
Automatic Web News Extraction Using Tree Edit Distance

Davi de Castro Reis1 2 Paulo B. Golgher2 Altigran S. da Silva3

Alberto H. F. Laender1

1Computer Science
Department

Federal University of Minas
Gerais

Belo Horizonte, Brazil
{davi,laender}@dcc.ufmg.br

2Akwan Information
Technologies

Av. Abraão Caram 430
Pampulha

Belo Horizonte, Brazil
{davi,golgher}@akwan.com.br

3Computer Science
Department

Federal University of
Amazonas

Manaus, Brazil
alti@dcc.fua.br

ABSTRACT
The Web poses itself as the largest data repository ever available in
the history of humankind. Major efforts have been made in order
to provide efficient access to relevant information within this huge
repository of data. Although several techniques have been devel-
oped to the problem of Web data extraction, their use is still not
spread, mostly because of the need for high human intervention and
the low quality of the extraction results. In this paper, we present
a domain-oriented approach to Web data extraction and discuss its
application to automatically extracting news from Web sites. Our
approach is based on a highly efficient tree structure analysis that
produces very effective results. We have tested our approach with
several important Brazilian on-line news sites and achieved very
precise results, correctly extracting 87.71% of the news in a set of
4088 pages distributed among 35 different sites.

Categories and Subject Descriptors
H.3.m [Information Storage and Retrieval]: Miscellaneous—
Data Extraction, schema inference, Web

General Terms
Algorithms, Languages

Keywords
data extraction, edit distance, trees, schema, electronic news

1. INTRODUCTION
Nowadays the Web poses itself as the largest data repository ever

available in the history of humankind. Major efforts have been
made in order to provide efficient access to relevant information
within this huge repository. At least two broad views of this prob-
lem have evolved recently. The first one, characterized by the un-
structured view of data, has developed breakthrough technologies
(such as Web search engines) based on information retrieval [3]
methods, which have been used in many successful commercial
products. The second one, characterized by the structured or semi-
structured view of data, borrows techniques from the database area
to provide the means to effectively managing the data available on
the Web [9]. Thus, several techniques have been adapted (or tar-
geted specifically) to the problem of extracting data from the Web

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

for further processing (querying, integration, mediation, etc.) [13].
However, these techniques are still not spread as the information re-
trieval based ones. This happens mostly because of two problems
with these techniques: (1) the need for high human intervention and
(2) the low quality of the extraction results. Thus, the motivation to
develop new methods and tools to allow the effective deployment
of a more structured view of the data available on the Web still
remains.

Devising generic methods for extracting Web data is a complex
(if not impossible) task, since the Web is very heterogeneous and
there are no rigid guidelines on how to build HTML pages and how
to declare the implicit structure of the Web pages. Thus, in order to
develop effective methods for extracting Web data in a precise and
completely automatic manner, it is usually required to take into
account specific characteristics of the domain of interest. One of
such domains is that of on-line newspapers and news portals on
the Web, which have become one of the most important sources
of up-to-date information. Indeed, there are thousands of sites that
provide daily news in very distinct formats and there is a growing
need for tools that will allow individuals to access and keep track
of this information in a automatic manner.

In this paper, we present a domain-oriented approach to Web
data extraction and discuss its application to automatically extract-
ing news from Web sites. This approach is based on the concept
of tree-edit distance [17, 20] and allows not only the extraction of
relevant text passages from the pages of a given Web site, but also
the fetching of the entire Web site content, the identification of the
pages of interest (the pages that actually present the news) and the
extraction of the relevant text passages discarding non-useful ma-
terial such as banners, menus, and links.

To support this approach, we have developed a highly efficient
tree structure analysis algorithm that outperforms, for practical pur-
poses, the best results on tree-edit distance calculation in the liter-
ature. We have tested our approach with several important Brazil-
ian on-line news sites and achieved very precise results, correctly
extracting 87.71% of the news in a set of 4088 pages distributed
among 35 different sites.

The rest of this paper is organized as follows. Section 2 gives
an overview of the theory behind tree edit distance algorithms, the
basis of our work. Section 3 presents our improved tree structure
analysis algorithm, while Section 4 shows the application of this
algorithm in the various tasks that comprise our approach. Experi-
mental results demonstrating the effectiveness of our approach are
in Section 5. Section 6 discusses related work. Finally, conclusions
and directions for future work can be found in Section 7.

502

2. TREE EDIT DISTANCE
The approach we have developed for finding and extracting data

of interest from Web pages is based on the analysis of the structure
of these target pages. More precisely, by evaluating the structural
similarities between pages in a target site we are able to perform
tasks such as grouping together pages with similar structure to form
page clusters and finding a generic representation of the structure
of the pages within a cluster. Indeed, as we shall see, such tasks are
key to our approach.

Since the structure of a Web page can be nicely described by a
tree (e.g., a DOM tree), we have resorted to the concept of tree
edit distance [17, 20] to evaluate the structural similarities between
pages. Intuitively, the edit distance between two trees TA and TB
is the cost associated with the minimal set of operations needed
to transform TA into TB . In this section we review this important
concept along with its related formalisms and describe how we use
it to analyze the structure of Web pages.

Trees are one of the most common data structures used in com-
puter science. Formally, they are defined as directed acyclic simple
graphs. Although most of the discussion in this section can be gen-
eralized to deal with different types of tree, we are interested only
in one specific type of tree, called labeled ordered rooted tree. A
rooted tree is a tree whose root vertex is fixed. Ordered rooted trees
are rooted trees in which the relative order of the children is fixed
for each vertex. Labeled ordered rooted trees have a label l attached
to each of their vertices. Figure 1 shows an example of such a tree.
From now on, we refer to labeled ordered rooted trees simply by
trees, except when explicitly stated.

D E

B C

R

Figure 1: A labeled ordered rooted tree with root R

In its traditional formulation, the tree edit distance problem con-
siders three operations: (a) vertex removal, (b) vertex insertion, and
(c) vertex replacement. To each of of these operations, a cost is as-
signed. The solution of this problem consists in determining the
minimal set of operations (i.e., the one with the minimum cost) to
transform one tree into another. Another equivalent (and possibly
more intuitive) formulation of this problem is to discover a map-
ping with minimum cost between the two trees. The concept of
mapping (introduced in [18]) is formally defined next.

DEFINITION 1. Let Tx be a tree and let Tx[i] be the i-ism vertex
of tree Tx in a preorder walk of the tree. A mapping between a tree
T1 of size n1 and a tree T2 of size n2 is a set M of ordered pairs
(i, j), satisfying the following conditions for all (i1, j1), (i2, j2) ∈
M

• i1 = i2 iff j1 = j2;

• T1[i1] is on the left of T1[i2] iff T2[j1] is on the left of T2[j2];

• T1[i1] is an ancestor of T1[i2] iff T2[j1] is an ancestor of
T2[j2].

In Definition 1, the first condition establishes that each vertex can
appear no more than once in a mapping, the second enforces order
preservation between sibling nodes and the third enforces the hier-
archical relation between the nodes in the trees. Figure 2 illustrates
a mapping between two trees.

Intuitively, a mapping is a description of how a sequence of edit
operations transform a tree into another, ignoring the order in which
these operations are applied. In Figure 2, a dotted line from a ver-
tex of T1 to vertex of T2 indicates that the vertex of T1 should be
changed if the vertices are different, remaining unchanged other-
wise. Vertices of T1 not touched by dotted lines should be deleted,
and vertices of T2 not touched should be inserted.

D E

C B

EA

RR

A

T1

G

T2

Figure 2: A mapping example

As we have already mentioned, estimating a tree edit distance
is equivalent to finding the minimum cost mapping. Let M be a
mapping between tree T1 and tree T2, let S be a subset of pairs
(i, j) ∈M with distinct labels, let D be the set of nodes in T1 that
do not occur in any (i, j) ∈ M and let I be the set of nodes in T2

that do not occur in any (i, j) ∈ M . The mapping cost is given by
c = Sp + Iq + Dr, where p, q and r are the costs assigned to the
replacement, insertion, and removal operations, respectively. It is
common to associate a unit cost to all operations, however, specific
applications may require the assignment of distinct costs to each
type of operation.1

The tree edit distance problem is a difficult one, and several al-
gorithms, with different tradeoffs, have been recently proposed, but
all formulations have complexities above quadratic [6]. Further,
it has been proved that, if the trees are not ordered, the problem
is NP-complete [27]. The first algorithm for the mapping prob-
lem was presented in [18], and its complexity is O(n1n2h1h2),
where n1 and n2 are the sizes of the trees and h1 and h2 are
their heights. This is a dynamic programming algorithm that re-
cursively calculates the edit distance between the strings formed
by the sets of children vertices of each internal vertex in
the tree. In [21], a new algorithm was presented with cost
O(d2n1n2min(h1, l1)min(h2, l2)), where d is the edit distance
between the trees and l1 and l2 are the number of leaves in each
tree. Notice that this cost depends on the algorithm output. The
best known upper limit for this problem is due to an algorithm pre-
sented in [6] with complexity O(n1n2 + l21 + l2.51 l2).

Despite the inherent complexity of the mapping problem in its
generic formulation, there are several practical applications that
can be modelled using restricted formulations of it. By imposing
conditions to the basic operations corresponding to the original for-
mulation in Definition 1 (i.e., replacement, insertion and removal),
four classical restricted formulations are obtained: alignment, dis-
tance between isolated trees, top-down distance, and bottom-up
distance, for which more convenient and fast algorithms have been
proposed [19, 22].

Detailing each one of these formulations and algorithms is be-
yond the scope of this paper, but since our approach is based on a
restricted version of the top-down mapping problem, we will briefly
review and illustrate it. Informally, a top-down mapping restricts
the removal and insertion operations to take place only in the leaves
of the trees. Figure 3 illustrates a top-down mapping which is for-
mally defined as follows.
1Other applications may even require a distinct set of operations.

503

DEFINITION 2. A mapping M between a tree T1 and a tree T2

is said to be top-down only if for every pair (i1, i2) ∈ M there
is also a pair (parent(i1),parent(i2)) ∈ M , where i1 and i2 are
non-root nodes of T1 and T2 respectively.

D E

C B

EA

RR

A

T1

G

T2

Figure 3: A top-down mapping example

The first algorithm for the top-down edit distance problem was
proposed by Selkow [17]. In [25], Yang presents a recursive dy-
namic programming algorithm with costO(n1n2) for the problem,
where n1 and n2 are the sizes of T1 and T2, respectively.

One of the most popular algorithms for the problem is presented
in [5] also with cost O(n1n2). This algorithm, however, is not
recursive and the problem is solved within a single dynamic pro-
gramming instance. The paper also presents an external memory
variation for this algorithm.

Top-down mappings have been successfully applied to several
Web related applications such as document categorization. For in-
stance, Nierman and Jagadish [16] use a top-down distance algo-
rithm to cluster XML documents.

In our case, we are interested in the problem of evaluating the
similarity between Web pages. Indeed, most Web pages are struc-
tured according to formats such as HTML and XML which, as
mentioned before, can be seen as labeled ordered rooted trees [7].
Actually, the DOM paradigm, commonly used for manipulating
Web pages, uses this tree representation.

In the next section, we present a new algorithm for determin-
ing a restricted form of top-down mapping between two trees that
represent Web pages and, as a consequence, the tree edit distance
between them.

3. THE RTDM ALGORITHM
In this section, we present an algorithm for determining a new

type of mapping that we call Restricted Top-Down Mapping. In-
tuitively, in the restricted top-down mapping, besides the insertion
and removal operations, the replacement operation of different ver-
tices is also restricted to the leaves of the trees. More formally, we
have the following definition.

DEFINITION 3. A top-down mapping M between a tree T1 and
a tree T2 is said to be restricted top-down only if for every pair
(i1, i2) ∈ M , such that t1[i1] 6= t2[i2], there is no descendent of
i1 or i2 in M , where i1 and i2 are non-root nodes of T1 and T2

respectively.

Figure 4 shows a restricted top-down mapping. As done for the
family of edit distances mentioned before, we can define the re-
stricted top-down edit distance between two trees T1 and T2 as the
cost of the restricted top-down mapping between the two trees.

The RTDM algorithm combines the ideas presented in [25] and
[19]. To determine the restricted top-down mapping between two
trees T1 and T2, the RTDM algorithm first finds all identical sub-
trees that occur at the same level of the input trees. This step is
performed in linear time using a graph of equivalence classes, in

D E

C B

EA

RR

A

T1

G

T2

Figure 4: A restricted top-down mapping example

a similar way to what is done in [19]. Our algorithm, however, is
based on a post-order traversal of the trees. We can use this much
simpler approach because we only look for the identical sub-trees
of the same level. This first step of the algorithm has linear cost,
with respect to the number of vertices in the trees.

Once the vertices in the trees are grouped in equivalent classes,
an adaptation of Yang’s algorithm [25] is applied to obtain the min-
imal restricted top-down mapping between the trees. This second
step of the algorithm is shown in Figure 5. This figure only shows
the algorithm version for calculating the tree edit distance, but its
modification for obtaining the mapping is straightforward.

As we have already mentioned, the traditional top-down edit dis-
tance algorithm by Chawathe [5] has a complexity of O(n1n2) for
all cases, that is, the best, the expected and the worst cases. The
RTDM algorithm also has a worst case complexity of O(n1n2),
but, in practice, it performs much better due to the fact that it only
deals with restricted top-down mappings.

The worst case of the RTDM algorithm occurs when the two
trees being compared are all identical, except for their leaves. In all
other cases, the cost is amortized by the short-cuts in lines 20−25,
which we call the top-down short-cut, or in lines 17−18, which we
call the bottom-up short-cut. Further, when all we want to know is
whether the tree edit distance is under a given threshold, the short-
cut in lines 15 − 16 prevents the recursion to continue. This is a
very common situation when we need to cluster trees based on their
structural similarities.

We also notice that we can trivially alter lines 20 − 25 (the so-
called top-down short-cut), to create an algorithm that determines
the traditional (i.e., non-restricted) top-down edit distance. Thus,
we also have a new algorithm for the traditional formulation of the
problem.

Another interesting aspect of the RTDM algorithm is its flexi-
bility with respect to the cost of the edit operations. This property
allows using the algorithm in more complex derivations of the prob-
lem. For instance, it allows comparing a given tree instance with
a tree pattern of variable size. This problem is analogous to the
problem of matching regular expressions with strings and has been
addressed in the literature [26].

In the next section, we show how the RTDM algorithm can be
applied to the problem of automatically finding news available on
Web sites and extracting their components (e.g., titles, body, etc.)
for further processing.

4. AUTOMATICALLY EXTRACTING WEB
NEWS

In this section we discuss a Web news extraction approach that
relies on the RTDM algorithm to identify relevant text passages
containing news and their components, extract them and discard
useless material such as banners, links, etc. Our approach has ba-
sically two main tasks: (1) the crawling of news portals to fetch
the pages of interest and (2) the extraction of the news from the

504

1 RTDM(T1, T2, ε: threshold)
2 begin
3 let m be the number of children of T1 root
4 let n be the number of children of T2 root
7 M [i, 0]← 0 for all i = 0, . . . ,m
8 M [0, j]← 0 for all j = 0, . . . , n
9 for i = 1 to m

10 for j = 1 to n
11 Ci ← descendents(t1[i])
12 Cj ← descendents(t2[j])

13 d←M [i − 1, j] +
Pt1[k]∈Ci
k delete(t1[k])

14 i←M [i, j − 1] +
Pt2[k]∈Cj
k insert(t2[k])

15 if M [i − 1, j − 1] > ε
16 s←∞
17 elsif t1[i] and t2[j] are identical sub-trees
18 s← 0
19 elsif
20 if t1[i] is a leaf
21 s← replace(t1[i], t2[j])

22 s← s+
Pt2[k]∈Cj
k insert(t2[k])

23 elsif t2[j] is a leaf
24 s← replace(t1[i], t2[j])

25 s← s+
Pt1[k]∈Ci
k delete(t1[k])

26 else
27 s← RTDM(t1[i], t2[j], ε)
28 fi
29 fi
30 M [i, j]← min(d, i, s);
31 end
32 end
33 return M [m, n]
34 end

Figure 5: The RTDM Algorithm. The functions replace, delete
and insert give the costs of vertex replacement, vertex removal
and vertex insertion, respectively

HTML pages collected. Since Web crawling techniques have been
extensively discussed elsewhere [12], we focus our discussion on
the extraction task, in which resides most of our contributions.

To extract the desired news, our approach recognizes and ex-
plores common characteristics that are usually present in news por-
tals. For instance, most news sites have the following organization:
(a) a home page that presents some headlines, (b) several section
pages (or channels) that provide the headlines divided in areas of
interest (e.g., sports, technology, international, etc.), (c) pages that
actually present the news, containing the title, author, date and body
of the news. The goal of our approach is to correctly extract the
news, disregarding the other pages.

Our approach relies on the basic assumption that the news site
content can be divided in groups that share common format and
layout characteristics. This is rather a safe assumption, since nowa-
days most of the Web content is built using programs or scripts that
read the content from a database, format it, and generate the output
as an HTML page. We call this set of common layout and for-
mat features a template. Figure 6 presents two different templates
available in the CNN site.

DEFINITION 4. A template is the set of common layout and for-
mat features that appear in a set of HTML pages that is produced
by a single program or script that dynamically generates the HTML
page content.

In the case of news, templates are filled by journalists, usually

through the use of specific Web applications or some database inter-
face. Each field of a template (e.g., a news title) we call a data-rich
object. Ideally, the extractors generated by our approach should be
able to identify each one of these data-rich objects, and discover,
among them, which ones correspond to the title and the body of the
news.

According to our approach, the extraction task is performed in
four distinct steps: (1) page clustering, (2) extraction pattern gen-
eration, (3) data matching and (4) data labeling. Figure 7 illustrates
these steps.

In the following sections, we detail each step that comprises the
extraction task. We notice that our approach is simple and or-
thogonal, once the core of the main steps (clustering, extraction
and matching) is the RTDM algorithm, with variations on the cost
model for the edit operations.

4.1 Page Clustering
This first step takes as input a previously crawled set of pages

(a training set) and generates clusters of pages that share common
formating/layout features, i.e., share the same template. Each clus-
ter is later generalized into an extraction structure for a template, in
the extraction pattern generation step. Notice that the cluster algo-
rithm cannot simply group pages by their address (URL), because
subtle changes in script or cgi parameters may result in a com-
pletely different HTML page.

To generate the clusters, we use traditional hierarchical cluster-
ing techniques [23] in which the distance measured is the output of
our RTDM algorithm. There are no pre-defined number of clusters.
Instead, we adopt a constant threshold to determine if two given
clusters should be merged. In our implementation we used 80% of
similarity as the threshold value. The cost model for this step is
the simplest one. Every vertex insertion, removal or replacement
has unit cost. The replacement of equally labeled vertices has cost
zero. Other works [16] suggest a more sophisticated set of oper-
ations, but our experiments have shown that this simple model is
effective for our purposes. The output of this step is a set of page
clusters that share the same template.

4.2 Extraction Pattern Generation
In this step, our approach generalizes a cluster of pages into what

we call a node extraction pattern (ne-pattern). Formally, an ne-
pattern is a tree defined as follows.

DEFINITION 5. Let a pair of sibling sub-trees be a pair of sub-
trees rooted at sibling vertices. A node extraction pattern is a rooted
ordered labeled tree that can contain special vertices called wild-
cards. Every wildcard must be a leaf in the tree, and each wildcard
can be of one of the following types:

• SINGLE (·) A wildcard that captures one sub-tree and must
be consumed.

• PLUS (+) A wildcard that captures sibling sub-trees and
must be consumed.

• OPTION (?) A wildcard that captures one sub-tree and may
be discarded.

• KLEENE (∗) A wildcard that captures sibling sub-trees and
may be discarded.

We can think of an ne-pattern as a kind of regular expression for
trees. We call a wildcard every vertex in the tree that can match
any symbol (any label) with its associated type. Our purpose in this
step is to assure that each wildcard corresponds to a data-rich object
in the template. Single and plus wildcards should correspond to

505

Figure 6: Some templates available in the CNN site

Crawled
Pages

Clustering

*

+

?

+

Pages
Training

?

+

*

+

*

+

?

+

+

+

*

+

?

+

<title> ... </title>
<body> ... </body>

<title> ... </title>
<body> ... </body>

<title> ... </title>

<body> ... </body>

<title> ... </title>

<body> ... </body>

Extractor Generation
ne patterns

ne patterns Data LabelingData Matching

Figure 7: The main extraction steps

required objects, such as the title of a news, and option and Kleene
wildcards should correspond to optional objects, such as related
news lists.

Further, we say that an ne-pattern accepts (or matches) a given
tree if there is a mapping with no infinite cost between the ne-
pattern and the target tree. We define formally this concept and
the cost model associated with this mapping in Section 4.3.

The goal of this step in the extraction task is, taking as input a
page cluster, to generate an ne-pattern that accepts all the pages in
this cluster. Thus, the content differences between the pages in the
cluster are modeled as wildcards in our ne-patterns. To generate
such ne-patterns, we rely on what we call a composition operation,
defined as follows.

DEFINITION 6. Let T x1 and T x2 be distinct ne-patterns. Then
the composition of T x1 and T x2 , T x1 ◦ T x2 , is a ne-pattern T x3 such
that:

• Let S1 be the set of trees accepted by T x1 .

• Let S2 be the set of trees accepted by T x2 .

• Let S3 be the set of trees accepted by T x3 .

• Then S1 ∪ S2 ⊆ S3.

The process of generating an ne-pattern consists of iterating all
the trees that represent the pages in the cluster and incrementally
composing one to each other in the cluster. Notice that any tree can
be seen as an ne-pattern without any wildcard. At the end of the
process, we have an ne-pattern that accepts all pages in that cluster.

Let us see how we can use the RTDM algorithm to implement
the composition operation. First, we say that vertices a and b of an
ne-pattern are equal if and only if:

• a and b are wildcards and both are of the same type;

• a and b are not wildcards and the labels associated with a
and b are equal.

This is the equality operator for the RTDM algorithm. As a cost
model, we give the same weight, 1, to any edit operation in the

506

trees. Given two ne-patterns T x1 and T x2 , we use the RTDM al-
gorithm to obtain a mapping MTx1→Tx2 . From this mapping, we
create the composite ne-pattern T x3 = T x1 ◦T x2 using the following
rules:

• if a is not in the mapping, then add a′ to T x3 where a′ =
f(a, ?);

• if a maps to b then add a′ to T x3 where a′ = f(a, b);

• and f(a, b) is defined as:
f(∗, ∗) = ∗ f(+,+) = + f(., .) = .
f(∗,+) = ∗ f(+, .) = + f(., ?) = ?
f(∗, ?) = ∗ f(+, ?) = ∗ f(., n) = .
f(∗, .) = ∗ f(+, n) = + f(?, ?) = ?
f(∗, n) = ∗ f(?, n) = ?
f(n1, n2) = n1 if n1 and n2 have identical labels
f(n1, n2) = . if n1 and n2 have different labels

where n, n1, n2 are non-wildcard vertices and the parameter order
is not relevant.

The motivation behind this set of operations is that optional ver-
tices of the template that the ne-pattern is trying to model should be
kept optional after composing the ne-pattern with a new tree, and
higher quantifiers (i.e., Kleene and plus) should be kept in the final
ne-pattern. Non-wildcard vertices in the ne-pattern that are mapped
to different (as defined by our equality operator) non-wildcard ver-
tices in the tree being composed should result in new wildcards.

We notice that some data-rich objects in the pages might span
through several sibling sub-trees, like a text of a news body that
is composed of many adjacent paragraphs. Capturing each of these
objects as a single entity is the purpose of the plus and Kleene wild-
cards.

If we look carefully at the definition of the function
f(a, b) above, we will see that there is no wildcard quantifier “pro-
motion” policy, or, in other words, wildcards plus and Kleene will
never be generated if there are no plus or Kleene wildcards in
the input of the function. These wildcards are created in a post-
processing step whenever we compose two ne-patterns.

This post-processing is actually quite simple. Every wildcard
followed by a set of option wildcards should be converted into a
wildcard for variable size objects, that is, Kleene or plus wildcards.
If the wildcard before the set of option wildcards is a single or a plus
wildcard, then the set of option wildcards and the precedent wild-
card are converted to a plus wildcard. If the wildcard is an option
or Kleene wildcard, then both this wildcard and the adjacent option
wildcards are converted to a Kleene wildcard. Figure 8 illustrates
the whole ne-pattern generation task, including the “promotion” of
a wildcard. In our approach, even if wildcards are separated by a
maximum of 3 non-wildcard vertices they can be merged (includ-
ing the non-wildcard vertices) into a single variable size wildcard
(plus or Kleene).

4.3 Data Matching
In this step, our approach matches the set of generated

ne-patterns to the set of recently crawled pages. To find the most
appropriate ne-pattern to a crawled HTML page, we again rely on
our RTDM algorithm.

Before discussing the cost model for the matching step, we need
to understand what the intuition behind the matching of the ne-
patterns is. In this context, we say that, in a given mapping, if
one wildcard vertex in the ne-pattern maps to a vertex in the target
HTML tree, then the wildcard consumes the vertex. Now let us
define the desired behavior for a mapping between the ne-pattern
and the target tree, so that we can create an appropriate cost model.

DEFINITION 7. We define a match between an ne-pattern and
a target HTML tree as a mapping such that the following rules are
satisfied in this order:

1. Every non-wildcard vertex in the ne-pattern must map to an
identical vertex in the target tree.

2. Every vertex in the target tree must map to an identical non-
wildcard vertex in the ne-pattern or be consumed by a wild-
card.

3. Single wildcards (.) must consume one sub-tree of the target
tree.

4. Plus wildcards (+) must consume at least one sub-tree of the
target tree.

5. Option wildcards (?) must consume one sub-tree of the target
tree, if it is possible.

6. Kleene wildcards (∗) must consume at least one sub-tree of
the target tree, if it is possible.

7. Plus wildcards (+) must consume as many sibling sub-trees
of the target tree as possible.

8. Kleene wildcards (∗) must consume as many sibling sub-
trees of the target tree as possible.

The satisfaction of Rules 1, 2, 3 and 4 is enough to guarantee
that the ne-pattern accepts the target tree. Rules 5 and 6 assure
that the match is as tight as possible, or, if it is possible to use
an optional wildcard without violating the acceptance condition, it
must be used. Rules 7 and 8 are always automatically satisfied, and
are declared to help understanding the behavior of the ne-pattern.

The equality function for the RTDM algorithm is very simple.
Non-wildcard vertices with identical labels are equal and the equal-
ity comparison with a wildcard vertex always fails. Let a be a ver-
tex in the ne-pattern, and b a vertex in the target tree. We define the
cost model for the RTDM algorithm as follows:

• Vertex Replacement
(A) a is a wildcard→ 0

(B) else→∞

• Vertex Insertion
(C) There is an ancestor of b such that it is consumed
by a wildcard→ 0

(D) The left sibling of b is consumed by a ∗ → 0

(E) The left sibling of b is consumed by a +→ 0

(F) else→∞
• Vertex Removal

(G) a =? or a = ∗ → 1

(H) else→∞

The replacement cost (A) guarantees that only wildcards can be
replaced by the sub-trees they consume. The insertion cost (C)
allows complete sub-trees to be consumed by the wildcards. Costs
(D) and (E) allow wildcards to consume lists of sibling sub-trees.
The vertex removal cost (G) assures that only optional wildcards
can be deleted, and it associates a non-zero cost with the deletion
of an optional wildcard, so they are preferably covered by cost (A).
Finally, costs (B), (F) and (H) together guarantee that the ne-pattern
must accept the target page, or the mapping will have infinite cost.

507

to a vertex with different label in
the target tree, we consider it as

Required wildcards

Optional wildcards

If a vertex in the source tree maps

Variable size objects

After creating each new pattern,
evidence of a variable size object.
following another wildcard is the

we look for wildcards followed

The presence of optional wildcards

a required wildcard, since it is
and create a new wildcard that can
by a series of optional wildcards

capture variable sized objects.
present in both trees.

D E

A

B C

A

F C

D

��

?

C

A

D

A

C

D

? ���
���
�������������������������

�������������������������

?

��������������������������

...
Page Cluster

A

G F C

D E

...

?

A

C

D

+

.

in a target tree, we consider the presence
When a vertex in a tree has no equivalent

of the vertex optional in our extractor
and generate an optional wildcard.

Figure 8: How an ne-pattern is created from a cluster of similar pages

Although costs (C), (D) and (E) seem quite complicated at a first
glance, they are trivially implemented in constant time. To check
the validity of any of them, we just need to check if the vertex in
the target tree is being inserted in the position of (or immediately
after) a wildcard in the ne-pattern. This cost model guarantees that
either the conditions in Definition 7 are satisfied or the mapping has
infinite cost.

Once the ne-pattern has been selected, the extraction process is
straightforward. Both trees (the ne-pattern and the HTML page)
are traversed in pre-order and for each wildcard found in the ne-
pattern, the text passage in the vertices consumed by the wildcard
is extracted from the HTML page. Figure 9 illustrates the matching
process.

4.4 Data Labeling
The output of the data matching step is a set of ordered text pas-

sages, each one corresponding to a set of vertices consumed by a
ne-pattern wildcard. More formally, we can define the output of a
match as a set T = (t1, p1), (t2, p2), ..., (tn, pn) where each ti is a
text passage retrieved by a wildcard and pi is the vertex position of
this wildcard if we perform a pre-order traversal of the ne-pattern.

The goal of the data labeling step is to select from T the pas-
sages ti and tj that correspond to the title and the body of the news
being extracted from the Web page2. To achieve this, we apply
simple heuristics to T as discussed bellow. Given a set of extracted
passages T = (t1, p1), (t2, p2), ..., (tn, pn) we say that:

• length(ti) is the number of terms (words) in passage ti;

• | tk ∩ ti | is the number of terms that occur in passages tk
and ti;

• ti is a news body iff length(ti) > length(tk) ∀ 1 < k <
n, k 6= i and length(tk) > 100 (Body labeling heuristics);

• tj is a news title iff 1 ≤ length(tj) ≤ 20 and |tj∩ti|
pj−pi >

|tk∩ti|
pk−pi ∀ 1 < k < i, k 6= j (Title labeling heuristics).

2In this paper we do not focus on the extraction of the news date,
because we can trivially determine it from the date the news first
appeared on the Web site.

In other words, the passage elected to be the body of the news
is the longest one with more than 100 words. Further, the passage
selected to be the title is one that has ranges from 1 to 20 words,
has a maximum intersection with a body passage, and is the closest
one to the body. The intuition behind the title selection is that most
of the times the title is placed near the body and its terms usually
appear in the news body.

Despite using this simple heuristics, our labeling strategy is very
effective, as shown next by our experiments.

5. EXPERIMENTAL RESULTS

5.1 Setup
Our experiments were run using 4088 HTML pages collected

from 35 different Brazilian on-line news sites. The sites chosen
are the most popular vehicles from the Brazilian press, including
country-wide newspapers, news agencies, magazines and
main regional publications. All the experiments were carried out
using a 700MHz Pentium III processor with 128MB of RAM.

5.2 The RTDM algorithm
Considering that the RTDM algorithm is the basis of the news

extraction approach described in this paper, we must assure that it
runs fast and scales well. To the best of our knowledge, there is no
other restricted top-down mapping algorithm in the literature, so
we decided to compare the RTDM algorithm with the competitive
top-down edit distance algorithm presented by Chawathe in [5].

Adapting Chawathe’s algorithm to the extraction pattern genera-
tion and data matching steps of our approach is not trivial, but the
page clustering step can be easily adapted to use this algorithm.
Thus, we built two versions of the clustering step, one powered by
the RTDM algorithm, and the other one powered by Chawathe’s.
Comparing the executions times, the RTDM algorithm in general
outperforms the alternative algorithm by 4 times, but sometimes it
is more than 10 times faster. The main disadvantage of Chawathe’s
algorithm is that it is always quadratic with respect to the num-
ber of vertices of the trees being compared. Figure 10 shows how
the algorithms perform when the average number of vertices of the
trees being compared increases. If we analyze the behavior of the

508

+

?

A

E

D

...
=B D

FE

C

A

A

B +

*

?

A

D+

G

Matching the ne patterns

is matched against the tree. The first pattern matches

The second pattern matches with 0 cost and is the selected
ne pattern. The last pattern fails to match because there is

DB C

A

E F

The extraction result
Each wildcard of the ne pattern

target tree. Each set of vertices
results in one data−rich object.
In the example below, two
data−rich objects (BC and F)
were extracted.

with cost 1, because it discards its Kleene wildcard.

no possible mapping for the G vertex.

Each HTML page is converted to tree, and a set of ne patterns

consumes a set of vertices of the

Figure 9: How ne-patterns are matched with Web pages

RTDM algorithm when the number of vertices grows, we see that it
depends not only on the number of vertices in the trees, but also on
the properties of the trees. This is due to the several short-cuts that
the algorithm uses to avoid recursively checking the complete trees
and to the different properties of the restricted top-down mappings.
Each point in Figure 10 roughly corresponds to a cluster.

Figure 10: RTDM and Chawathe’s algorithm - the bezier ap-
proximation of the curves shows that Chawathe’s algorithm has
quadratic growth

5.3 News Extraction
The second part of our experiments consisted of analyzing the

output of the complete extraction process. We manually compared
the extracted news with the original HTML pages, to check for
their correction and completeness. Table 1 presents the results for
all 35 sites. Our approach was able to extract correctly an average
of 87.71% of the news, while 9.25% were erroneously extracted
and 3.04% were not extracted.

During our experiments, we noticed that the use of restricted top-
down mappings is really suitable for identifying data-rich portions
of Web pages. In the data labeling step, however, it is still difficult
to precisely identify the title of the news. Most of the errors were

due to subtitles and authors names that were misidentified as titles.
Despite this, we achieved very good results with a completely au-
tomatic approach and simple labeling heuristics.

Even though we have used simple labeling heuristics, the reason
for this high level of effectiveness is that, after the extraction of
the data-rich portions of the pages, the size of the set of candidates
text passages for title and body is usually reduced from a range of
hundreds to thousands to a range of two to five candidates.

6. RELATED WORK
One of the reasons why the Web has achieved its current huge

volume of data is the fact that a great and increasing number of
data-rich Web sites have their pages automatically generated from
databases. Taking advantage of this, a number of approaches have
been recently proposed to analyze the structure of the pages of these
Web sites with the purpose of inferring a general data schema for
them and ultimately generating wrappers to extract this data.

The first solution for this problem was proposed by Grumbach
and Mecca [11] assuming the existence of collections of data-rich
pages bearing a similar structure or schema. In [7], an algorithm
is proposed to infer union-free regular expressions that represent
page schemas. For complex schemas with optional attributes, the
algorithm execution can explode and thus it is considered as having
exponential cost [7]. By using several heuristics, Arasu and Garcia-
Molina [1] have recently proposed a polynomial time algorithm for
the problem. Since the approaches proposed in [1] and [7] require
no human intervention, an important problem that they have left
open is how to automatically label the extracted data. This problem
is addressed in [2] but the solution proposed is not general enough.

There are also several works in the literature that address the
problem of schema extraction from collections of XML documents.
The XTRACT system [10] uses MDL, an information theory tech-
nique, to infer concise and accurate schemas from a collection of
XML documents. Min et al. presented a much faster system, with
better results in [15]. Although we do not directly consider the
schema extraction problem in this work, the ne-patterns we gener-
ate resemble schema definitions, and we believe that the techniques
proposed here can also be applied to the schema extraction prob-
lem. Also, the ideas behind the XML schema extraction systems
can be used to improve our work in situations in which the data

509

Site
√ × Not Extracted # pages

A notı́cia Joenville 83.95% 13.58% 2.47% 81
AOL Brasil 87.60% 12.40% 0.00% 121
Agência Estado 94.90% 4.08% 1.02% 98
Correio Brazilense 71.43% 11.90% 16.67% 119
Correio da Bahia 98.15% 1.85% 0.00% 54
DCI 96.55% 0.00% 1.72% 228
Diário de Natal 96.62% 0.00% 2.90% 206
Diário Grande ABC 100.00% 0.00% 0.00% 8
Diário do Maranhão 75.00% 25.00% 0% 48
Diário Popular 100.00% 0.00% 0.00% 85
Diário de Cuiaba 85.26% 12.82% 1.92% 154
Diário do Com. BH 92.31% 3.85% 3.85% 26
Estado de Minas 77.40% 21.47% 1.13% 177
Estado de São Paulo 84.33% 15.21% 0.46% 217
Folha de Pernam. 91.18% 1.47% 7.35% 68
Folha de São Paulo 77.78% 13.33% 8.89% 225
Gazeta Digital 88.17% 10.75% 1.08% 185
Gazeta Mercantil 87.01% 0.65% 12.34% 154
Hoje em Dia 90.91% 9.09% 0.00% 66
IDG Now 93.18% 2.27% 4.55% 44
ITWeb 96.88% 0.00% 3.13% 32
InvestNews 95.47% 0.00% 4.53% 329
Jornal da Tarde SP 90.57% 5.66% 3.77% 159
O Dia RJ 75.86% 22.07% 2.07% 144
O Globo 99.35% 0.65% 0% 307
Tribuna Santos 75.00% 22.58% 2.42% 123
Tribuna da Bahia 81.13% 15.09% 3.77% 53
Tribuna da Imprensa 90.63% 9.38% 0% 32
UOL 74.53% 23.58% 1.89% 106
Valor On Line 91.45% 4.27% 4.27% 117
Verdade On Line 82.61% 13.04% 4.35% 22
Vox News 80.00% 0.00% 20.00% 35
Yahoo 93.64% 0.91% 5.45% 208
Zero Hora 83.22% 16.11% 0.67% 149
Total 87.71% 9.25% 3.04% 4088

Table 1: Results obtained for the news extraction process.

being extracted is ruled by more complex schemas than those of
found in on-line news. Actually, the problem of schema extraction
for Web pages has been proven NP-Complete recently [24].

The automatic classification of Web pages based on their struc-
ture is addressed in [8]. However, this work differs from ours since
in our case the classification is based on the structural properties of
the pages and not on the results of the wrapping process.

The ChangeDetectorTM system [4] uses an algorithm very simi-
lar to ours in its entity-based change detection step. The algorithm,
however, works with hashes of the contents of the subtrees, falling
back to the tree view when any hash comparisons fails. This is
equivalent to our bottom-up shortcut. Furthermore, when aligning
child vertices, it does not take into account the cost of the recursive
operations.

Bing Liu et al. have developed an effective algorithm for mining
data records from Web pages [14]. The algorithm has two steps.
In the first step it identifies the data region of the Web page and in
the second one it extracts the records themselves. The algorithm
works each time in a single page, so it does not compare the page
trees. Although achieving good results, the algorithm only works
with multi-record pages and therefore cannot be applied to on-line
news pages, that are almost exclusively single-record pages.

Compared to the recent work in the literature, the work in this
paper offers an alternative and uniform solution for three important

problems in automatic Web data extraction: structure-based page
classification, extractor generation, and data labeling. The fact that
this solution is based on the well established concept of tree-edit
distance brings the additional advantage of allowing the use of ex-
isting results for studying these problems from a new perspective.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced a new algorithm for calculat-

ing the edit distance between two given trees, which is based on
a restricted form of top-down mapping. This algorithm, which we
call RTDM, improves existing results in the literature [5, 25] for the
problem of automatically analyzing the structure of Web pages.

Furthermore, we show how this algorithm can be applied to solve
three important problems in automatic Web data extraction,
namely: structure-based page classification, extractor generation,
and data labeling. In particular, we have addressed the problem
of automatically finding and fetching news available on Web sites,
and extracting their components. Through experimentation with 35
news Web sites, we have demonstrated that the RTDM algorithm is
highly effective for these tasks. Indeed, the results show an average
of 87.71% correctly extracted news without any human interven-
tion.

The approach provided by the RTDM algorithm is currently be-
ing used as the core of a fully operational Web news clipping sys-

510

tem, called AkwanClipping3, which provides daily news from the
most important Brazilian newspapers to over fifty companies.

As future work, we plan to generalize the proposed approach to
deal with different application domains, especially those in which
the schema of the data on the pages is complex. In fact, it is a
challenge to provide a generic method for automatic Web data ex-
traction [24]. Furthermore, we plan to use the RDTM algorithm to
improve Web search engines by incorporating structural evidences
derived from Web pages in addition to content evidences tradition-
ally used by current search engines.

Acknowledgements
This work is partially supported by project GERINDO (grant
MCT/CNPq/CT-Info 552087/02-5) and by the fourth author’s in-
dividual CNPq grant 304890/02-2.

8. REFERENCES
[1] A. Arasu, H. Garcia-Molina, and S. University. Extracting

structured data from web pages. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of
Data, pages 337–348. ACM Press, 2003.

[2] L. Arllota, V. Crescenzi, G. Mecca, and P. Merialdo.
Automatic annotation of data extraction from large Web
sites. In Proceedings of the International Workshop on the
Web and Databases, pages 7–12, San Diego, USA, 2003.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley, Harlow, England, 1st edition,
1999.

[4] V. Boyapati, K. Chevrier, A. Finkel, N. Glance, T. Pierce,
R. Stockton, and C. Whitmer. ChangedetectorTM : a
site-level monitoring tool for the WWW. In Proceedings of
the 11th International Conference on World Wide Web, pages
570–579. ACM Press, 2002.

[5] S. S. Chawathe. Comparing hierarchical data in external
memory. In Proceedings of the 25th International
Conference on Very Large Data Bases, pages 90–101,
Edinburgh, Scotland, U.K., 1999.

[6] W. Chen. New algorithm for ordered tree-to-tree correction
problem. Journal of Algorithms, 40:135–158, 2001.

[7] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner:
Towards automatic data extraction from large Web sites. In
Proceedings of the 27th International Conference on Very
Large Data Bases, pages 109–118, Rome, Italy, 2001.

[8] V. Crescenzi, G. Mecca, and P. Merialdo. Wrapping-oriented
classification of Web pages. In Proceedings of the 2002 ACM
Symposium on Applied Computing, pages 1108–1112. ACM
Press, 2002.

[9] D. Florescu, A. Levy, and A. Mendelzon. Database
techniques for the world-wide web: a survey. SIGMOD Rec.,
27(3):59–74, 1998.

[10] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and
K. Shim. Xtract: a system for extracting document type
descriptors from xml documents. In Proceedings of the 2000
ACM SIGMOD International Conference on Management of
Data, pages 165–176. ACM Press, 2000.

3For more information see http://www.akwan.com.

[11] S. Grumbach and G. Mecca. In search of the lost schema. In
C. Beeri and P. Buneman, editors, Proceedings of 7th
International Conference on Database Theory, Lecture
Notes in Computer Science, pages 314–331, Jerusalem,
Israel, 1999. Springer.

[12] A. Heydon and M. Najork. Mercator: A scalable, extensible
web crawler. World Wide Web, 2(4):219–229, 1999.

[13] A. Laender, B. Ribeiro-Neto, A. Silva, and J. S. Teixeira. A
brief survey of Web data extraction tools. SIGMOD Record,
31(2):84–93, 2002.

[14] B. Liu, R. Grossman, and Y. Zhai. Mining data records in
web pages. In Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pages 601–606. ACM Press, 2003.

[15] J.-K. Min, J.-Y. Ahn, and C.-W. Chung. Efficient extraction
of schemas for xml documents. Information Processing
Letters, 85(1):7–12, 2003.

[16] A. Nierman and H. V. Jagadish. Evaluating structural
similarity in XML documents. In Proceedings of the 5th
International Workshop on the Web and Databases (WebDB
2002), Madison, Wisconsin, USA, June 2002.

[17] S. M. Selkow. The tree-to-tree editing problem. Information
Processing Letters, 6:184–186, Dec. 1977.

[18] K.-C. Tai. The tree-to-tree correction problem. J. ACM,
26(3):422–433, 1979.

[19] G. Valiente. An efficient bottom-up distance between trees.
In Proceedings of the 8th International Symposium on String
Processing and Information Retrieval, pages 212–219,
Santiago, Chile, 2001. IEEE Computer Science Press.

[20] G. Valiente. Tree edit distance and common subtrees.
Research Report LSI-02-20-R, Universitat Politècnica de
Catalunya, Barcelona, Spain, 2002.

[21] J. T.-L. Wang, B. A. Shapiro, D. Shasha, K. Zhang, and
K. M. Currey. An algorithm for finding the largest
approximately common substructures of two trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
20(8):889–895, 1998.

[22] J. T. L. Wang and K. Zhang. Finding similar consensus
between trees: an algorithm and a distance hierarchy. Pattern
Recognition, 34:127–137, 2001.

[23] P. Willett. Recent trends in hierarchic document clustering: a
critical review. Information Processing and Management,
24(5):577–597, 1988.

[24] G. Yang, I. V. Ramakrishnan, and M. Kifer. On the
complexity of schema inference from web pages in the
presence of nullable data attributes. In Proceedings of the
12th International Conference on Information and
Knowledge Management, pages 224–231. ACM Press, 2003.

[25] W. Yang. Identifying syntactic differences between two
programs. Softw. Pract. Exper., 21(7):739–755, 1991.

[26] K. Zhang, D. Shasha, and J. T. L. Wang. Approximate tree
matching in the presence of variable length don’t cares. J.
Algorithms, 16(1):33–66, 1994.

[27] K. Zhang, R. Statman, and D. Shasha. On the editing
distance between unordered labeled trees. Information
Processing Letters, 42(3):133–139, 1992.

511

