
A Model of Problem Solving Environment
for Integrated Bioinformatics Solution

on Grid by Using Condor

Choong-Hyun Sun1, Byoung-Jin Kim1, Gwan-Su Yi1, and Hyoungwoo Park2

1 School of Engineering, Information and Communications University, 103-6
Munji-Dong, Yusung-Gu, Daejon 305-714, Korea

{chsun,bjkim,gsyi}@icu.ac.kr
http://rosetteer.icu.ac.kr

2 Grid Technology Research Department, Korea Institute of Science and Technology
Information, Yusung, P.O. Box 122, Daejon 305-600, Korea

hwpark@kisti.re.kr

Abstract. To solve the real-world bioinformatics problems on grid, the
integration of various analysis tools is necessary in addition to the imple-
mentation of basic tools. Workflow based problem solving environment
on grid can be the efficient solution for this type of software development.
Here we propose a model of simple problem solving environment that
enables component based workflow design of integrated bioinformatics
applications on Grid environment by using Condor functionalities.

1 Introduction

Bioinformatics field meets inevitable need of high-throughput computing re-
sources as the size of biological data to be managed and analyzed is increasing
with the progress of high-throughput biotechnology. Grid computation matches
well with this need but it has been applied only to several compute-intensive
bioinformatics tools. In addition, there are few examples of integrated bioin-
formatics solution using grid environment. Many biological analyses need the
flexible and diverse integration of basic bioinformatics tools. One of the effi-
cient solutions for this type of software development may be the workflow-based
problem solving environment (PSE). There are still heavy overhead, however,
to develop and implement this workflow-based model on current grid system or
grid middleware. Concerning about this fact, the grid supporting technology in
Condor [1] has lots of merit.

In this report, we especially take advantage of simple workflow design func-
tionality of Condor by using a meta-scheduler, DAGMan [1] with many other
Condor features for high-throughput computing application on grid. We realized
two examples of integrated bioinformatics solutions about sequence searching
and orthologous gene finding (OGF) based on our model of workflow based PSE
on grid.

H. Jin, Y. Pan, N. Xiao, and J. Sun (Eds.): GCC 2004, LNCS 3251, pp. 935–938, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

936 Choong-Hyun Sun et al.

2 Model of Integrated Bioinformatics Solution on Grid

We propose a model of workflow-based bioinformatics PSE by using condor
functionalities and show practical examples of integrated bioinformatics solu-
tions. Fig. 1 (a) shows the structure of this model. It has basically two layers:
components layer and integrated applications layer. The components layer con-
sists of application component and interfacing component. Both of them are
grid-enabled executable files. Application component is a typical bioinformatics
tool which can perform the separable process of bioinformatics analysis. Interfac-
ing components are all intervening programs necessary to combine application
components and related data of the workflow for an integrated solution. The
components can be reused or added for new integrated solution. Various work-
flows matching to specific solutions can be constructed by using simple Condor
scripts with proper arrangement of the old and new components. In this way,
the system can achieve the maximum flexibility and efficiency for the solution
development corresponding to the diverse integrating requests of bioinformatics
problems.

Integrated
Application

Application
Components

Interfacing
Components

 Condor
Globus

Grid Middleware

Layer

Components

Layer

Integrated

Application Layer

Grid Application

Integrated
Applications

...
DB Splitting

SWSearch

SWAlign

Output

Input

Sequence

Extracting

DB

Formatting

Grid-BLAST

SWAlign

Output

Input

DB

Formatting

Grid-BLAST

Ortholog-

Picker

Output

Output Parsing

Input

(a) (b)

Fig. 1. (a)Structure of bioinformatics problem solving environment on Grid.
(b)Examples of workflows for the integrated bioinformatics solutions. Application com-
ponents and interfacing components are represented by white circles and black dots,
respectively

2.1 Components Layer

We selected and implemented sequence search and alignment tools as applica-
tion components because of their popularity in biological sequence analysis and
the need for our integrated solutions. Among them, Grid-BLAST, Grid-FASTA,
Grid-SWSearch, Grid-SWAlign, and Ortholog-Picker are briefly introduced here.

Grid-BLAST and Grid-FASTA grid-enabled version of BLAST [2] and FASTA
[3]. These tools facilitate searching homologous sequences in multiple sequence
databases for various numbers of querying sequences with grid resources. They
generate a condor command script file to run the parallel job and submit it

A Model of Problem Solving Environment 937

into condor pool. The scripts can have the options regarding proper usage of
computational resources as well as the original options of BLAST and FASTA.

Grid-SWSearch is a homologous sequence searching program based on Smith-
Waterman algorithm [4] that gives more precise results than BLAST or FASTA.
In Grid-SWSearch, database and query sequences are divided and assigned to
available computing nodes for the parallelization of computing jobs. The com-
puting job is designed not to pass any massage to the other jobs to remove
communication overhead and to run each job independently. After bundles of
jobs are submitted to condor pool, each job calculates the similarity of all pair
of sequences, performs statistical evaluation, and sends back the result. Grid-
SWSearch does not show alignment to reduce execution time. We can execute
Grid-SWAlign to see sequence alignment.

Grid-SWAlign is a grid enabled sequence alignment program based on Smith-
Waterman algorithm. It receives multiple sequences to be aligned and makes a
bundle of jobs on grid for all combinations of pair-wise alignment. We could
improve the efficiency of both Smith-Waterman algorithm tools with the benefit
of grid system.

Ortholog-Picker is an application to pick out orthologous genes from various
genome sequence databases. Once Grid-BLAST searches all the gene sequences
of query genome for the best hit of all the genes in the other genomes, the
corresponding gene IDs are parsed from the BLAST output. In our definition,
an ortholog is the group of three or more genes in which all genes are the best
hit against the genomes of each other reciprocally.

Interfacing component is the program that process input or output data of
application component to facilitate diverse combinations of application com-
ponents that have their idiopathic input/output format. The examples of the
functions of interfacing components are splitting, merging, converting, and for-
matting files , or extracting and rearranging the content of data.

2.2 Integrated Application Layer

Fig. 1 (b) shows three examples of the workflow for integrated bioinformatics
solution. As shown in the left picture of Fig. 1 (b), the searching tool and align-
ment tool can be linearly arranged as a workflow described in a DAG script file.
This work starts by splitting database into fragments. Multiple jobs of SWSearch
are submitted and allocated at distributed computers by Condor. Output files
are accumulated in the submission computer’s directory. Finally, a bundle of jobs
for SWAlign are submitted to show aligned sequences. One can easily change the
components of this workflow by using DAG script file. For example, as shown in
the middle picture of Fig. 1 (b), one may want to choose Grid-BLAST first for
whole genome sequence comparison for quick search, then select the sequences
of interest and run SWAlign to find more sensitive local alignments that could
be missed by Grid-BLAST alone. The third workflow is the other type of exam-
ple that integrate the sequence comparison tools for the Ortholog Gene Finding
(OGF) in multiple genomes. Orthologs [5] are genes retaining the same function
in different species that evolved from a common ancestral gene by speciation.

938 Choong-Hyun Sun et al.

Identification of orthologs is critical for reliable prediction of gene functions in
comparative genome analysis. OGF needs high-throughput computing due to
the increasing number of sequenced genomes that are more than 60 for micro-
bial genomes and 10 eukaryotic genomes, respectively. In this workflow, genome
sequences are converted into query sequence files by FileMerger and converted
again into database for BLAST search by BlastDBformatter. Grid-BLAST ex-
ecutes all to all BLAST search and the best hit and gene ID are parsed from
BLAST Output files. Ortholog-Picker finds orthologous genes. These series of
works are described in DAG script file and are controlled by DAGMan.

3 Conclusions

Most of real world bioinformatics analyses are dealing with heavy computational
complexity and subject specific integrated problems. The problem solving envi-
ronment with simple workflow on grid system can be very efficient model to
resolve these problems.

Acknowledgements

This research was partially supported by University IT Research Center Project
and by national grid project grant 2004-giban-04 through Korea Institute of
Science and Technology Information

References

1. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: The
condor experience. Concurrency and Computation: Practice and Experience (2004)

2. Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment
search tool. J Mol Biol. 215 (1990) 403–410

3. Pearson, W., Lipman, D.: Improved tools for biological sequence comparison. Pro-
ceedings of the National Academy of Sciences of the United States of America 85
(1988) 2444–2448

4. Smith, T., Waterman, M.: Identification of common molecular subsequences. J Mol
Biol. 147 (1981) 195–197

5. Tatusov, R.L., Koonin, E.V., Lipman, D.J.: A genomic perspective on protein
families. SCIENCE 278 (1997) 631–637

	1 Introduction
	2 Model of Integrated Bioinformatics Solution on Grid
	2.1 Components Layer
	2.2 Integrated Application Layer

	3 Conclusions
	Acknowledgements
	References

