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Abstract

Exact graph matching using a genetic algorithm for image recognition has been introduced in previously published work. The algo-
rithm was based on angle matching between two given graphs. It has proven to be quite effective in exact graph matching. However, the
algorithm needs some modifications in order to handle cases where the number of nodes, shapes and rotations of the two graphs are
different. This paper presents modifications such as the introduction of node exemption, inexact matching between straight lines and
curves in the graphs and consideration of rotational degrees of the graphs. Each angle in a graph is also given a weight to indicate
the significant degree of identifying the graph. A multi-objective function is used to reflect the similarity between two graphs. The exper-
iments designed to evaluate the algorithm have shown very promising results. It is highly accurate in matching graphs with dissimilarities

in shape, number of nodes and degrees of rotation.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Patterns or images can be effectively represented as
graphs and it is possible to identify a given image by
matching the graphic representation of the image against
those of other known images to look for isomorphism.
The graph matching problem has been proven to be NP-
complete. When the numbers of nodes in the two graphs
are different, the graph matching problem becomes inexact
and more difficult. Several techniques have been proposed
to solve this problem, e.g. probabilistic relaxation (Ben-
goetxea et al., 2001; Cesar et al., 2002; Christmas et al.,
1995; Coughlan and Shen, 2004; Skomorowski, 1999; Wil-
liams et al., 1997; Wilson and Hancock, 1999), EM algo-
rithm (Cross and Hancock, 1998; Finch et al., 1998),
neural networks (Lee and Liu, 2000; Lyul and Hong,
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2002; Shams et al., 2001), decision trees (Messmer and
Bunke, 1999) and a genetic algorithm (Cross et al., 1997,
2000; Khoo and Suganthan, 2002; Singh et al., 1997).

Previously, an exact graph matching technique for
image recognition using a Genetic Algorithm was intro-
duced (Auwatanamongkol, 2000). The basic idea of the
algorithm is to find the best match between the nodes of
an unknown input graph and the nodes of a known graph
in order to find the highest degree of matching. This can be
measured in terms of how well each angle between two
adjacent links of one graph is matched with its counterpart
on the other graph. The algorithm showed promise when
matching two similar graphs with the same number of
nodes.

However, some optimization and several modifications
still needed to be carried out on the algorithm in order to
improve its performance and accuracy for recognizing sim-
ilarities between two graphs. Specifically, it should be capa-
ble of handling cases in which the number of nodes on the
two graphs are not equal. In such cases, some nodes are left
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unmatched and some need special exemption, otherwise
they can cause a considerable reduction in the overall
degree of matching. Criteria need to be set up in order to
determine which of the nodes can be exempted. The dispar-
ity between the lengths of any two matched links on the
two graphs can also be considered when evaluating the
degree of matching. Besides structural matching, rotational
matching can play a significant role in evaluating the two
graphs. The rotational similarity between the two graphs
should be incorporated into the degree of matching to
enhance its accuracy.

This paper proposes these modifications to the previ-
ously reported algorithm. The modified algorithm was
tested and shown to increase the accuracy and discrimina-
tory power of the original algorithm.

2. Image pattern representation

An image pattern is assumed to have been segmented
and is represented as a graph. Therefore, lines in an image
pattern can be subdivided into straight line segments. This
segmentation process is referred to as “pattern quantiza-
tion” and its goal is to extract structural information from
the pattern. The known image patterns must also be seg-
mented in such a way that the numbers of nodes in all of
the known image patterns are roughly the same. This will
help to equalize the chance that each node in the input
image pattern can match with its counterpart in any known
image pattern.

In addition, and to make the representation of the image
pattern independent of rotational and scaling factors which
can complicate the graph matching, an image pattern
transformation is proposed that eliminates the rotation
and scaling dependencies and produces a new representa-
tion which suits the graph matching algorithm. The pattern
transformations consist of the following steps:

1. Between any pair of nodes that are not directly con-
nected, a new link is introduced which does not cross
over any original links. These new links are referred to
as “indirect links” and the original ones “direct links”.
For instance, the indirect links AC and BD (dotted
lines) are introduced into the pattern shown in Fig. 1.
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Fig. 1. A graph with augmented indirect links (dotted lines).

Fig. 2. Similar graphs distinguished by the introduction of indirect links.

Notice that some angles on the graph are divided by
indirect links into sub-angles, e.g. « and f.

2. Each direct or indirect link incident to a particular node
is represented by the degree of the angle (or sub-angle)
at the node, which is formed by the link and its succeed-
ing link in a clockwise direction, e.g. the link AC, AD
and AB are represented by the degrees of the angles o,
p and y, respectively.

The new representation uses angles which have not been
subjected to scaling and rotation factors. The introduction
of indirect links also gives some extra structural informa-
tion, e.g. line of sight between two nodes. This extra infor-
mation is needed as it can help distinguish one graph from
another. For instance, the two graphs, a square and a rect-
angle, shown in Fig. 2(a), can be distinguished by the
degrees of angles associated with the indirect links. Two
similar graphs shown in Fig. 2(b), which cannot be distin-
guished by the lengths of matched links since they are the
same, can now be distinguished by matching angles associ-
ated with direct and indirect links.

Each angle in the original graph (without augmented
indirect links) is assigned with an angle weight that repre-
sents the significant level of the angle that helps identify
the graph. Accordingly, the sum of all angle weights in a
graph must be equal to 1. Once the graph is augmented
with indirect links, the weight of a sub-angle should be
determined from the weight of its respective angle. The
sum of weights for all sub-angles of an angle must be equal
to the weight of the angle itself. For instance, the sum of
the weights of sub-angles o and § must be equal to the
weight of the angle BAC. Using this constraint, it is possi-
ble to calculate the weights of sub-angles from the weight
of the angle by distributing the weight to the sub-angles
as follows:

Wi=W;xp/nj+W;x(1—p)=*d/d;,

where W; and W; are the weight of sub-angle 7 and its asso-
ciated angle j, respectively, n; is the number of sub-angles in
J» and d; and d; are the degrees of angle i and j, respectively.
According to the above equation, a part of W), W;*p, is
divided equally for each of the sub-angles of j while the
other part of W), W;*(1 — p), is divided according to the
proportions of the sub-angle and of j in degrees. The first
part divided equally among the sub-angles would guaran-
tee that any sub-angles with small degrees will get a share
of its respective angle weight and will not be dominated
by the larger sub-angles. A reasonable value of p could
be 0.3.



1430 S. Auwatanamongkol | Pattern Recognition Letters 28 (2007) 1428-1437

3. Inexact graph matching

The objective of inexact graph matching is to find the
best 1-to-1 match between the nodes in a given input graph
and the nodes in a known graph, which yields the maxi-
mum degree of matching. In addition, it would be benefi-
cial to match as many straight line segments between the
two graphs as possible. The candidate matching solution
can simply be encoded as a vector of integer numbers.
The vector length is » where n is the number of nodes in
the input graph. Each element in the vector has a value
ranging between 0 and m, where m is the number of nodes
in the known graph. The ith element of the vector repre-
sents the node id of the known graph that the ith node of
the input graph is matched with. Since the number of nodes
in the two graphs, i.e. m and n, can be different, some nodes
in both graphs must be left unmatched. The zero value on a
particular element designates a null matched or unmatched
condition for the corresponding node in the input graph.

However, if these unmatched nodes are part of a curve
connected between two matched nodes, they should be
exempted from the evaluation of the degree of matching.
For instance, consider nodes B and C in Fig. 3. These
two nodes are part of a curve connected between nodes
A and D in an input graph. If the curve ABCD is matched
with the straight line PQ in a known graph, i.e. node A
matches with node P, node D matches with node Q and
nodes B and C are unmatched, nodes B and C should be
excluded from the node matching process.

Let us define the straightness degree of a line as p. u can
be quantified using a simple ratio, ¢, between the length of
the straight line connecting the two end points and the
length of the line itself. For instance, the ratio ¢ for the line
ABCD can be computed as

eapcp = Length of AD/Length of ABCD.

The ratio ranges between 0 and 1, where 1 is the most
favorable (a straight line) and O is the least favorable (a
curve). Consequently, the ratio can be used as a simple
means to quantify the degree of straightness of the line as
follows:

tascp = (eaBcp) * * 2.

The square function corresponds to the concentration
operation in fuzzy logic which acts as a mapping function
between the degree of straightness u and the ratio ¢. The

Fig. 3. Inexact matching between two lines, ABCD and PQ.

1

0

Fig. 4. The mapping function S between u and .

mapping function is shown in Fig. 4. Note that the degree
of straightness of an indirect link is always equal to 1.
Let Lapcp and Lpg be the normalized lengths of the
lines ABCD and PQ, respectively. The normalized length
of a line is defined as the ratio of the line length and the
total length of all line segments in its respective graph.
The line length disparity measure between the lines ABCD
and PQ, ¢(ABCD,PQ), can now be computed as follows:

()'(zABC:D7 PQ) = (min(LABCD,LpQ)/max(LABCD,LPQ)) * % 2,

The normalized line length is used instead of the absolute
line length in order to eliminate the effect of the scaling fac-
tor and the square function is used as a concentration map-
ping function between the normalized line length ratio and
the line length disparity measure. The disparity measure
value lies between 0 and 1, and approaches 1 as the two
normalized line lengths approach parity.

We can now define the degree of exemption E for an
exempted node as a product of the degree of straightness
of the line that the node is in and the line length disparity
measure, since the two factors will dictate the degree to
which the node should be exempted.

Consider the two graphs in Fig. 5. If nodes A, D and E
are matched with nodes P, Q and R, respectively, while
nodes B and C are exempted, the indirect link AD and
the curvature line ABCD must be replaced by the direct
link AD. All indirect links involved with the exempted
nodes, i.e. AC, AD, BE and CE, must now be discarded.

From Fig. 5 we can see that the curve ABCD, which is
replaced by the indirect link AD, can be matched with the
direct link PQ, the direct link AE can be matched with the
direct link PR and the direct link DE can be matched with

P R

Fig. 5. An input graph with exempted nodes (B and C) and its known
counterpart.
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Fig. 6. Similarity function used for angle matching.

the direct link QR. In the first case where the original
graphs are considered, the degree of matching for the angle
BAE, ¢paEg, can be defined in terms of the absolute differ-
ence in value between the magnitudes of the angles DAE
and QPR, 4, the degrees of straightness of ABCD and
AE and the weight of the angle BAE, Wgag, as follows:

Ppar = WBAE * liapcp * Hpr * SIM(4),

where sim is a similarity function defined over the differ-
ence 4. The value of the similarity function should decrease
as the difference 4 increases. The function value has a max-
imum of 1.0 when 4 is equal to 0 and decreases to a con-
stant s when 4 approaches 21 or 360°. Fig. 6 illustrates
an example of the similarity function sim where the value
of s has been set at 0.3. The function can be defined as
follows:

Sim = s if 4> m,
=s+(l—s5)*(1—4/n)**2 otherwise.

The degree of matching for the angle QPR can be defined
in the same way as follows:

Papr = Wapr * [ipq * Hpg * sim(4).

Notice that the maximum value for a degree of matching of
an angle is equal to the weight on the angle itself. In addi-
tion, since maximizing the degree of matching is desirable,
the two lines that form the angle must be as straight as pos-
sible. In the second case where indirect links are added, the
angle BAE is subdivided into two sub-angles. The degree of
matching for the angle can be computed in the same way as
in the first case. However, the weight of any sub-angle
which has its end nodes exempted must be given a penalty
because of the existence of the exempted end nodes. For in-
stance, since the sub-angle CAD has its end node C ex-
empted, its weight must be reduced by a penalty factor as
follows:

, .
Weap = Weap * minimum(Ec, Ep).

The penalty factor is basically the smaller of the degrees of
exemption of the two end nodes of the sub-angle, bearing
in mind that the degree of exemption for a non-exempted
node, e.g. node D, is equal to one. Finally, the penalized
weight of an angle which consists of sub-angles can be
computed as the sum of the penalized weights of its sub-an-

gles. For instance, the penalized weight of the angle BAE
can be computed as follows:

W;SAE = W%Ac + W/CAD + W;Z)AE‘

The degree of matching for an angle incident at an ex-
empted node, e.g. angles ABC and BCD, should be
approximated otherwise the angle could be accounted for
as an unmatched angle. Approximations must be consid-
ered in the following two cases.

In the first case where no indirect links are added, the
approximated value could be quantified as a product of
the weight of the angle and the degree of exemption of
the node that the angle is incident to. For instance, the
approximated degree of matching of angle ABC in Fig. 5
can be computed as a product of the weight of angle
ABC and the degree of exemption of node B.

In the second case when indirect links are added, the
degree of matching of the angle ABC can be approximated
using the degrees of matching of the angles BAC and CDE
since the angle ABC could have indirect links connected to
nodes similar to those of the angles BAC and CDE. The
matching degree of the angle ABC can be computed using
an averaged degree of matching of the two angles BAC and
CDE as follows:

$anc = Wagc * ($pac/Weac + ¢cpr/Wepe) /2.

In the case where angles BAC or CDE is larger than 180°,
only sub-angles of BAC or CDE that are visible from B or
C, respectively, i.e. the sub-angles within 180° from the line
BA and CD will be used instead of BAC or CDE.

With reference to particular node matching between two
graphs, a degree of matching that one graph matches with
the other can be computed using degrees of angle matching
for all angles in the former graph as follows.

Let S, be the sum of the degrees of angle matching ¢ for
all angles in the graph.

Let S; be the sum of the maximum values of the degrees
of angle matching for all angles in the graph. S, is actually
the total of the angle weights in the graph, which is equal to
one.

Therefore, the degree of matching for the graph match-
ing with the other can be computed as

¢(graph) =S, /S, = S..

Note that the degree of matching for one graph matching
with the other may not be equal when applied the other
way around since the numbers of unmatched and exempted
nodes, as well as the individual angle matching degrees for
both graphs, are not necessarily the same.

4. Structural fitness function

The degree of matching for a graph can also consist of
the degree of matching for the original graph without indi-
rect links and the degree of matching for the augmented
graphs with indirect links. The latter’s degree of matching
is incorporated so that similar graphs can be distinguished
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by exploiting the extra structural information inferred by
the indirect links. Hence, the total degree of matching
between the two graphs can be defined as a multi-objective
function that consists of four degrees of matching which
need to be maximized at the same time.

Let G, and A4, be the input graph and its corresponding
augmented graph and G, and A, be the known graph and
its corresponding augmented graph, respectively. Conse-
quently, ¢(Gy), ¢(G»), ¢p(A;) and ¢(A,) are the degrees of
matching for the graphs G;, G,, A; and A,, respectively.
We can use a simple weighting approach (Fonseca and
Fleming, 1995) to combine all the matching degrees into
one fitness value that represents the structural degree of
matching between the two graphs. The structural fitness
function can be expressed as follows:

Structural fitness function
=wy * (W *x ¢(G1) + (1 — wy) x d(41))
+ (1= wi) % (w2 % ¢(G2) + (1 — wa) * ¢(42)),

where wy is the weight for combining the degrees of match-
ing for the input graph and the known graph, while w, is
the weight for combining the degrees of matching for the
original graph and its augmented graph. The weights w,
and 1 — wy reflect the preferences given to the input graph
and known graph, respectively, whereas the weights w, and
1 — w;, reflect the preferences given to the original graph
and its augmented graph respectively. If no preference is gi-
ven to the input or known graphs and to the original or
augmented graphs, the values of the weights w; and w,
can both be set to 0.5.

5. Rotational fitness function

Besides structural similarity, rotational similarity needs
to be considered since this can help distinguish one graph
from the other. For instance, graphs of part of the alphabet
N to Z can have a very high structural similarity but the
rotational similarity is quite low since the degrees of rota-
tion difference between the two is about 90°. Accordingly
rotational similarity can be used to distinguish between
the two graphs. The rotational similarity between each
direct link and its counterpart in the other graph must be
computed and then be used to compute the average for
all of the link similarities, which represents the rotational
similarity for the whole graph.

A P

Fig. 7. Degree of rotation difference between two matched links, AB(CD)
and PQ.

Rotational similarity

1.0

0 /6 /2 T

Fig. 8. A rotational similarity function defined over degree of rotation
difference 4.

When considering Fig. 7, let vectors AD and PQ repre-
sent the links AB(CD) and PQ from the graphs in Fig. 5,
respectively. Node A can be superimposed onto node P
since they are a match. Consequently, the difference in
the degrees of rotation 4 between the two links can be mea-
sured in terms of the degree of angle DAQ. The difference
can then be transformed into terms of rotational similarity
using the function shown in Fig. 8. Hence, the rotational
fitness for links AB(CD) and PQ can be defined in terms
of their degree of straightness and rotational similarity as
follows:

Rotational fitness of AB(CD) and PQ
= liaBcp * Hpg * Rotational similarity of ABCD and PQ.

Note that the rotational fit of links BC and CD are
approximately equal to the rotational fitness of link
AB(CD).

Finally, the rotational fitness function can then be com-
puted using the previously described weighting scheme as
follows:

Rotational fitness function
= w; * Rotational fitness of G
+ (1 — wy) % Rotational fitness of G.

The two fitness functions, structural and rotational, can
now be combined to form the total fitness function as
follows:

Fitness function = ws * Structural fitness function
+ (1 —w;) * Rotational fitness function,

where w3 is the weight that represents the preference on
structural fitness. A reasonable value for w; is 0.7.

6. Population of the potential solutions

Two important issues concerning the population of the
potential solutions are the population size and the algo-
rithm used to initialize the population. The population size
and initialization algorithm play significant roles in
improving the performance of the genetic algorithm. Too
small a population size can lead to local optima or prema-
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ture convergences while too large a population size will
exhaust processing time and memory space. A good initial
population can help direct the search to the global optima
and so shorten the search time. In this section, an initiali-
zation algorithm for the graph matching problem is pro-
posed, which can help improve convergence whilst not
requiring a very large population size.

Consider a node in an input graph and define an adja-
cent line of the node as a line starting at the node and end-
ing at a node with an adjacent degree not equal to two or
the node itself (forming a cycle in this case). In order to
construct an initial population, allow each node of the
input graph to be matched to each node on the known pat-
tern graph. Once the input node is matched to a particular
node of the known pattern graph, allow each adjacent line
of the input node to be matched to each adjacent line of the
known pattern node. Subsequently, each matching pair of
adjacent lines will generate one population. When a line on
the input graph is matched to a line on the known pattern
graph, the corresponding starting and ending nodes of the
two lines are matched with each other. The intermediate
nodes inside the two lines are matched in sequential order.
If the numbers of intermediate nodes on the two lines are
not equal, some of the nodes on the longer line are left
unmatched by random selection. The rest nodes in both
patterns will be left unmatched, i.e. assigned with null map-
pings. By using this matching scheme, it is possible to gen-
erate mappings between nodes of the two patterns based on
sequences of nodes in adjacent line segments, which form
the building blocks for an optimal solution. The whole pro-
cess can be repeated for many rounds until the desired
number of populations is achieved.

7. The mutation operator

The mutation performed on a candidate solution is as
follows. Firstly, the position of the element to be mutated
is selected based on the degree of matching between a node
and its counterpart. The idea is based upon a heuristic pro-
cess where the elements or nodes with less degrees of
matching should have a higher probability of mutation in
order to improve the fitness value of the new solution. Sup-
pose that an input graph node X is matched to a pattern
graph node Y and the number of matched angles at nodes
X and Y is , the degree of matching between node X and
node Y can be defined as

min(y/deg(X), y/deg(Y)),

where deg(X) and deg(Y) are the numbers of angles (num-
ber of edges) at nodes X and Y. The degree of matching be-
tween nodes X and Y is classified as the minimum value of
the ratio between the number of matched angles and the
number of angles at the two nodes. For an unmatched
node, the degree of matching for the node is set to zero.
A fitness proportionate selection algorithm can then be
used to select the mutation point where the fitness value
of each node or element can be determined as follows:

Fitness = Base fitness + (1 — Base fitness)
* (1 — degree of matching between the node

and its counterpart).

The base fitness is the minimum value of the fitness for any
node and is between 0 and 1. It is used to give the chance of
any node with a perfect match being selected. Once the
mutation node has been selected, the node will either be
matched with any node on the pattern graph or else none.
Since the number of nodes in the input pattern and known
pattern may not be equal, the possibility that a node in an
input graph will be matched to null should be equal to the
reciprocal of the number of known pattern nodes if this
number is less than or equal to the number of input pattern
nodes, otherwise it should be equal to the ratio between the
difference in the number of nodes between the two patterns
and the number of known pattern nodes. In the event that
the mutation node is chosen to match with null, the match-
ing of the node is simply changed to null. On the other
hand, a node in the known pattern needs to be selected
to match with the mutation node.

Using the same heuristic approach as with the selection
of mutation nodes, the selection of pattern graph nodes
can be carried out based on the degree of matching between
the pattern graph nodes and their counterparts. So that a
1-to-1 mapping relationship for the mutated solution can
be maintained, if there is already an input graph node
that matches with a selected pattern node, the input graph
node will be matched with null instead. Once an input
graph node has been reassigned to match with a new
known graph node, a part of one adjacent line of the input
graph node should be matched with a part of one adjacent
line of the known graph node. This is to create a building
block for the new solution. The part of the adjacent line
in either graph can be randomly picked, i.e. the length of
the part can be uniformly picked between 0 and the total
length of the adjacent line. The intermediate nodes in the
two parts can be matched in the same way as the adjacent
lines of the two graphs during the population initialization
process. The new solution generated using the mutation
must be matched on a 1-to-1 basis; if there are input graph
nodes that match with the intermediate nodes on the
known graph part, they must be matched as null before
the intermediate nodes on the input graph part are reas-
signed to match the intermediate nodes of the known graph
part.

8. The crossover operator

The crossover operator applied to the two candidate
solutions is based upon a uniform crossover operation. In
this case, elements in the two candidate solutions can not
be interchanged freely since the offspring can have dupli-
cate matches which violate the 1-to-1 relationship. Ele-
ments in the two solutions can form disjointed sets where
all elements in each set need to be interchanged at once,
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Parent 1

| | | Parent 2

J

Fig. 9. The Ith and Jth elements belonging to the same interchange set.

otherwise duplicate mappings can exist in the offspring.
Each of the disjoint sets is referred to as an interchange set.

Consider the two candidate solutions shown in Fig. 9.
Suppose that the Ith element of one candidate solution
contains the same matching value as the Jth element of
the other candidate solution and the matching value is
not null, then the two elements must belong to the same
interchange set. All interchange sets can be built by scan-
ning all of the elements and performing a disjoint set union
operation. The crossover can then be carried out by inter-
changing all of the elements in each set. A predefined inter-
change probability can be used to control whether all
elements in a set are to be interchanged or not. A probabil-
ity of 0.7 was used in these experiments.

9. Selection schemes and terminating conditions

A selection scheme plays a major role in achieving
a successful convergence to the global optima (Back,
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Fig. 10. Synthetic patterns of A—Z where the first character in any row is a
known pattern and the following are the five test patterns.

Table 1
Recognition results from graph matching for the first experiment using the
rotational fitness function
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Accuracy of graph matching = 99.23%.

Table 2
Recognition results from graph matching for the first experiment not using
the rotational fitness function
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Suit 1 Suit 3 Suit 4
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Accuracy of graph matching = 87.69%.
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1994; Goldberg and Deb, 1991) and a poor selection (1) Choose two individuals at random from a
scheme can cause premature convergences. A tourna- population.
ment selection scheme was used since it gave the best per- (2) Generate a random number r between 0 and 1.
formance in previous work. The selection scheme is as (3) If r <K (K is a parameter, e.g. 0.7 as used in these
follows: experiments), the fitter of the two individuals is
Known Pattern Test Pattern 1 Test Pattern 2 Test Pattern 3
Image 1
h (0
.
L0 <0ON
Image 2 T
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Image 3 ! ’ {; T <
|
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NN
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\
Image 6 \/ /f
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o
|
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%
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\ =L \

Fig. 11. Eight known patterns and their counterparts.
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selected as the parent, otherwise the less fit individual
is selected.

(4) Return the two individuals to the original population
so they can be selected again.

The iteration process is continued until there is no
improvement on the maximum fitness for a number of iter-
ations. According to these experiments, the appropriate
value of the number was 100.

10. Experiments with the genetic algorithm

To evaluate the effectiveness of the proposed algorithm,
two experiments were conducted. One was performed on
synthetic patterns and the other on benchmark images avail-
able at the web site of the University of California, Berkeley,
USA, for image segmentation (http://www.eecs. berke-
ley.edu/Research/Projects/CS/vision/grouping/segbench/).

10.1. First experiment — synthetic patterns

Graphs of alphabet character patterns, A—Z, were cho-
sen as the known graphs in these experiments designed to
evaluate the effectiveness of the proposed algorithm. Each
graph was plotted on to a 18 X 24 matrix, quantized and
then converted into angular representations as mentioned
in Section 2. The number of nodes in each graph was no
more than 15. The testing sets consisted of five suits of
input graphs of characters A—Z. Hence, in total 130 input
graphs were tested. Each of the five suits contains twenty
six character graphs of A-Z. The shapes and number of
nodes of each test graph in one suit are different from those
of the known graphs and those from the other suits. They
were input as XY coordinates, quantized and then con-
verted into angular representations. Fig. 10 shows the pat-
terns of A-Z used in the experiment.

One round of the population initialization process was
performed to create a reasonable population size. The test
graph in each suit was tried twice and the best match
between the trials was selected. The best results from the
experiments are shown in Table 1. The best results were
achieved with a crossover rate of 0.6 and a mutation rate
of 0.1. Table 2 shows the results of recognizing the graphs
when the rotational fitness function was not used. By
applying the rotational fitness function, an accuracy of
99.23% in recognizing the graphs was achieved. The rota-
tion fitness function can help distinguish similar graphs
such as N and Z, M and W, D and O, etc.

10.2. Second experiment — benchmark images

Eight images from the web site were selected as the test
patterns. Each image was segmented manually by several
people so that the result images after segmentation differed
in some instances. For each image, one of its segmented
images was used as the known pattern and the other three
as test patterns. Fig. 11 shows the eight known patterns

and twenty four test patterns. Each pattern was quantized
into a graph of between 50 and 100 nodes. One round of
the population initialization process was performed so that
a reasonable sized population was created. Each test pat-
tern was twice matched against the eight known patterns
and the best match of the two runs was selected. A cross-
over rate of 0.6 and a mutation rate of 0.1 were found to
yield the best results. The algorithm achieved an accuracy
of 87.5% in recognizing the patterns but three out of twenty
four test patterns were misclassified. The misclassifications
occurred on test patterns 2 and 3 of image 5 and test pat-
tern 2 of image 8. These known and their corresponding
test patterns may have had too many differences in their
line segments for this test. Some extra line segments can
cause angle mismatches and different indirect links at some
nodes which can decrease the value of the similarity func-
tion to some extent.

11. Conclusions

Inexact graph matching using a genetic algorithm
was designed to take into account the dissimilarities
between two graphs in terms of shape, number of nodes
and the rotational degrees of the two graphs. The algo-
rithm can tolerate a number of differences between graphs
whilst achieving a very high accuracy on graph matching.
The algorithm can be extended to handle multi-dimen-
sional graph matching and is well suited to parallel imple-
mentation, a prerequisite for large image recognition.
Future investigations are recommended regarding the
assignment scheme for angle weights, the handling of
extra line segments and parallel implementations of the
algorithm.

References

Auwatanamongkol, Surapong, 2000. Pattern Recognition using Genetic
Algorithm. In: Congress of Evolutionary Computation. IEEE Press,
pp. 822-828.

Back, T., 1994. Selective pressure in evolutionary algorithms: A charac-
terization of selection mechanism, In: Proc. 1st IEEE Conf. on
Evolutionary Computation, pp. 57-62.

Bengoetxea E., Larranaga P., Bloch 1., Perchant A., 2001. Image
recognition with graph matching using estimation of distribution
algorithms, In: Proc. Medical Image Understanding and Analysis —
MIUA, pp. 89-92.

Cesar R., Bengoetxea E., Bloch I., 2002. Inexact graph matching using
stochastic optimization techniques for facial feature recognition, In:
Internat. Conf. on Pattern Recognition.

Christmas, W.J., Kittler, J., Petrou, M., 1995. Structural matching in
computer vision using probabilistic relaxation. IEEE Trans. Pattern
Anal. Machine Intell. 17 (8), 749-764.

Coughlan James, Shen Huiying, 2004. Shape matching with belief
propagation: Using dynamic quantization to accommodate occlusion
and clutter, In: Proc. 2004 IEEE Conf. on Computer Vision and
Pattern Recognition Workshop (CVPRW’04).

Cross, A.D., Hancock, E.R., 1998. Graph matching with a dual-step EM
algorithm. IEEE Trans. Pattern Anal. Machine Intell. 20 (11), 1236—
1253.

Cross, A.D.J., Wilson, R.C., Hancock, E.R., 1997. Inexact graph
matching using genetic search. Pattern Recognit. 30 (6), 953-970.


http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

S. Auwatanamongkol | Pattern Recognition Letters 28 (2007) 1428—1437 1437

Cross, A.D.J., Myers, R., Hancock, E.R., 2000. Convergence of a hill-
climbing genetic algorithm for graph matching. Pattern Recognit. 33
(11), 1863-1880.

Finch, A.W., Wilson, R.C., Hancock, E.R., 1998. Symbolic graph
matching with the EM algorithm. Pattern Recognit. 31 (11), 1777-
1790.

Fonseca, C.M., Fleming, P.J., 1995. An overview of evolutionary
algorithms in multiobjective optimizations. Evolution. Comput. 3, 1—
16.

Goldberg, D.E., Deb, K., 1991. A comparative analysis of selection
schemes used in genetic algorithms. In: Foundations of Genetic
Algorithms. Morgan Kaufmann.

Khoo, K., Suganthan, P., 2002. Evaluation of genetic operators and
solution representations for shape recognition by genetic algorithms.
Pattern Recognition Lett. 23 (13), 1589-1597.

Lee, R., Liu, J., 2000. Tropical cyclone identification and tracking system
using integrated neural oscillatory elastic graph matching and hybrid
RBF network track mining techniques. IEEE Trans. Neural Networks
11 (3), 680-689.

Messmer, B.T., Bunke, H., 1999. A decision tree approach to graph and
subgraph isomorphism detection. Pattern Recognit. 32, 1979-
1998.

Shams, L., Brady, M., Schaal, S., 2001. Graph matching vs information
maximization for object detection. Neural Networks 14 (3), 345-354.

Singh, M., Chaudhury, A., Chatterjeeand, S., 1997. Matching structural
shape descriptions using genetic algorithms. Pattern Recognit. 30 (9),
1451-1462.

Skomorowski, M., 1999. Use of random graph parsing for scene labeling
by probabilistic relaxation. Pattern Recognition Lett. 60, 649-956.
Williams, M., Wilson, R.C., Hancock, E.R., 1997. Multiple graph
matching with Bayesian inference. Pattern Recognition Lett. 18 (11—

13), 1275-1281.

Wilson, R.C., Hancock, E.R., 1999. Graph matching with hierarchical
discrete relaxation. Pattern Recognition Lett. 20 (10), 1041-1052.
Yang, Lyul, Rae, Hong P., 2002. A surface-based approach to 3D object
recognition using mean field annealing neural network. Pattern

Recognit. 35 (2), 299-316.



	Inexact graph matching using a genetic algorithm for image recognition
	Introduction
	Image pattern representation
	Inexact graph matching
	Structural fitness function
	Rotational fitness function
	Population of the potential solutions
	The mutation operator
	The crossover operator
	Selection schemes and terminating conditions
	Experiments with the genetic algorithm
	First experiment - synthetic patterns
	Second experiment - benchmark images

	Conclusions
	References


