTEM ” fml . dtd ” >
<FUZZYCONTROL d e f u z z i f y m e t h o d= ”CENTROID”

i p = ” l o c a l h o s t ” t y p e = ”MAMDANI” >
<KNOWLEDGEBASE IP = ” l o c a l h o s t ”>
<FUZZYVARIABLE

d o m a i n l e f t = ”0” doma in r i gh t = ”1”
i p = ” l o c a l h o s t ” name = ” Luminosi ty ”
s c a l e = ”Lux” t y p e = ”INPUT” >
<FUZZYTERM name=” low” >

<PISHAPE
param1 = ” 0 . 0 ”
param2 = ” 0 .45 ”>

</PISHAPE>
</FUZZYTERM>
<FUZZYTERM name=”MEDIUM” >

<PISHAPE
param1 = ” 0.49999999999999994 ”
param2 = ” 0.44999999999999996 ”>
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</PISHAPE>
</FUZZYTERM>

<FUZZYTERM name=”HIGH” >
<PISHAPE

param1 = ” 0 .5501 ”
param2 = ”1” >

</PISHAPE>
</FUZZYTERM>

</FUZZYVARIABLE>

</KNOWLEDGEBASE>

<RULEBASE
i n f e r e n c e e n g i n e= ”MINMAXMINMAMDANI”
i p = ” l o c a l h o s t ”>
<RULE c o n n e c t o r = ”AND” i p = ” l o c a l h o s t ”

we igh t = ”1” >
<ANTECEDENT>

<CLAUSE no t = ”FALSE” >
<VARIABLE> Luminos i t y </VARIABLE>
<TERM> low </TERM>

</CLAUSE>
<CLAUSE no t = ”FALSE” >

<VARIABLE> hour </VARIABLE>
<TERM> morning </TERM>

</CLAUSE>
</ANTECEDENT>
<CONSEQUENT>

<CLAUSE no t = ”FALSE” >
<VARIABLE>dimmer</VARIABLE>
<TERM>medium</TERM>

</CLAUSE>
</CONSEQUENT>

</RULE>
. . .
</RULEBASE>
</FUZZYCONTROL>

Listing 1: FML sample program

This crunch of FML code is useful to understand how is pos-
sible to associate a fuzzy control activity (knowledge base
and eventually the rule base) on a single host (in our exam-
ple localhost). In this näıve example, a centralized Mamdani
fuzzy controller is produced, but in real cases, a distributed
approach is performed, as illustrated in figure 4. This feature
is useful to obtain several advantages:

1. to parallelize the fuzzy inference engine reducing infer-
ence time and minimizing knowledge base and rule base
occupancy;

2. to manage distributed knowledge environment, i.e. en-
vironments in which the global knowledge is shared on
many points of interested environment, as often happens
in AmI;

3. to exploit mobile agents as a natural and efficient tech-
nology to share data distribution and dispatch running

code on a network. This last concept is deepened in the
last part of the paper.

In order to distribute fuzzy controller components on differ-
ent hosts we need to characterize the independent members
of controller. In particular, working with Mamdani we iden-
tify the following components:

• Fuzzy Controller

• Knowledge Base

• Fuzzy Variable

• RuleBase

• Fuzzy Rule

Default value of ip attribute of<FUZZYCONTROL > tag
is localhost. The internet address value of fuzzy controller
is distributed towards the bottom in the parse tree related
to fuzzy program. From this point of view, the internet
address of other independent components (knowledge base
and rule base), if not defined, is overlapped by network ad-
dress from<FUZZYCONTROL > tag. This distributive
concept is also extended to the nodes of the parse tree re-
lated to the rule base and knowledge base: each member
of the controller is spread in a scalable and distributed way,
as shown in figure 4. Comparing figures 3 and 4 we bet-
ter note the strong differences between a centralized con-
troller and a distributed one. In Figure 3, all components
of centralized controller are connected by straight lines indi-
cating that all components (knowledge base, rule base and
related sub components) are maintained on the same host
at the same time. Figure 4 shows a distributed fuzzy con-
troller, the whose members, connected by dotted lines, can
be treated concurrently by different processes. In particu-
lar, Figure 4 shows a distributed fuzzy controller with Lumi-
nosity and Time of the day concepts hosted on 192.168.0.4,
Dimmer concept hosted on 192.168.0.8 and the rule base
shared on 192.168.0.5, 192.168.0.6, 192.168.0.7. In this way,
we can distribute fuzzy rule base in the network and exploit
distributed processing by minimizing inference. In order to
address in a high-level way the issues of delocalization and
concurrency, we map the distributed fuzzy model coded in
FML on a multi-agents system. In particular, the agents that
compose the system are: Stationary Fuzzy Agent set, Reg-
istry Agent, Inference Agent. The set of Stationary Fuzzy
Agent is used to manipulate in a distributed way the con-
cept coded in FML program and modeled in the distributed
fuzzy controller. These agents represent the run time con-
tainers able to execute the fuzzy logic operator on modeled
entity. Stationary Fuzzy Agents are hosted on different host
of network; these hosts represent the Fuzzy Control Network
(FCN). The Inference Agent is a migrating agent able to ap-
ply the classic inference operator, likeMamdani MinMaxMin
or Larson Producton hosts running the Stationary Agents.
Due to the delocalization of rules, it is necessary to collect
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the partial inference results. This is done by the migration of
Inference Agent that gathers the partial results available on
each Stationary. Just to give an idea of the gain from shifting
from a centralized to a decentralized evaluation, we give in
figure 5 the results from a testbed done by spreading the con-
trol over three computational nodes. On the axisx we report
the number of fuzzy rules evaluated, the required inference
time, expressed in milliseconds, is on axisy.

III. Context-Aware Adaptivity

Such layer implements an evolutionary-based mechanism
[Yuhui99] in order to customize the services available in the
AmI environment. This goal is achieved by producing new
fuzzy rules that correspond to personalized control activities
of the involved components. In particular, for each actua-
tor plugged in the AmI network a software agent implements
the adaptive algorithm that produces the corresponding FML
control code. The overall process is based on two basic func-
tionalities: learning modeand control mode. In learning
mode, the algorithm captures the ambient features represent-
ing its inputs in order to generate a fuzzy controller coded
in FML. In control mode, the fuzzy controller obtained in
the learning mode and associated to a specific actuator, is
executed using the AmI Multi-Agents System, as shown in
figure 7. These two phases are managed by two indepen-
dent agent classes, so distributed and concurrent processing
is achieved, even though some coordination is required, as
better discussed later. First, it is necessary to defined the
feature space on which the adaptive layer works on. The fea-
tures, captured in learning mode, correspond to user’s actions
(for example, temperature setting) added with the status of
AmI environment. In particular, each actuator (for instance,
a lighting switch) plugged in the network, communicates its
status change in accordance to the user’s action and, each
sensor (for instance, a lighting sensensor), communicates its
actual status in order to model the environment status when
the user’s action occurred.
Formally, the AmI feature is composed by two parts, as
shown in figure 6, (1) AmI environment status matrix; (2)
user’s actions vector. In particular, theith column of ma-
trix represents the environment status captured duringith

user’s action execution which is represented by theith entry
of user’s action vector. The size of the user’s action vector
(the number of columns of AmI environment status matrix)
reflects the required completeness of feature space necessary
to trigger the learning mode functionality. In practice, the
size depends on the specific application.
The adaptive algorithm can be sketched in 7 steps, as shown
in listing 2. We refer to the approach described in [Hong96],
that we choose as generic model to generate fuzzy rules, but
different approaches can be used [Delgado98] [Chen2004].
Essentially, first we generate the feature space relates to the
actuator device (step 1), then the user’s actions are trans-
formed into clusters (representing similar actions) and fuzzy

Figure. 5: Multi-Agent System Performance
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sets are extracted for each cluster (step 2).

do {

step 1.
do {

upda te t e m p e r a t u r e f e a t u r e space ( t f s )
} wh i le ( # t f s i s no t mean ing fu l )

step 2.
C l u s t e r and F u z z i f y t h e
u s e r a c t i o n s v e c t o r ;

step 3.
C o n s t r u c t i n i t i a l membership f u n c t i o n s
f o r AmI s t a t u s m a t r i x ;

step 4.
r u l e b a s e = C o n s t r u c t t h e i n i t i a l d e c i s i o n
t a b l e ;

step 5.
r u l e b a s e = S i m p l i f y t h e i n i t i a l d e c i s i o n
t a b l e ;

step 6.
FMLRuleBase = toFML ( r u l e b a s e ) ;

step 7.
S t a r t new Agent

ControlMode ( FMLRuleBase ) ;

} whi le ( t r u e )

Listing 2: Adaptive Fuzzy Induction Algorithm

Similar actions are detected by standard derivation(σs) of
difference values between adjacent data(diffi) inside the
ordered user’s action vector. In particular theith similarity
value is:

si =
{

1− diffi

C∗σs
for diffi ≤ C ∗ σs

0 otherwise

whereC is a control parameter used to modify the shape of
membership functions of similarity. From similarity values
it is possible to cluster user’s actions applying theα - cut
method:

If si < α then divide the two adjacent data into different
group;

else put it in the same group.

Starting from the obtained clusters, it is possible to compute
the fuzzy set related to user’s actions. The fuzzy shape used
to model such action is a triangular fuzzy shape defined by
means of(a, b, c) triangle vertex points. In particular, we as-
sume that the center pointb lies at COG (center-of-gravity)

of the group with membership value at 1. Next, we have to
find the membership values of two boundary user’s actions
in the group, where boundary user’s actions mean the mini-
mum and maximum user’s actions in the group. The two ex-
treme pointsa andc of the output membership fuzzy set can
be found through the extrapolation ofb and the two bound-
ary values. In particular, ifui, ui+1, . . . , uk are the ordered
user’s actions injth group, then the central vertexbj in this
group is defined as:

bj = ui∗si+ui+1∗ si+si+1
2 +...+uk−1∗

sk−2+sk−1
2 +uk∗sk−1

si+
si+si+1

2 +
si+1+si+2

2 +
sk−2+sk−1

2 +sk−1

The minimum similarity value in the group is chosen as the
membership value of the two boundary pointsui and uk.
Then, the following formulas are used to calculateµ(ui)
andµ(uk), whereµj is the membership functions of thejth

group:

µj(ui) = µj(uk) = min(si, si+1, . . . , sk−1)

Now, it is possible to compute thea and c vertex points
through interpolation procedure, considering the points
(bj , 1), (ui, µj(ui)) and(ui, µj(ui)):

a = bj − bj − ui

1− µj(ui)
;

c = bj +
uk − bj

1− µj(uk)
;

Starting from the obtained user’s action membership func-
tions it is possible to derive the related FML Knowledge Base
as shown in listing 3, whereR1, R2, . . ., Rl represent the ob-
tained clusters andaR1 , bR1 , cR1 , aR2 , bR2 , cR2 , . . ., aRl−1 ,
bRl−1 , cRl−1 , aRl

, bRl
, cRl

are the parameters representing
the clusters.
Once computed the fuzzy sets and membership functions
able to model the user behavior in AmI environment, it is
necessary to fuzzify the environment status matrix in order
to obtain the input scenario. First action is to compose the
fuzzy set (triangle(a, b, c)), for each row of the input matrix.
Since we assumeba = cb = the smallest predefined unit, let
a0 be the smallest value for the element characterizing the
row of the input matrix, andan be the biggest value. With
ai−ai−1 = ai+1−ai = the smallest predefined unit, we are
able to identify the fuzzy set. A typical initial membership
function is showed in figure 8.

<FUZZYVARIABLE
d o m a i n l e f t = ” aR1 ” doma in r i gh t = ” cRl ”
i p = ” l o c a l h o s t ” name = ” output ”
s c a l e = ” undef ined ” t y p e = ”OUTPUT” >
<FUZZYTERM name=” R1 ”>

<TRIANGULARSHAPE
param1 = ” aR1 ”
param2 = ” bR1 ”>
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Figure. 8: Typical Membership Function

param3 = ” cR1 ”>
</TRIANGULARSHAPE>

</FUZZYTERM>
<FUZZYTERM name=” R2 ”>

<TRIANGULARSHAPE
param1 = ” aR2 ”
param2 = ” bR2 ”>
param3 = ” cR2 ”>

</TRIANGULARSHAPE>
</FUZZYTERM>
. . .
<FUZZYTERM name=” Rl ”>

<TRIANGULARSHAPE
param1 = ” aRl ”
param2 = ” bRl ”>
param3 = ” cRl ”>

</TRIANGULARSHAPE>
</FUZZYTERM>

</FUZZYVARIABLE>
. . .

Listing 3: FML Adaptive Knowledge Base

The next step describes the construction of thedecision ta-
ble. In particular, we build a multi-dimensional decision ta-
ble (each dimension represents a corresponding AmI status
entity, i.e, the inputs of fuzzy controller under generation)
according to the initial membership function. The figure 9
shows an example of a bidimensional initial decision table.
Let cell be defined as the contents of a positions
(d1, d2, . . . , dm) in the decision table, wherem is the di-
mension of table anddi is the position value. Each cell in
table may be empty, or may contain a fuzzy region of the
user’s action space. For sake of simplicity, let us suppose
R1, R2, . . . , Rl be the clusters returned by the first step. The
adaptive algorithm eliminates the redundant and unnecessary
relations by deleting rows and/or columns of the decision ta-
ble; in this way it is possible to minimize the number of rules
of AmI controller and hence obtain a compact FML program.
The optimization procedure is based on five operations:

Operation 1 If cells in two adjacent columns (or rows) in
decision table are the same, it is possible to merge these
two columns or rows;

Operation 2 If two cells are the same or if either of them
are empty in two adjacent columns (rows) and at least
one cell in both the columns (rows) is not empty, then it
is possible to merge these two columns (rows) into one;

Operation 3 If all cells in a column (row) are empty and if
cells in two adjacent columns (rows) are the same, then
it is possible to merge these three columns (or rows) into
one;

Operation 4 If all cells in a column (row) are empty and if
cells in its two adjacent columns (rows) are the same
or either of them is empty, then it is possible to merge
these three columns (rows) into one;

Operation 5 If all cells in a column (row) are empty and if
all the nonempty cells in column (row) to its left have
the same region, and all the non-empty cells in the col-
umn (row) to its right have the same region, but one
different from the previously mentioned region, then it
is possible to merge these three columns into two parts.

Applying these operations, the overall number of member-
ship functions is reduced. This deletion may affect the coher-
ence between decision table and input fuzzy memberships.
An example of final decision table is showed in figure 10.
Obviously, the algorithm can be adapted to multidimensional
decision tables in a simple way.
In order to assure the coherence, it is necessary to assess
the membership functions related to the affected dimensions
of the decision table. In particular, for operations 1 and 2,
if (ai, bi, ci) and (aj , bj , cj) are the membership functions
for the ith attribute anddi and di+1 are the correspond-
ing position values, then the new membership function is
(ai, (bi + bj)/2, cj). For operation 3 and 4, if(ai, bi, ci),
(aj , bj , cj) are the membership functions for theith attribute
anddi−1, di, di+1 are the corresponding position values, then
the new membership function is(ai, (bi+bj+bk)/2, ck) . For
operation 5, if(ai, bi, ci), (aj , bj , cj) and(ak, bk, ck) are the
membership functions for theith attribute anddi−1, di and
di+1 are the corresponding position values, the new member-
ship functions are(ai, bi, ci) and(ak, bk, ck). At this point,
it is possible to derive decision rules from the reduced deci-
sion table. Letcell(d1,d2,...,dm) = Ri be a generic entry of
decision table. Using such entry it is possible to derive the
rule:

If input1 = d1 and input2 = d2 and . . .and inputm = dm

Then output = Ri

This rule, and the whole generated fuzzy rule base, can be
modeled using the FML as shown in the listing 4.
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Figure. 9: Initial Decision Table
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Figure. 10: Final Decision Table
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<RULEBASE>
i n f e r e n c e e n g i n e= ”MINMAXMINMAMDANI”
i p = ” l o c a l h o s t ”

<RULE
c o n n e c t o r = ”AND”
i p = ” l o c a l h o s t ”
we igh t = ”1” >
<ANTECEDENT>

<CLAUSE no t = ”FALSE” >
<VARIABLE> input1 </VARIABLE>
<TERM> d1 </TERM>

</CLAUSE>
<CLAUSE no t = ”FALSE” >

<VARIABLE> input2 </VARIABLE>
<TERM> d2 </TERM>

</CLAUSE>
. . .
<CLAUSE no t = ”FALSE” >

<VARIABLE> inputm </VARIABLE>
<TERM> dm </TERM>

</CLAUSE>
</ANTECEDENT>
<CONSEQUENT>

<CLAUSE no t = ”FALSE” >
<VARIABLE> output </VARIABLE>
<TERM> Ri </TERM>

</CLAUSE>
</CONSEQUENT>

</RULE>
. . .

</RULEBASE>

Listing 4: FML Adaptive Knowledge Base

The inputi parameters, used in listing 4, represent the input
fuzzy variable related toith entry of decision table. These
variables have to be defined by FML programmer. The fuzzy
variable namedoutput is related to fuzzy conceptRi ob-
tained during the phase 1 of adaptive algorithm.
The obtained FML output is, obviously, a model of cen-
tralized fuzzy controller because eachip parameters of each
FML tag is initialized with”localhost” . In order to create a
distributed fuzzy controller achieving the performance of fig-
ure 5, the adaptive algorithm uses a list of Internet addresses,
used in cyclic way, in order to distribute the rule base in a
uniform way obtaining the aforesaid performance.

IV. Conclusions

In this work we reported our experience in mixing soft com-
puting approaches with TCP/IP protocol and agent tech-
nology, that represented the basis of a general architecture
suitable for AmI systems. Device independence and trans-
parency is achieved thanks to a fuzzy-oriented markup lan-
guage (FML) able to manage fuzzy concepts, fuzzy rules and
fuzzy inference engine directly. Adaptivity strategy is ap-

plied in order to dynamically reconfigure the domotic ser-
vices according to new user’s habits and status of home sen-
sors.
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