
Soft State in Publish/Subscribe

Zbigniew Jerzak
∗

Dresden University of Technology
Systems Engineering Group
01062 Dresden, Germany

Christof Fetzer
Dresden University of Technology

Systems Engineering Group
01062 Dresden, Germany

Christof.Fetzer@tu-dresden.de

ABSTRACT
Building survivable content-based publish/subscribe systems
is difficult. Every node in a distributed publish/subscribe
system stores a significant amount of routing state which can
be easily corrupted due to message omissions, link and node
failures. In this paper, we show how to build a soft state
content-based publish/subscribe system where the whole
state is stored at the edge of the publish/subscribe network, at
the entity which is utilizing the state. This results in a robust
and resilient system, as the routing state is permanently lost
or corrupted only if the endpoint entity associated with the
given state permanently fails.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications; D.1.3 [Programming
Techniques]: Concurrent Programming—Distributed Pro-
gramming

General Terms
Algorithms, Design

Keywords
soft state, publish/subscribe, routing, round-trip time, upper
bound on message transmission delay

1. INTRODUCTION
In publish/subscribe (pub/sub) systems participants are

decoupled with respect to space, time and synchronization [8].
This implies that neither information producers (publishers)
know who and when is going to receive information they
publish, nor information consumers (subscribers) are aware

∗Author is currently with the SAP Research (CEC Dresden)
and can be reached at zbigniew.jerzak@sap.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’09, July 6-9, Nashville, TN, USA.
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

of the sources of information they subscribe to. The decou-
pling properties of publish/subscribe systems and their inher-
ent many-to-many communication style have contributed to
widespread adoption of the pub/sub paradigm in distributed
systems [4, 26].

However, the specific environment of distributed systems,
with high probability of communication and node failures [20,
33], implies the need for an approach which could be used
to build survivable publish/subscribe systems. A surviv-
able pub/sub system continues to provide service despite
components and links failures [1].

In this paper, we propose a soft state [5, 27] content-based
publish/subscribe system. Based on [5], we define the soft
state as a system state which can be lost due to a failure with-
out a permanent disruption of system features. Following the
recently expressed need for the robust pub/sub systems [25],
we propose a soft state-based design which allows content-
based pub/sub systems to recover from temporal node, link
and timing failures so that a correct system state is never
permanently lost.

1.1 Background
The basic model of communication in content-based pub/sub

systems involves subscriptions and events. An entity inter-
ested in a given information issues a subscription, which
contains a filter summarizing entity’s interest. The pub/sub
system disseminates the subscription across all nodes (bro-
kers) in the network. The goal of the subscription dissemi-
nation is to create a spanning tree rooted in the subscribing
entity. The spanning tree forms a reverse path system which,
once set up, is used to route events to the interested sub-
scriber. Specifically, messages in the content-based pub/sub
system do not contain any source or destination addresses.
Instead, events published into the network are matched based
on their content against subscriptions stored at the nodes.

Many pub/sub systems [4, 21, 17, 31] use advertisements
in order to limit the propagation of subscriptions. The idea of
advertisements is similar to that of subscriptions. A publisher
issues an advertisement which contains a filter summariz-
ing the content it is going to publish. Advertisements are
broadcasted into the network forming spanning trees rooted
at the respective publishers. Subsequent subscriptions, in-
stead of being broadcasted into the network, are forwarded
only on the reverse paths of the matching advertisements.
A subscription matches an advertisement if the interest of
the subscriber summarized by its subscription and the set of
events summarized by the advertisement form a non-empty
intersection. Advertisements allow to lower the total number
of subscriptions which need to be sent into and stored in the

system, which is important for pub/sub systems with high
subscription dynamism.

1.2 Motivation
The goal of the proposed soft state approach is the cre-

ation and the maintenance of the soft logical routing state
in the brokers of the pub/sub system. The logical routing
state is created using advertisements and subscriptions and
it is stored in the routing tables of pub/sub brokers. Dis-
tributed routing tables, in turn, form advertisement and
subscription trees which are the foundation upon which the
actual information exchange takes place. The lack of or in-
complete advertisement and subscription information implies
that nodes are not able to forward events and thus it is not
possible for the publishers and subscribers to communicate.
It is therefore of vital importance for the survivability of the
publish/subscribe system to ensure the eventually proper
establishment of subscription and advertisement trees.

To better illustrate the possible issues, let us consider a
simple pub/sub network presented in Figure 1. Publishers
P1 and P2 issue advertisements a1 and a2 at 12:00, real-
time. The propagation delay between the publishers P1 and
P2 and their connecting brokers B1 and B2 equals 0:01.
Therefore, both advertisements arrive at respective brokers
at 12:01, real-time. Simultaneously, at 12:01, subscriber S
issues a subscription s matching both advertisements a1 and
a2. Subscription s arrives at the broker B1 at 12:02, real-
time – see the upper part of Figure 1. When subscription s
arrives at the broker B1, the advertisement a1 from publisher
P1 is already present in the routing table of the broker B1.

However, due to a larger propagation delay between bro-
kers B1 and B2 (equal to 0:02) the advertisement a2 from
the publisher P2 did not reach the broker B1 yet. As a
result subscription s will only be visible to the publisher
P1. Specifically, the subscription s will not be forwarded to
broker B2 as the matching advertisement a2 has not been
yet delivered to the broker B1. The above problem will be
further strengthened if the advertisement a2 gets dropped or
corrupted on its way from the broker B2 to the broker B1.

Moreover, due to the decoupling properties of pub/sub
systems, the subscriber S will never be able to tell that it
is missing events matching its subscription s and issued by
the publisher P2. In other words, the publisher P2 in the
above scenario will never be able to send its messages to the
subscriber S, as the subscription s will never be propagated
to the broker B2 – see the lower part of Figure 1.

From the above sketch, we can conclude that even transient
failures can have a significant impact on the functioning of
the pub/sub systems. Additionally the detection of such
errors is difficult due to the decoupled nature of the pub/sub
systems.

1.3 Contribution
In this paper, we show how to use a soft state approach

for the creation and maintenance of the routing state stored
in the routing tables of a content-based publish/subscribe
system deployed in the Wide Area Network environment of
the PlanetLab [28].

We implement the soft state pub/sub approach on top
of the XSiena [16] content-based pub/sub system. In our
approach, both publishers and subscribers determine the
validity (lease time) of periodically published advertisements
and subscriptions. Such advertisements and subscriptions

Figure 1: Subscription propagation issues due to tim-
ing relations with advertisements

need to be refreshed by the publishers and subscribers before
they become invalid (the lease time expires), otherwise they
are removed by the brokers from their routing tables.

Our approach is generic in nature in that it can be applied
to any pub/sub system, including: topic-based [24], type-
based [7], content-based [29], rule-based [18] and coverage-
based [4]. Specifically, we do not restrict in any way the
expressiveness of advertisements and subscriptions, including
the coverage-based routing optimizations. The presented
approach is also independent of the pub/sub system architec-
ture and can be applied to systems based on the cyclic [19]
and acyclic [4] architectures as well as those based on the
DHT approach [26].

In this paper, we show how to use the fail-aware pub/sub
approach [14] to adaptively calculate the validity of subscrip-
tions and advertisements. Specifically, we do not require
any prior information regarding the diameter of the pub/sub
network nor any a priori known bounds on the message
transmission delays. Our approach is fully decoupled with
respect to space and synchronization and lightweight in that
we do not require any kind of clock synchronization (global
clock) among the nodes of the pub/sub network. In our sys-
tem both periodic re-advertisements and re-subscriptions are
idempotent with respect to the correct system state, thus en-
suring the soft-state properties of the content-based pub/sub
system.

Our approach guarantees that the pub/sub system recovers
from transient failures and reaches an eventual stability in
that advertisements and subscriptions are delivered to all
connected and correct (non-faulty) participants. Specifically,
in the scenario depicted on Figure 1 after the expiry of the
advertisement a2 lease, the publisher P2 will re-issue it,
ensuring that it is delivered to the broker B1, which in turn
will trigger the propagation of the subscription s. This in
turn will allow events published by the publisher P2 to reach
the subscriber S.

An interesting property [21] of the soft state pub/sub sys-
tem is that it automatically handles the effects of subscribers’
and publishers’ failures and unannounced departures from
the system. In traditional, hard state pub/sub systems such

failures would result in the pollution of the brokers’ routing
tables. In hard state systems subscriptions and advertise-
ments are stored by the brokers in their routing tables until
a matching unsubscription or unadvertisement is received.
If a subscriber or a publisher which issued a subscription or
an advertisement crashes, neither a matching unsubscription
nor a matching unadvertisement is issued. This results in a
broker routing table indefinitely holding entries for inactive
subscribing and publishing nodes. Soft state approach allows
for the automatic expiration of such entries, thus alleviating
the need for explicit unsubscriptions and unadvertisements.
This in turn results in a more flexible system, as the depar-
tures of subscribers and publishers are lightweight in that no
messages need to be exchanged upon such event.

2. RELATED WORK
Timed subscriptions and events have been first addressed

in [9]. Authors assume that subscriptions and events are
associated with time intervals, which limit their validity, how-
ever, the authors do not consider the renewal of subscriptions
or advertisements which leads to the issues presented on
Figure 1 in Section 1.2. Another approach for the creation
of the soft state system has been presented in [3] where
authors assumed a fixed subscription structure for each of
the publish/subscribe system nodes and focused on the ex-
actly once delivery of publications. Specifically, authors did
not consider dynamic content-based routing using the cover-
age relation. The authors of [30] designed a self-stabilizing
publish/subscribe system. The proposed system assumes
however, that all subscriptions issued by subscribers are al-
ways broadcasted into the network. Such an algorithm is
not efficient, as similar or identical subscriptions need not to
be resent on links where a subscription subsuming the given
one has already been sent. Moreover, the authors proposed
to exchange whole routing tables in order to detect potential
inconsistencies, which can be expensive in publish/subscribe
systems with large number of subscribers and publishers.

The author of [21] proposes a subscription leasing scheme
to achieve eventual stability. Author assumes the existence
of a global clock, i.e., the availability of the internal or exter-
nal clock synchronization providing a notion of global time
accessible to all participants of the pub/sub network. Author
assumes a synchronous system in that the message trans-
mission time is always bounded and stays within [δmin, δmax].
It has been shown that such system model is impossible to
satisfy [12], which implies the need for a weaker set of assump-
tions regarding the system model, e.g., such as those made in
this paper. In [35] authors show how to provide a reliable (in-
order, gapless) delivery in a content-based publish/subscribe
system. In contrary to solutions presented in [35] we do
not assume a redundant overlay network and propose an
active countermeasure for the problem of subscription and
advertisement propagation failures. Moreover, our approach
can deal with complete broker failures and does not require
a persistent storage on the nodes of the pub/sub system.

Another approach [34] to the soft state pub/sub system
has been proposed in context of the Pastry DHT overlay.
Authors assume that both subscriptions and advertisements
are assigned timeouts which are evaluated with respect to
the node’s local clock. However, the presented approach
does not account for the influence of the propagation delays
on the timeout values which makes it impractical in typical
distributed systems with varying communication latencies.

 0.25

 0.5

 0.75

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

request processing time [µs]

Lab PC
PlanetLab node

Figure 2: UDP-based ping message processing time

A related approach [26] proposes a soft state design in
which publish/subscribe brokers periodically exchange heart-
beat messages in order to maintain the state of the routing
tables. The presented approach does not allow to cope with
the issues presented in Figure 1 as the heartbeat messages
and not data carrying messages (subscriptions and advertise-
ments) are used to refresh the state.

In a more recent approach [23, 13] authors simulate a
pub/sub system achieving eventual stability using subscrip-
tion and advertisement leases. Authors do not use advertisement-
based routing. Similarly to [21], a globally uniform subscrip-
tion timeout value is assumed as well as an a priori known
upper bound on the communication delays. Our approach
does not make such assumptions. Instead, we propose per
subscription and per advertisement timeout values which
allow us to adaptively account for varying communication
delays. Moreover, we do not assume any upper bounds on the
communication delays in the system – as such assumption is
not possible to satisfy in an asynchronous system [15]. Our
approach, unlike the one presented in [23, 13] does not assume
a known pub/sub network diameter. Due to the decoupled
nature of pub/sub systems a network diameter value is never
available to all participants of the system. Therefore, our
algorithm does not make any assumptions on the pub/sub
network diameter.

3. SYSTEM MODEL
In this section we summarize the system model in which we

implement our soft state publish/subscribe system. Our sys-
tem model is based on the Timed Asynchronous Distributed
System Model [6]. It has been shown [14, 15] that the Timed
Asynchronous Distributed System Model is suitably weak to
be used for building of loosely coupled, distributed systems
and simultaneously it is sufficiently strong to be able to re-
flect the real-world environment of the distributed systems.
Specifically, we assume that all processes in our system are
timed, i.e., there exists a time interval σmax within which
every process is supposed to respond to a request sent to it.

However, we assume that there are no guarantees that a
request is indeed processed and answered within σmax. Fig-
ure 2 shows two cumulative distribution functions for one
million processing times of a UDP ping request. The distri-
bution functions are plotted for two hosts Ű- Lab PC is a host

 0.25

 0.5

 0.75

 1

10
-1

10
0

10
1

10
2

10
3

10
4

C
D

F

rtt [ms]

LAN: inf.tu-dresden.de
MAN: tu-dresden.de

WAN: tu-dresden->tu-berlin

Figure 3: UDP-based ping message latencies (RTT)

in our laboratory and PlanetLab node is the planet1.inf.

tu-dresden.de node of PlanetLab consortium. It can be
observed that for both hosts the response times are charac-
terized by a significant long tail and that it is not possible to
set a reasonable upper bound for the processing time σmax.

We assume that processes may suffer performance failures.
Specifically, a process might not respond within σmax seconds
because it is either slow or it has crashed. We assume pro-
cesses do not suffer Byzantine failures. Such assumption can
be fulfilled by converting Byzantine failures into crash failures
using different software [32] and hardware [2] techniques.

We assume that processes communicate using unreliable
transport protocol with omission and/or performance (non-
Byzantine) failure semantics. Messages sent between pro-
cesses may be arbitrarily delayed or might get dropped.
Specifically we do not assume a priori any upper bound
on the message transmission delay. Our experience shows
(see Figure 3) that independently of the network environment
it is not possible to determine a practical upper bound for
message transmission delays.

Figure 3 shows the long-tail cumulative distribution func-
tions of the round-trip times for one million UDP ping mes-
sages between two hosts in different network environments.
The experiment has been conducted using three network
setups: (1) the Local Area Network (LAN) Ű- between two
computers in our laboratory, (2) the Metropolitan Area Net-

work (MAN) -Ű between two computers at the Dresden
University of Technology campus and (3) the Wide Area

Network (WAN) -Ű between two computers at the Dresden
and Berlin Universities of Technology. Based on the above
measurements, we assume that there exists no upper bound
on the frequency of communication and process failures.

Every process in our system has access to a local hardware
clock. The term H(t) denotes the value of the hardware
clock at the real-time t. We assume that all hardware clocks
have a drift rate bounded by the a priori known constant
ρmax. It has been shown in [14] that for commercial, off-
the-shelf components the value of ρmax usually stays within
[1ppm, 100ppm]. We say that a hardware clock is correct if:

H(t)−H(s) ≤ (t− s)(1 + ρmax) (1)

and

H(t)−H(s) ≥ (t− s)(1− ρmax) (2)

Figure 4: Propagation of a subscription using the
validity time approach

Specifically, we assume that hardware clocks have crash-stop
failure semantics. [10] shows how to achieve this property
despite possible arbitrary value failures.

4. SOFT STATE
The main issue in designing a soft state pub/sub system is

the determination of the validity T and the re-issue period
τ of subscriptions and advertisements. The validity T of a
subscription or advertisement can be expressed either as a
validity time TT or validity interval TI and determines the
life span of a given message. A validity time TT describes
a point in time when a given subscription or advertisement
should expire. In order to be meaningful to all nodes the
validity time is expressed using a common time reference –
the synchronized clock.

A synchronized clock is shared by all nodes in the pub/sub
system and ensures that every node has the same view of the
time – called global time. Validity time describes the global
time instance at which a given subscription or advertisement
should expire. An exemplary TT value could read 12:05, mean-
ing that the subscription associated with it should expire on
every node at 12:05 global time. Assuming all processes in the
pub/sub system have their clocks synchronized within a given
imprecision ∆max

1, such subscription would indeed expire
on all nodes within [12:05−∆max, 12:05 + ∆max]. However,
the practical application of the validity time approach is
difficult due to two issues: (1) it is hard to provide a low im-
precision, internal clock synchronization in large distributed
systems and (2) message propagation delays significantly
influence the validity time.

To better illustrate the latter case let us consider the sce-
nario depicted on Figure 4. For the clarity of presentation
we ignore the imprecision ∆max of the clock synchronization:
∆max = 0. The subscriber S subscribes at 12:00 (global time)
with a subscription which has the validity time TT set to
12:05 (global time). The subscription propagation delay be-
tween subscriber S and the connecting broker B1 equals 0:02,
which implies that the subscription issued by the subscriber
S will arrive at broker B1 at 12:02, global time. Analo-
gously, the next broker B2 will receive the subscription at
the 12:04, global time. The last broker B3 cannot accept the
subscription as upon its reception at the 12:06, global time,
the subscription will be already expired as 12:05 < 12:06.
As a result events published by the publisher P will never

1we define the imprecision ∆max as the maximum difference
between the synchronized clocks of all processes

Figure 5: Propagation of a subscription using the
validity interval approach

reach subscriber S, due to the missing subscription at the
broker B3. From the above we can observe that the straight-
forward validity time approach is not applicable to large
networks (with many brokers interconnecting publishers and
subscribers) or to networks with varying transmission delays
– see Figure 3.

Therefore, in this paper we use an approach based on
the validity interval. The validity interval TI does not rely
on the synchronized clocks. Instead, every process in the
pub/sub network calculates the validity interval attached to a
subscription or an advertisement independently. The validity
interval specifies the amount of time each broker should keep
a subscription or an advertisement until it expires and is
removed from its routing tables.

Figure 5 shows the influence of the subscription propaga-
tion delay on the routing tables. It can be observed that
subscription issued by the subscriber S at real-time 12:00
has the validity interval TI set to 0:04. At real time instance
12:02 it reaches the broker B1 which installs it in its routing
table and starts decrementing the validity interval of the
subscription using its local hardware clock. Subsequently, it
forwards the subscription to the broker B2, which repeats
the procedure. At real-time instance 12:06 subscription is-
sued by the subscriber S reaches the broker B3. However,
at that time broker B1 removes the subscription from its
routing table since the validity interval TI (equal to 0:04) has
been decremented (since 12:02) to 0. This in turn results in
publisher’s P events never being delivered to the subscriber
S.

It is therefore required to set the re-issue period τ of the
subscription to a value which is lower than the specified
validity interval TI . However, even the setting of the re-issue
period τ to low values does not guarantee that the refresh
messages arrive before the expiry of the validity interval TI .
Varying link latencies (see Figure 3) and link overload may
lead to significant delays of the refresh messages which in
turn leads to the expiry of advertisements and subscriptions.

Figure 6: Extending validity interval using the prop-
agation delay

4.1 Extending Validity Interval
In order to cope with the issues presented in Figure 5 we

correlate the message propagation delays with the validity
interval approach for both subscriptions and advertisements.
Specifically, we estimate the advertisement and subscription
propagation delays for every link traversed by those messages.
The estimated delays are added to the validity interval TI

of each subscription and advertisement and are stored with
subscriptions and advertisements at the processing brokers.
As a result the validity interval of subscriptions and adver-
tisements is extended by the amount equal to the expected
link and processing delays. This in turn ensures that sub-
scriptions and advertisements do not expire before the arrival
of the re-subscription or re-advertisement. Moreover, such
approach is transparent to both subscribers and publishers.

We define the propagation delay pd(m) of the message
m as a sum of the transmission delay td(m) and processing
time pt(m) of the message m. The transmission delay is
the actual time spent by the message in transit between two
nodes. Processing time is the time spent by the message
at the given node from its reception until its dispatching.
Specifically, if the current node is the Nth node encountered
by the message m, the propagation delay of message pdN (m)
calculated by that node equals:

pdN (m) =

i=N∑
i=1

tdi(m) +

i=N∑
i=0

pti(m) (3)

where pt0(m) is the time between the scheduled creation of
the message m and its dispatching at the producing node,
ptN (m) is the time between the reception of the message
m at the destination node and the placement of the mes-
sage m in the routing table of the destination node and
pti(m) for i ∈ {1, . . . , N − 1} is the time between the recep-
tion of the message m and its dispatch at the node i. The
transmission delay tdi(m) is the transmission delay between
nodes i− 1 and i.

As an example let us consider the scenario presented in
Figure 6. For the simplicity of the presentation we assume
all processing times pti are equal to zero. The upper part of
the Figure 6 shows the process of the propagation of the ad-
vertisement a issued by the publisher P. The advertisement
has been assigned a validity interval TI equal to 0:05. Upon
the reception of the advertisement a broker B2 calculates
the propagation delay of the advertisement a. The propaga-

Figure 7: Upper bound on the propagation delay of
the message p

tion delay pdB2(a) is the sum of the processing time of the
advertisement a (equal to zero) and the transmission delay
between the publisher P and the broker B2 equal to 0:03.
The calculated propagation delay 0:03a of the advertisement
a is subsequently added to the publisher set validity interval
TI = 0:05 of the advertisement a and stored in the routing
table of the broker B2. Broker B2 will remove the adver-
tisement a from its routing table only after the expiry of the
updated validity interval 0:05 + 0:03a. The advertisement a
is subsequently propagated by the broker B2 towards the
broker B1. Broker B1 performs the analogous operations to
those of the broker B2, the only difference being the value of
the transmission delay of the advertisement a including now
both transmission delays between the publisher P and the
broker B2 (0:03) and between the broker B2 and the broker
B1 (0:02) plus the processing delays at the three nodes P,
B2 and B1. The propagation and calculation of the validity
interval TI for subscriptions is done in the analogous way –
see lower part of the Figure 6.

The above algorithm allows subscriptions and advertise-
ments to remain valid at every node despite the varying
latencies on the communication links and despite the varying
processing latencies. The algorithm does not guarantee that
a subscription or advertisement will never expire before the
arrival of the refresh message. However, such guarantee is
impossible to satisfy with unbounded link and processing
delays. Nonetheless, subsequent refresh messages will adapt
to the changed link and processing characteristics so that
the correct operation of the content-based pub/sub network
will be eventually restored, providing the processing times
and transmission delays do not grow infinitely.

4.2 Upper Bound
In order to allow the nodes of the pub/sub system to

calculate the transmission delay of messages using only local
hardware clock and not relying neither on the internal nor
the external clock synchronization we use the upper bound
on the message transmission delay technique [14].

In order to calculate the upper bound on the transmission
delay of the message p sent from a publisher P1 to the
subscriber S1 there must exists an earlier message n sent
from the subscriber S1 to publisher P1 – see Figure 7.

The upper bound ubS1(p) on the transmission delay of the
message p can be calculated by subscriber S1 as the difference
between the message processing times on both publisherC−B
and subscriber D−A. In order to calculate the upper bound

subscriber has to make a pessimistic assumption regarding the
drift rate of the hardware clocks of both publisher (1− ρmax)
and its own (1 + ρmax). The upper bound can be further
refined by subtracting the minimum transmission delay of
the message n equal to δmin(n), which results in:

ubS1(p) = (D −A)(1 + ρmax)−
−(C −B)(1− ρmax)−
−δmin(n) (4)

The calculation of the upper bound does not require synchro-
nized clocks between communicating processes and the only
requirement is the a priori known bound on the maximum
clock drift rate ρmax. In order for the calculation to be per-
formed locally by the subscriber S1, values of C, B and A
are piggybacked on the publication p.

The Equation 4 implies that the calculated upper bound
becomes less precise (tight) as the helper message n ages, i.e.,
its reception by the publisher P1 lies further apart from the
sending of the message p. In our scheme, however, periodic
subscriptions and advertisements, as well as constant event
flow present themselves as a valuable source of new helper
messages, periodically improving the calculated upper bound.

The local processing time of a message n can be estimated
by the publisher P1 using its own local hardware clock,
including the compensation for the hardware clock drift rate
(1 + ρmax):

ub(ptP1(n)) = (1 + ρmax)ptP1(n) (5)

Using Equations 4 and 5 we can rewrite the Equation 3
from Section 4.1 as:

pdN (m) =

i=N∑
i=1

ubi (m) +

i=N∑
i=0

ub (pti (m)) (6)

For a more thorough explanation of the upper bound tech-
nique and a set of possible improvements we refer the reader
to [11, 14].

4.3 Utilization and Uncertainty
The validity interval extension technique presented in Sec-

tion 4.1 makes a pessimistic assumption regarding the prop-
agation of refresh messages. The assumption being made is
that a refresh message propagation time might span the range
from zero to the calculated upper bound on the propaga-
tion delay. Such assumption while providing large margin of
safety is certainly an overestimation. Therefore, we propose
an alternative algorithm for the calculation of the validity
interval extension.

In order to evaluate the new algorithm we first define
a validity interval utilization metric. The validity interval
utilization describes the amount of the extended validity
interval TI(m) of the message m which has elapsed before
the arrival of the refresh message:

UTI =
TI(m)− wait(m)

TI(m)
(7)

where the wait(m) is the amount of time message m has spent
in the routing table before the arrival of the refresh message.
The validity interval utilization UTI is expressed in percent.
Intuitively, the higher the validity interval utilization, the less
bandwidth is wasted for the unnecessary (too early) refresh
messages. On the other hand, high validity utilization implies
that the given filter or advertisement was more likely to expire

before the arrival of the refresh message – as the delay of
the refresh message might not have been compensated by
the small remaining validity utilization. Specifically validity
interval utilization exceeding 100% indicates that the given
message (subscription or advertisement) has expired before
the arrival of the refresh message.

The validity interval extension presented in Section 4.1
lowers the values of the validity interval utilization for filters
and advertisements by extending the validity interval with
the upper bound on the respective message propagation delay.
Moreover, the further the given message travels from the
source (in terms of latency) the lower will the validity interval
utilization be.

The above observation is the motivation for the introduc-
tion of the new algorithm for the extension of the validity
interval. The new algorithm is based on the upper bound
on the propagation delay, however its main goal is the esti-
mation of the uncertainty of the upper bond for the given
message. The uncertainty ub∆ of the upper bound on the
propagation delay for a given message m is defined as the
difference between the minimum and maximum upper bound
on the propagation delay values over time:

ub∆(m) =
ubmax(pd(m))− ubmin(pd(m))

∆t
(8)

where ∆t is the period of time (window) over which the
uncertainty is calculated. Intuitively, the uncertainty serves
as an estimation of the dispersion of the latency for the given
path limited to a certain time window. Unlike the extension
calculation algorithm presented in Section 4.1 for stable paths
the value of the uncertainty-based extension will be low as
the difference between the minimum and maximum upper
bound on the propagation delay will remain small. This in
turn will increase the values of the utilization for the given
path.

The window ∆t for which the uncertainty ub∆ is calculated
can be expressed either in terms of time units or in terms
of messages. The choice of the window size and calculation
method is left to the application programmer and can be
set as one of the node’s parameters. The calculation and
management of the upper bound uncertainty is performed
on a per link and per subscription/advertisement basis as
different subscriptions/advertisements arriving on the same
link might originate at different hosts and their upper bounds
my differ significantly.

4.4 Coverage
In typical pub/sub systems often multiple subscribers are

interested in identical or similar content. Analogously, of-
ten multiple advertisements describe similar sets of events.
In content-based pub/sub systems these facts are used to
limit the propagation of subscriptions and advertisements.
Whenever an advertisement a1 about to be published on a
given link describes a set of events E1 and there exists an
advertisement a2 which has been previously published on
that link and it describes a set of events E2 and the event set
E1 is a subset of the event set E2 than the publishing of the
advertisement a1 is obsolete. We can also say that advertise-
ment a2 covers, i.e., is more general than advertisement a1
– denoted as a1 ≺ a2. The above observation when applied
to both advertisements and subscriptions allows to conserve
both bandwidth and resources in pub/sub systems.

Figure 8 shows an example pub/sub network where three

Figure 8: Multiple publishers publishing for the cov-
ering advertisements

publishers P1, P2 and P3 publish advertisements a1, a2 and
a3 respectively. Advertisements are in the following coverage
relation to each other: a3 ≺ a2 ≺ a1. In the upper part of the
Figure 8 we can observe the pub/sub network shortly after
all advertisements have been published. The bottom part
shows the pub/sub network after the advertisements a1, a2
and a3 have been fully propagated throughout the network.
We can observe that since advertisement a3 is covered by a2
(a3 ≺ a2) it will not be propagated past the broker B2.

The validity extension for the advertisement a3 calculated
at the broker B2 contains both the propagation delays be-
tween publisher P3 and broker B3 and the brokers B3 and
B2.

The only issue which needs special consideration when
content-based routing with coverage relation is used is the
case of identical subscriptions and advertisements. If two sub-
scriptions s1 and s2 are identical s1 ≡ s2 than subscription
s1 covers s2 and vice versa [22]:

s1 ≡ s2 ⇒ s1 ≺ s2 ∧ s2 ≺ s1 (9)

The same applies to advertisements. This in turn implies
that re-issuing the same subscription or advertisement in
order to refresh the one previously sent into the pub/sub
network would result in the dropping of such message by
the first broker which encounters it. Therefore, instead of
creating a special refresh message type, we choose to modify
the coverage relation to not include identical subscriptions
and advertisements:

s1 ≡ s2 ⇒ s1 ⊀ s2 ∧ s2 ⊀ s1 (10)

5. EVALUATION
We have performed the evaluation of the implementation of

the soft state pub/sub system in two basic scenarios – see Fig-
ure 9. The ipeurope scenario (Figure 9(a)) involves 10 Planet-
Lab hosts placed in Europe (Norway, Greece, Spain, Sweden,
Poland, Germany, Ireland, Scotland, Italy and Switzerland),
connected via TCP/IP. We use one host (unineuchatel.ch)
to host both publisher and subscriber, so that we can com-

(a) ipeurope scenario – European PlanetLab hosts

(b) ipworld scenario – planetary PlanetLab hosts

Figure 9: Different network scenarios for the soft
state pub/sub experiments

pare the send and receive times of the messages using the
host’s local hardware clock. This scenario can be seen as
an example distribution path in a large scale, content-based
pub/sub system. Similarly the ipworld scenario (Figure 9(b))
includes hosts distributed across multiple continents: Eu-
rope (Germany and Finland), South America (Argentina
and Brazil), North America (USA and Canada) and Asia
(Japan).

The first experiment (see Figure 10) illustrates the upper
bound on the message propagation delay (ub propagation

delay) which is equal (see Equation 6) to the sum of the
upper bound on the message transmission delay (ub trans-

mission delay) and the upper bound on the processing time
(ub processing time) along with the real-time propagation
delay (rt propagation delay) for events sent and received
by the unineuchatel.ch node in the ipeurope scenario.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50

ti
m

e
[m

s]

event number

ub propagation delay
ub transmission delay

rt propagation delay
ub processing time

Figure 10: Upper bound on the propagation and
transmission delays and processing time

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

u
ti

li
za

ti
o
n

 %

refresh message number

di.unito.it
rd.tp.pl

upatras.gr

(a) subscription validity interval utilization

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100

fi
lt

er
 v

al
id

it
y

 e
x

te
n

si
o
n

 %

refresh message number

di.unito.it
rd.tp.pl

upatras.gr

(b) subscription validity interval extension

Figure 11: The subscription statistics for hosts in
the ipeurope scenario

The real-time propagation delay was calculated using the
local hardware clock of the unineuchatel.ch node by sub-
tracting the send and receive time stamps of every event.
We can observe that the upper bound holds in that it is
never lower than the real-time propagation delay. We can
also observe that the network latency dominates the overall
propagation delay. The sudden spike for the event number 10
indicates that it has suffered an increased latency on one of
the links between the nine nodes which are traversed by every
event sent and received by the unineuchatel.ch node. Based
on the above we can state that the upper bound technique
is valid and can be used for the validity interval extension.

Figure 11 shows the validity interval utilization UTI (see
Equation 7) and validity interval extension (see Section 4.1)
for different hosts in the ipeurope scenario. The experi-
ment data has been plotted for one subscription message.
Intuitively, the higher the validity interval utilization (see
Figure 11(a)) the less bandwidth is wasted for the unneces-
sary, i.e., arriving too soon, refresh messages. On the other
hand, high validity utilization implies that the given message
(subscription or advertisement) is more likely to expire before
the arrival of the refresh message – as the delay of the refresh
message will not be compensated by the remaining validity

utilization.
In the experiment presented in Figure 11 we have set the

subscription validity interval TI to 1 second and the refresh
period τ to 0.8 seconds. In this experiment we extend the
validity interval by adding to it the calculated upper bound
on message propagation delay. The extension is calculated on
the per message basis – the current message validity interval is
extended using the propagation delay of the previous message.
We can observe that according to expectations the utilization
of the subscription at the first broker encountered by the
subscription (di.unito.it) is close to the 80% as the upper
bound on the subscription propagation delay is much lower
than the actual validity interval TI . The utilization of the
same subscription at one of the last brokers on its path
(upatras.gr) is around 60%. This can be explained by the
fact that upper bound on the processing delay which is added
to the subscription’s validity interval is much larger (due to
the larger number of brokers traversed by the subscription)
and therefore the upper bound overestimation also grows.
On the other hand, growing overestimation for the brokers
further from the message source is compensating for a higher
probability of a sudden increase in the message propagation
delay, which is proportional to the number of hops a message
has to traverse.

Figure 11(b) shows how for the same experiment (as in
Figure 11(a)) different brokers extend the validity interval
of a single subscription. We can observe that the first bro-
ker (di.unito.it) encountered by the subscription barely
extends its validity, while one of the last ones (upatras.gr)
extends it by almost 40%. If we remember that the validity
interval of the subscription was set to 1 second, we can con-
clude that the average upper bound on the propagation delay
of that subscription when it arrived at upatras.gr node was
equal to 0.4 seconds.

On Figure 11(b) we can also observe that the refresh mes-
sage number 75 was significantly slowed down (upward spike)
between the upatras.gr and rd.tp.pl nodes. This trans-
lates to the utilization of the subscription refreshed by that
message growing proportionally to the refresh message delay
– see Figure 11(a). Subsequent refresh message arrived timely
and therefore the utilization calculated for it significantly
dropped – see downward spike in Figure 11(a). Since the
utilization for message 75 remained under 100% no unsub-
scription due to the timeout of the validity interval has taken
place.

Figure 12 illustrates the uncertainty-based approach pre-
sented in Section 4.3. It compares the upper bound (u-b pd)
and the calculated uncertainty ub∆ using time (last 20s)
and counting (last 200 msgs) based sliding windows. The
comparison has been performed for subscription messages in
the ipeurope scenario. We have plotted the results obtained
from the first (Figure 12(a)) and the last (Figure 12(a)) broker
encountered by subscriptions issued by the unineuchatel.ch

node in the ipeurope scenario.
It can be observed that unlike in case of the Figure 11

the uncertainty based approach calculated extensions do not
expose a bias based on the location of the node within the
publish/subscribe network. The last subscription receiving
broker (Figure 12(b)) exposes a few more spikes in the calcu-
lated extension, however the average values are comparable
with the first subscription receiving broker.

Figure 13 compares the new, uncertainty-based approach
ub∆ using the sliding window of 20 seconds with the upper

 10

 100

 1000

 300 320 340 360 380 400

ti
m

e/
u
n

ce
rt

ai
n

ty
 [

m
s]

refresh message number

last 200 msgs (di.unito.it)
last 20s (di.unito.it)
u-b pd (di.unito.it)

(a) first subscription receiving broker

 10

 100

 1000

 300 320 340 360 380 400

ti
m

e/
u
n

ce
rt

ai
n

ty
 [

m
s]

refresh message number

last 200 msgs (cs.uit.no)
last 20s (cs.uit.no)
u-b pd (cs.uit.no)

(b) last subscription receiving broker

Figure 12: Validity interval extension using
uncertainty-based extension

bound-based approach (cf. Figure 11) for the last broker
encountered by subscription messages. For subscriptions
we have chosen the validity interval TI to equal 1 second
and the reissue period τ to equal 0.8s. We can observe
that relatively high upper bound values (0.4 seconds) in
combination with the original approach have contributed to
the drop of the utilization from the application programmer
specified 80% to about 60%. On the other hand, the sliding
window based upper bound uncertainty estimation method
retains the designer specified utilization, despite upper bound
values reaching 40% of the originally specified validity.

Figure 14 illustrates the comparison between the uncertainty-
based interval extension calculated using the upper bound
on the propagation delay (ub-based extension) and the in-
terval extension based on the real-time propagation delay
(rt-based extension) for the unineuchatel.ch node in the
ipeurope scenario. We can observe that both calculated val-
ues are virtually identical, which confirms the upper bound as
the right technique for use in our soft state publish/subscribe
system. For comparison we have also included the actual
values of the upper bound on (ub pd) and the real-time (rt
pd) subscription propagation delays. Both left and right y
axes have logarithmic scale.

 20

 30

 40

 50

 60

 70

 80

 90

 300 320 340 360 380 400

 0.4

 0.5

 0.6

 0.7

 0.8

u
ti

li
za

ti
o

n
 [

%
]

u
p

p
er

 b
o
u

n
d
 [

s]

refresh message number

uncertainty-based utilization [run 1]
ub-based utilization [run 2]

upper bound [run 2]
upper bound [run 1]

Figure 13: Comparison of subscription utilization us-
ing the upper bound (ub-based) and sliding window
(uncertainty-based) approach for the cd.uit.no host
in the ipeurope scenario

 0.01

 0.1

 1

 160 180 200 220 240
 0.2

 0.6

 1

 1.4

in
te

rv
al

 e
x

te
n
si

o
n
 (

la
st

 2
0

s)
 [

s]

u
p
p
er

 b
o
u
n
d

 /
re

al
-t

im
e

[s
]

refresh message number

ub-based extension
rt-based extension

ub pd
rt pd

Figure 14: Real-time and upper bound based inter-
val extension

no

yes

no

yes

no

yes

no

yes

 26 28 30 32 34

ad
v
er

ti
se

m
en

t
p

re
se

n
t

time [s]

uoit.ca - ext
uoit.ca - noext

hiit.fi - ext
hiit.fi - noext

(a) advertisements expiration over time

 0

 20

 40

 60

 80

 100

 1 10 100

to
ta

l
ti

m
e
 w

it
h
o

u
t

a
d
v

e
rt

is
e
m

e
n

t
[%

]

time [s]

uoit.ca - ext
uoit.ca - noext

hiit.fi - ext
hiit.fi - noext

(b) total time without advertisement

Figure 15: Soft state pub/sub against hard state
pub/sub

The last experiment compares the efficiency of the validity
extension technique with the naive approach where no exten-
sion is used. For that experiment the ipworld setup has been
used. During the experiment all brokers were connected using
the TCP protocol. The measurement has been performed for
the advertisement messages. Advertisement messages have
been assigned the validity interval TI of 20 milliseconds and
the refresh period τ has been set to 16 milliseconds, which
results in the expected utilization of 80%.

Figure 15(a) illustrates the presence of advertisements in
the two brokers of the ipworld setup. It can be observed
that when no validity interval extension (noext) is used the
advertisement presence in the brokers is very brief, with the
validity interval expiration quickly causing an unadvertise-
ment. In contrast, the validity interval extension technique
(ext) assures that the expiration is postponed until the re-
fresh message is able to arrive. Figure 15(a) illustrates also
the fact that the further away from the source of the ad-
vertisement a given broker is, the lower the amount of time
an advertisement is present at that broker when no validity
interval extension is used.

Figure 15(b) plots the data from Figure 15(a) across a
longer period of time as a percentage of time a given broker

has spent without an advertisement. Time without advertise-
ment implies the amount of time when broker is not able to
forward filters towards matching publishers and thus it is not
able to deliver events to the interested subscribers. It can
be observed that without the extension technique the total
broker time without valid advertisement remains very high,
while the validity interval extension technique quickly helps
to extend the advertisement intervals so as to accommodate
for the large and varying latencies experienced by the refresh
messages.

6. SUMMARY
The soft state publish/subscribe system proposed in this

paper offers a set of interesting properties and trade-offs.
On one hand it automatically recycles the state of crashed
subscribers (subscriptions) and publishers (advertisements)
across the whole content-based pub/sub system using com-
munication by time. It frees the pub/sub application de-
velopers from the concerns regarding the issues related to
timing (ordering) of messages and it upholds the decoupled
nature of the pub/sub systems. Moreover, the processing
overhead of unsubscriptions and unadvertisements is signif-
icantly reduced as it is always local to a single broker and
never triggers any additional messages. On the other hand,
the periodic re-subscriptions and re-advertisements consume
more bandwidth than in case of the traditional hard state
pub/sub systems. However, one has to consider that the
hard state pub/sub systems might also impose high message
overhead if they persistently try to remove orphaned state
from unreachable or malfunctioning brokers.

The soft state pub/sub system is lightweight in that no
costly protocol for time synchronization is required. This
is especially important if we consider scenarios when time
synchronization is not possible, e.g., due to restrictive fire-
wall policies or due to the decoupling properties of pub/sub
systems which do not provide users with the ”whole system
view”. Therefore it is especially important to mention that
our implementation upholds all decoupling properties of the
pub/sub systems.

We do not claim that the soft state pub/sub system is
a one fit for all solution. However, we believe that it is an
interesting alternative for hard state systems in large-scale,
high latency setups. Moreover, it significantly simplifies the
deployment of the dynamic pub/sub networks – an experience
we have gained and confirmed multiple times when running
our test suites on PlanetLab hosts.

7. ACKNOWLEDGMENTS
Authors would like to thank Robert Fach for inspiring

discussions regarding the soft state approach in the context
of the XSiena publish/subscribe system. Zbigniew Jerzak’s
work has been partially supported by the Polish Ministry of
Science and Higher Education grant number N N516 375034.

8. REFERENCES
[1] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell,

and Carl E. Landwehr. Basic concepts and taxonomy
of dependable and secure computing. IEEE
Transactions on Dependable and Secure Computing,
1(1):11–33, Jan.–Mar. 2004.

[2] David Bernick, Bill Bruckert, Paul Del Vigna, David
Garcia, Robert Jardine, Jim Klecka, and Jim Smullen.

Nonstop advanced architecture. In DSN ’05:
International Conference on Dependable Systems and
Networks, pages 12–21, Yokohama, Japan, June 2005.
IEEE Computer Society.

[3] Sumeer Bhola, Robert E. Strom, Saurabh Bagchi,
Yuanyuan Zhao, and Joshua S. Auerbach. Exactly-once
delivery in a content-based publish-subscribe system.
In DSN 2002: International Conference on Dependable
Systems and Networks, pages 7–16, Bethesda, MD,
USA, June 2002. IEEE Computer Society.

[4] Antonio Carzaniga, David S. Rosenblum, and
Alexander L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Trans.
Comput. Syst., 19(3):332–383, 2001.

[5] D. Clark. The design philosophy of the DARPA
internet protocols. In SIGCOMM ’88: Symposium
proceedings on Communications architectures and
protocols, pages 106–114, New York, NY, USA, 1988.
ACM.

[6] Flaviu Cristian and Christof Fetzer. The timed
asynchronous distributed system model. IEEE
Transactions on Parallel and Distributed Systems,
10(6):642–657, June 1999.

[7] Patrick Eugster. Type-based publish/subscribe:
Concepts and experiences. ACM Transactions on
Programming Languages and Systems, 29(1):1–50,
January 2007.

[8] Patrick Th. Eugster, Pascal A. Felber, Rachid
Guerraoui, and Anne-Marie Kermarrec. The many
faces of publish/subscribe. ACM Comput. Surv.,
35(2):114–131, 2003.

[9] Francoise Fabret, H. Arno Jacobsen, Francois Llirbat,
Joao Pereira, Kenneth A. Ross, and Dennis Shasha.
Filtering algorithms and implementation for very fast
publish/subscribe systems. In SIGMOD ’01:
Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data, pages 115–126,
New York, NY, USA, 2001. ACM Press.

[10] Christof Fetzer and Flaviu Cristian. Building
fault-tolerant hardware clocks from COTS components.
In Proceedings of the Seventh IFIP International
Working Conference on Dependable Computing for
Critical Applications, pages 67–86, San Jose, CA, USA,
Nov 1999.

[11] Christof Fetzer and Flaviu Cristian. A fail-aware
datagram service. In Iain Bate and Alan Burns, editors,
IEE Proceedings - Software Engineering, volume 146,
pages 58–74. IEE, April 1999.

[12] Christof Fetzer and Flaviu Cristian. Fail-awareness: An
approach to construct fail-safe systems. Journal of
Real-Time Systems, 24(2):203–238, March 2003.

[13] Michael A. Jaeger. Self-Managing Publish/Subscribe
Systems. PhD thesis, Technische Universität Berlin,
2007.

[14] Zbigniew Jerzak, Robert Fach, and Christof Fetzer.
Fail-aware publish/subscribe. In Sixth IEEE
International Symposium on Network Computing and
Applications (NCA 2007), pages 113–125, Cambridge,
MA, USA, July 2007. IEEE Computer Society.

[15] Zbigniew Jerzak, Robert Fach, and Christof Fetzer.
Adaptive internal clock synchronization. In SRDS
2008: 27th International Symposium on Reliable

Distributed Systems, pages 217–226, Naples, Italy,
October 2008. IEEE Computer Society.

[16] Zbigniew Jerzak and Christof Fetzer. BFSiena: a
communication substrate for StreamMine. In DEBS
’08: Proceedings of the second international conference
on Distributed event-based systems, pages 321–324,
Rome, Italy, July 2008. ACM.

[17] Guoli Li, Shuang Hou, and Hans-Arno Jacobsen. A
unified approach to routing, covering and merging in
publish/subscribe systems based on modified binary
decision diagrams. In ICDCS ’05: Proceedings of the
25th IEEE International Conference on Distributed
Computing Systems, pages 447–457, Washington, DC,
USA, 2005. IEEE Computer Society.

[18] Guoli Li and Hans-Arno Jacobsen. Composite
subscriptions in content-based publish/subscribe
systems. In Middleware, volume 3790/2005 of Lecture
Notes in Computer Science, 2005.

[19] Guoli Li, Vinod Muthusamy, , and Hans-Arno
Jacobsen. Adaptive content-based routing in general
overlay topologies. In Valérie Issarny and Richard E.
Schantz, editors, Middleware ’08: Proceedings of the
ACM/IFIP/USENIX 9th International Middleware
Conference, volume 5346 of Lecture Notes in Computer
Science, pages 1–21, Leuven, Belgium, December 2008.
Springer.

[20] Alan Mislove, Ansley Post, Andreas Haeberlen, and
Peter Druschely. Experiences in building and operating
a reliable peer-to-peer application. In Yolande Berbers
and Willy Zwaenepoel, editors, EuroSys, pages 147–159,
Leuven, Belgium, April 2006. ACM.

[21] Gero Mühl. Large-Scale Content-Based
Publish/Subscribe Systems. PhD thesis, Technisches
Universität Darmstadt, 2002.

[22] Gero Mühl, Ludger Fiege, and Peter Pietzuch.
Distributed Event-Based Systems. Springer-Verlag New
York, Inc., 2006.

[23] Gero Mühl, Michael A. Jaeger, Klaus Herrmann,
Torben Weis, Andreas Ulbrich, and Ludger Fiege.
Self-stabilizing publish/subscribe systems: Algorithms
and evaluation. In Euro-Par 2005 Parallel Processing,
volume 3648/2005, pages 664–674. Springer Berlin /
Heidelberg, 2005.

[24] Brian M. Oki, Manfred Pflügl, Alex Siegel, and Dale
Skeen. The information bus – an architecture for
extensible distributed systems. In B. Liskov, editor,
Proceedings of the 14th Symposium on the Operating
Systems Principles, pages 58–68. ACM Press,
December 1993.

[25] Peter Pietzuch, David Eyers, Samuel Kounev, and
Brian Shand. Towards a common api for
publish/subscribe. In Hans-Arno Jacobsen, Gero Mühl,
and Michael A. Jaeger, editors, DEBS ’07: Proceedings
of the 2007 inaugural international conference on
Distributed event-based systems, volume 233 of ACM
International Conference Proceeding Series, pages
152–157, Ontario, Canada, June 2007. ACM.

[26] Peter R. Pietzuch. Hermes: A Scalable Event-Based
Middleware. PhD thesis, Computer Laboratory, Queens’
College, University of Cambridge, February 2004.

[27] Suchitra Raman and Steven McCanne. A model,
analysis, and protocol framework for soft state-based

communication. In SIGCOMM ’99: Proceedings of the
conference on Applications, technologies, architectures,
and protocols for computer communication, pages
15–25, New York, NY, USA, 1999. ACM.

[28] Timothy Roscoe. The planetlab platform. In Ralf
Steinmetz and Klaus Wehrle, editors, Peer-to-Peer
Systems and Applications, volume 3485 of Lecture Notes
in Computer Science, pages 567–581. Springer, 2005.

[29] David S. Rosenblum and Alexander L. Wolf. A design
framework for internet-scale event observation and
notification. In Mehdi Jazayeri and Helmut Schauer,
editors, 6th European Software Engineering Conference
Held Jointly with the 5th ACM SIGSOFT Symposium
on Foundations of Software Engineering, volume 1301
of Lecture Notes in Computer Science, pages 344–360,
Zurich, Switzerland, September 1997. ACM.

[30] Zhenhui Shen and S. Tirthapura. Self-stabilizing
routing in publish-subscribe systems. In International
Workshop on Distributed Event-Based Systems, 2004.

[31] Sasu Tarkoma. Chained forests for fast subsumption
matching. In Hans-Arno Jacobsen, Gero Mühl, and
Michael A. Jaeger, editors, DEBS ’07: Proceedings of
the 2007 inaugural international conference on
Distributed event-based systems, volume 233 of ACM
International Conference Proceeding Series, pages
97–102, Toronto, Ontario, Canada, June 2007. ACM.

[32] Ute Wappler and Christof Fetzer. Software encoded
processing: Building dependable systems with
commodity hardware. In Francesca Saglietti and
Norbert Oster, editors, SAFECOMP ’07: 26th
International Conference on Computer Safety,
Reliability, and Security, volume 4680 of Lecture Notes
in Computer Science, pages 356–369, Nuremberg,
Germany, September 2007. Springer.

[33] Timo Warns, Christian Storm, and Wilhelm
Hasselbring. Availability of globally distributed nodes:
An empirical evaluation. In SRDS ’08: IEEE
Symposium on Reliable Distributed Systems, pages
279–284, Naples, Italy, October 2008.

[34] Tao Xue, Boqin Feng, and Zhigang Zhang. P2pens:
Content-based publish-subscribe over peer-to-peer
network. In Hai Jin, Yi Pan, Nong Xiao, and Jianhua
Sun, editors, GCC 2004: Third International
Conference on Grid and Cooperative Computing,
volume 3251 of Lecture Notes in Computer Science,
pages 583–590, Wuhan, China, October 2004. Springer.

[35] Yuanyuan Zhao, Daniel Sturman, and Sumeer Bhola.
Subscription propagation in highly-available
publish/subscribe middleware. Lecture Notes in
Computer Science, 3231:274 – 293, 2004.

	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Contribution

	2 Related Work
	3 System Model
	4 Soft State
	4.1 Extending Validity Interval
	4.2 Upper Bound
	4.3 Utilization and Uncertainty
	4.4 Coverage

	5 Evaluation
	6 Summary
	7 Acknowledgments
	8 References

