
Chapter 3

DESIGN PARAMETER SELECTION
IN THE PRESENCE OF NOISE

Kevin N. Otto and Erik K. Antonsson

Research in Engineering Design
Volume 6, Number 4 (1994), pages 234-246.

Abstract
The method of imprecisionis a design method whereby a multi-objective

design problem is resolved by maximizing the overall degree ofdesigner prefer-
ence: values are iteratively selected based on combining the degree of preference
placed on them. Consider, however, design problems that exhibit multiple un-
certainty forms (noise). In addition to degrees of preference (imprecision) there
areprobabilisticuncertainties caused by, for example, measuring and fabrication
limitations. There are also parameters that can take on any valuepossiblewithin
a specified range, such as a manufacturing or tuning adjustment. Finally, there
may be parameters which mustnecessarilysatisfy all values within the range
over which they vary, such as a horsepower requirement over a motor’s different
speeds. This paper defines a “best” set of design parameters for design problems
with such multiple uncertainty forms and requirements.

1. Introduction
Much of the process of formalizing design decision making has yet to be

understood. Rigorous methods for representing and manipulating the concerns
and unknowns of a design need to be advanced for a robust automation. The
ability to make such decisions, however, is hampered by uncertainties (noise)
in the variables used, both in their values and in the manner in which they
should be manipulated. This paper will introduce methods that appropriately
model the various forms of uncertainty to define an overall “best” set of pa-
rameters for use.
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Parameter types are broken down by characterizing some model variables as
design parameters, or those parameters in the engineering model for which the
designer must select values, such as geometric sizes.Performance parameters
are those the designer uses to indicate a design’s ability to satisfyfunctional
requirements, such as stress or deflection. Finally, there are usuallynoise pa-
rametersthat introduce uncertainty in the designer’s ability to measure, such
as manufacturing errors. Note this use of the termparameteris therefore dif-
ferent from its usage in statistics, where it is used to describe a entire set of
noise values in some respect, usually with a single number (e.g., an expected
value).

Initially, design parameter values are uncertain: the designer does not know
what values to use. Consequently, the performance parameter values are also
uncertain. As a design process proceeds, values are determined more and more
precisely in an iterative test and refine fashion. Noise parameter uncertainty,
however, always exists, and requires changes in measuring and manufacturing
processes to improve.

In addition to these basic uncertainties, there are several different types of
design parameters [21]. Some parameters may have absolute, rigid functional
requirements. Others may be flexible; targets only express what is desired, not
required. Similarly, tolerances may have strict limits placed on them; failure
to be within the tolerances is a failed design. Other tolerances may be flexible.
This paper introduces a modeling scheme for both parameter types, and defines
methods for selecting an overall best design parameter set with such influences.
Those parameters that have strict requirements are termednecessary parame-
ters, and may be of the design, performance, or noise variety. The mathematics
of necessity was introduced to engineering design by Ward and Seering [20]
for interval mathematics. The concept is extended here to different uncertainty
forms.

Modeling of Uncertainty
Every uncertainty form discussed above shall be directly modeled. That is,

the initial design parameter uncertainty shall be modeled usingthe method of
imprecision[8, 22] where each design parameter value is given a rank from
zero to one to indicate degree of preference. This forms a preference function
µ over each design parameter and performance parameter indicating degree of
preference for values. Co-dependencies are possible, see [8].

Similarly, probabilistic noise parameters [10] shall have their values ranked
with degrees of probability. Finally, possibilistic noise parameters [10] shall
have their values ranked with degrees of possibility. All these uncertainties re-
flect different phenomena, and consequently will have different derived math-
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ematics. Of course, these uncertainties can interact. A design parameter may
have both a preference function and a probability density function.

This paper focuses on making the determination of the “best” overall de-
sign parameter set given such influences, and presents a method which can be
used to solve for the maximum overall preference for a design parameter set,
even with confounding probabilistic and possibilistic uncertainties, as well as
necessary requirements.

Section 2.1 briefly reviews a metric to define the highest preference, see [8]
for a complete discussion of its iterative specification. The effects of uncer-
tainty on the highest overall preference concept are discussed in Section 2.2
for individual forms of confounding influences. Section 3. discusses incorpo-
ration of necessary parameters. Finally, Section 4. discusses design problems
with combinations of these effects.

2. Parameter Selection in the Design Process

2.1 Global Preference Functions and Design
Strategies

This work addresses the stage of the engineering design process where the
designer is selecting a configuration. Therefore, the designer has developed
a formal design parameter space (DPS) consisting of alternative configura-
tions to choose among. The DPS will be characterized bydesign parameters,
d1, . . . , dn. For a design process of selection among alternatives, eachdi rep-
resents an alternative, so the DPS' ZZn (the finite set of integers up ton).
For determination of values in a design model, there are usually multiple pa-
rameters each of which could be thought of as a continuum, and so eachdi

might thought of as a value of a vector within a DPS' IRn, where the DPS is
represented in some basis with coordinatesdi, for example.

Given that an overall best design parameter set is to be found, the “best” con-
cept must be defined. Unfortunately, the various performance parameters usu-
ally involve incommensurate concepts. A traditional approach to combining
incommensurate parameters is to use a normalization and a weighting. Instead,
incommensurate parameters can be combined more usefully using a common
trait: designer preference. This means that preference information (µ) on the
design parameters (di) and requirement preferences on the the performance
parameters (fj(~d)) must be combined into an overall preference rating for that
design parameter set (~d). The vector notation is meant to suggest the typical
design scenario of a multi-component design, but this development is applica-
ble to singleton designs.

To reflect the designer’s overall preference, a globaldesign metric(which
ranks each combination of possible design parameter arrangements) must ex-
ist across the design parameter space, expressed as a function of the known
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preferences of the design:

µ(~d) = P
(
µ(d1), . . . , µ(dn), µ(f1(~d)), . . . , µ(fq(~d))

)
(3.1)

where ~d is a design parameter arrangement, andf1 throughfq are the per-
formance parameters. This definition is the least possibly restrictive method
of combining incommensurate concepts. It is a formalization of the notion of
combining incommensurate parameters based on the degree that each parame-
ter satisfies the designer. Hence the best design parameter set to use is defined
by the maximum of this preference function:

µ(~d∗) = sup
{

P(µ(d1), . . . , µ(dn), µ(f1(~d)), . . . , µ(fq(~d)))
∣∣∣∣ ~d ∈ DPS

}
(3.2)

The multi-objective design problem with multiple constraints then becomes to
find ~d∗ as reflected in Equation 3.2, by maximizing the design metricP over
the design space (DPS).

This problem statement, however, is incomplete:P is unspecified. The
choice of atrade-off strategydesired to be used by the designer will specifyP.
Formal trade-off strategies for engineering design are introduced in [8]. For
example, use of the minimum function (P ≡ min) reflects aconservativeor
non-compensatingstrategy of the designer to improve the design by always im-
proving the weakest design aspect. Use of a normalized multiplication reflects
anaggressiveor compensatingstrategy of the designer to develop a maximally
performing design. Of course, non-compensating and compensating strategy
hybridization for different aspects of the design are possible [8].

2.2 Uncertainty Effects
Having formulated the overall preference function, there may still be uncer-

tainties to confound the search for the design parameter set which provide the
highest global preference. This will be resolved, however, by assuming that
the designer wants the design parameter set that provides the best “quality” in
light of the possible variations, using the following interpretation of quality:
overall preference despite variations. This is similar to the view of quality that
Taguchi uses [17], where he instead applies the view on a single performance
parameter, rather than on preference over many parameters [9].

Confounding Influences
In an engineering design problem, noise is typically characterized bynoise

parameters, n1, . . . , nk, . . . , nq. A noise parameternk might be the possible
positioning of an operator switch, and so the alternatives may be finite. Alter-
natively,nk might be a value of a manufacturing error on a design parameter,
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and so the NPS may have a continuum of possibilities. In this case,nk might
be thought of as a value of a vector within an NPS' IRq represented with
coordinatesnκ in some basis, for example.

Though these specific, simple examples illustrate the concept of noise, the
structure needed to model noise can be developed more generally. Thus, the
NPS is defined to be anuncertainty measure space (NPS,B, g), which is a set
NPS of elementsn, a σ-algebraB of sets over the NPS (also called aBorel
field), and an uncertainty measureg : B → [0, 1]. Notice thatB is a set of
sets.N ∈ B is an event: a set of possible valuesn. This is in keeping with
the historical development of statistical noise, where an event is a possible
outcome or outcomes.

An uncertainty measure is different from a Lebesgue measure [6] or a fuzzy
measure [4, 5, 14, 15]. An uncertainty measure is a functiong : B → [0, 1]
intended to measure the effects of noise. Three specific measures will be devel-
oped: the probability measurePr, the possibility measureΠ, and a necessity
measureNα.

In keeping with the terminology of probability, an element ofB is called an
event. The measureg is to be interpreted as a formalization of the ability of an
event to occur.

Theσ-algebraB is determined by the designer.B characterizes the ability of
the designer to make statements about the NPS. The number of subsets within
B is determined by the designer’s ability to characterize the NPS.

That events in the NPS have the structure of aσ-algebra must be justified.
Formally, this means the NPS has an associated collection of subsetsB that
satisfy,∀ Ni, Nj ∈ B:

i) Nj = NPS\Nj ∈ B
ii)

⋃
j∈J Nj ∈ B (3.3)

whereJ is an index set. Thus,i) states that for all eventsNj in the setB,
not-an-event (Nj) is equal to the Noise Parameter Space with the event (Nj)
removed. It also states that if eventNj can occur, thenNj can also occur (or,
stated differently:Nj can not occur). Also,ii) states that the union of all events
Nj (wherej is in the index setJ) are in the setB. If index setJ contains1
and2, andN1 andN2 are contained inB (which means thatN1 andN2 can
occur separately), then the union ofN1 andN2 can occur. Stated differently:
eitherN1 or N2, or both can occur. These are true for any sequence of events.
DeMorgan’s laws also hold on subsets:

iii) (Ni ∪ Nj) = (Ni) ∩ (Nj)

iv) (Ni ∩ Nj) = (Ni) ∪ (Nj).
(3.4)
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Thusiii) states that the complement (negation) of the union ofNi andNj is
the same as the intersection of not-Ni and not-Nj . Stated differently: if either
Ni or Nj do not occur, then bothNi andNj do not occur. Finally,iv) states
that the complement (negation) of the intersection ofNi andNj is the same
as the union of not-Ni and not-Nj . Stated differently: if neitherNi or Nj can
occur together, then eitherNi or Nj can not occur.

These assumptions are sufficient to show the collectionB forms an algebra
over the subsets [6]. Thus, events inB also satisfy:

ii)
⋃

j∈J Nj ∈ B
v)

⋂
j∈J Nj ∈ B (3.5)

whereJ is an index set. The algebraic structure of a noise space is not new to
this work, it is historically well developed [6] (for probability).

Given an uncertain space (NPS,B,g), the NPS is characterized. What is de-
sired is to rate a design configuration, given these noise effects. To do so, a
disjoint collection of subsets whose union is the entire NPS, or apartition, is
needed. On each subset in the partition, the effects of the noise will be deter-
mined, and then each rating on each subset in the partition will be incorporated
into an overall rating across the partition (across the NPS). Not just any par-
tition is used, but the limit in refinement of any sequence of partitions within
B. Thus, the most accurate rating of the noise is used, given what the designer
can state about the noise.

Probabilistic Uncertainty A particular uncertainty form that can be
used to model the NPS occurs when the events are random. For example,
inaccuracies in measurements and manufacturing are usually modeled as ran-
dom. Such inaccuracies form what is now termed aprobability space. The
probability space will be denoted NPS, meaning all uncertainties in the NPS
are now considered probabilistic, for this section.

Given the probability space, an uncertainty measureg is constructed, and
denotedPr. Pr measures the probability of an event occurring. A restriction
of thePr measure is that the probability of an event occurring and not occur-
ring must equal the probability of the certainty event (assumed to be 1) under
real addition. Further, the probability of either of two disjoint events occurring
must equal the real additive probability of the two events. These restrictions
are sufficient to derive an uncertainty measurePr [2, 3, 4, 7, 18].

Thus, for eventsNj , Nk ∈ B such thatNj ∩ Nk = ∅, if g is restricted to
obey:

g(Nj) + g(NPS\Nj) = 1

g(Nj) + g(Nk) = g(Nj ∪ Nk)
(3.6)

theng is a probability measure of classical probability theory [2, 7, 18].
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If uncertainty information is included in design decision making, it is be-
cause the variational effects are to be minimized by proper selection of the
nominal value of the imprecise variables. This is determined by weighting the
preference of a design parameter set by its probability of occurring through the
probabilistic uncertainty. This implies that given a probability space(NPS,B, P r),
the preferential performance of a pointd ∈ DPS is defined by

µ(d) =
∫

NPS
µ(d, n) dPr (3.7)

whereµ(d, n) = P(µ1, . . . , µN
). This integral is the standard Lebesgue inte-

gral from measure theory [6, 12]. Thus,µ(d) is the probabilistic expectation
of µ(d, n) across the probability space with respect to the probability mea-
surePr. The design configurationd∗ to use is the one which maximizes the
expected performance of Equation 3.7 across the DPS.

If the NPS is a discrete NPS' ZZq, then each of the individual events{nj}
forms a suitable partition, where each has an associated discretePr({nj}).
The integral of Equation 3.7 then becomes a simple finite sum. If the NPS'
IR, then a partition of the form[n, n + dn) might be used. This can usually be
characterized by a probability density functionpdf(n). The integral of Equa-
tion 3.7 then becomes

µ(d) =
∫

NPS|d
µ(d, n) pdf(n|d) d(n|d) (3.8)

a Riemann integral over the NPS. Since the distributions overn can, as before,
vary withd, we here use the notationn|d. Of course the PPS, preferences, and
density functions must all be Riemann integrable for this to hold.

This definition will produce a change in the “best” overall solution from the
case without probabilistic uncertainty. Consider a one parameter design, with
a preferenceµ and apdf probability density as shown in Figure 3.1. Thepdf
is the same for all design parameter values. The maximalexpectedpreference,
i.e., the maximum of theE[µ] curve (which is the result of applying Equa-
tion 3.7), not theµ maximum, is found. This set (d∗) is shown on the design
parameter axis.

The resultingµ(d) determined from the integral will be the expected value
of preference given the probabilistic uncertainty. One could also evaluate the
higher moments of this relation to determine the standard deviation, skew, and
kurtosis. Indeed, one could perform a Monte-Carlo simulation for each design
parameter setd ∈ DPS or, if possible, analytically determine the probabilistic
uncertainty distribution of theµ(d). This additional information, however, is
usually less important and is computationally expensive.

For designs with no probabilistic uncertainty, the parameters in the design
model that are not design parameters are all crisp numbers. In such circum-
stances, Equation 3.7 reduces to Equation 3.1, since the probability density
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Figure 3.1 Parameter resolution with probabilistic uncertainty.

functions reduce to delta functions at the crisp values, which the integral of
Equation 3.7 isolates to produce Equation 3.1.

The relation between this evaluation and Taguchi’s method and experimen-
tal design in general can also be demonstrated. The solution to Taguchi’s
method has been shown to be an approximation to the solution which gives
the highest quality (with a suitable definition of quality) [9]. The definition in
Equation 3.7 and Taguchi’s method are similar in this quality concept: Taguchi’s
method incorporates an experimental approximation to the integral in Equa-
tion 3.7 across probabilistic noise. The difference is that Taguchi’s method is
finding the mean of a singlef (the S/N ratio), not preference over many design
parameters and performance parameters.

The relationship this method and experimental design have is demonstrated
by observing that the integral of Equation 3.7 can be approximated by exper-
imental points in the noise space;i.e., experimental design techniques can be
used. These points can be chosen using a factorial method. Fractional factorial
methods are possible and suggested. See [1, 9] for a discussion of factorial
methods and methods for determining experimental points.

Possibilistic Uncertainty Possibility is the uncertainty in the limits of
capacity within a formal model. Possibility can be used to represent param-
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eters within a formal model that the designer does not have choice over, and
that are not characterized by probability. Subjective choices of others (not the
designer), for example, can be modeled with possibility. Thus, a possibilistic
variable can have a range of values, but the range is limited by another person’s
choices.

Similarly to the previous form of probability, possibility will be formalized
into what is now termed apossibility space. The possibility space will be
denoted NPS, meaning all uncertainties in the NPS are now considered possi-
bilistic, for this section.

Given the possibility space, an uncertainty measureg is constructed, and de-
notedΠ which measures the possibility of an event occurring. For all events,
either the event or not-the-event is possible. Also, if two events are possible,
a choice must be made between them (but not by the designer). If two events
can occur, it is assumed that some other person or agent will choose to max-
imize the performance (such as an adjustment or tuning during manufacture,
testing, or operation). This means that when using either of two events, the
performance will be the greater of the two, since this option would be chosen.
Therefore, for possibilistic eventsNj ,Nk ∈ B:

max{g(Nj), g(NPS\Nj)} = 1

g(Nj ∪ Nk) = max{g(Nj), g(Nk)}.
(3.9)

Equations 3.9 defines a possibility measure [5].
This formalism allows the measurement of the effects of noise on the per-

formance, given any fixed design parameter arrangementd. Across the NPS,
a disjoint collection of subsetsN ∈ B whose union is the whole NPS is used
(a partition of the NPS). The effect of each possible eventN can be accounted
for by determining the performanceµ at a pointn ∈ N , and then ensuring
Π(N) is within capacity at this evaluation point. Since the design is limited
by the capacityΠ, the design can be rated no better than the capacityΠ. After
this attenuation, the best possibility in the NPS can be used.

Thus, the integral of performance across the possibility space becomes the
maximum possible performance, with performance attenuated to be possible
to the degree specified by the possibility measure. Given a possibility space
(NPS,B,Π), the preferential performance of a pointd ∈ DPS is

µ(d) = sup {min{µ(d, n),Π(N)} | N ∈ {Nj} disjoint ⊂ B} (3.10)

whereµ(d, n) = P(µ1, . . . , µN
), n ∈ N . This integral is a form of the Sugeno

integral of possibility theory [14]. Note thesup is across the subsets of the
partition{Nj}, and the limit as the partition becomes finer inB is used. Thus,
µ(d) is the possibilistic expectation ofµ(d, n) across the possibilistic noise
space with respect to the possibility measureΠ.
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Figure 3.2 Parameter resolution with possibilistic uncertainty.

This definition resolves a different best solution. Consider a one parameter
design, with aµ preference and aπ possibility density as shown in Figure 3.2.
The maximum expected preference,i.e., the maximum of theE[µ] curve (using
the possibilistic expectation of Equation 3.10), not theµ maximum, is found.
This set is a point (d∗) as shown on the design parameter axis.

If all the points in the noise space are equally possible, (Π(N) = 1 ∀ N ∈
B), then the development reduces to a simple max ofµ(d, n) across the noise
and design space,i.e., this reduces to finding the max ofµ(d) across the design
space, as shown in Equation 3.1.

3. Necessary Parameters
So far this presentation has assumed that all the parameters can take on any

value within their distribution ranges. Alternatively, the design may need to
satisfyeveryvalue of a noise parameter to the degree specified by the distribu-
tion. Such parameters are termednecessary parameters[19].

A design’s noise parameters can be grouped into those that must be satis-
fied across their entire range of variation, and those which any single value
in the allowable range can be used. This distinction corresponds to whether a
parameter should be modeled as a necessary parameter.
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Two forms of necessary parameters are recognized: probabilistic necessity
and possibilistic necessity. Probabilistic necessity arises when a parameter
varies probabilistically and the designer wishes to ensure the design will func-
tion for the entire range of variation. Possibilistic necessity arises in a similar
situation, but when the parameter varies possibilistically.

When using necessity, the degree of satisfaction desired for a necessary pa-
rameter must be specified, and shall be denotedα. α is therefore a number in
[0, 1], it is not a distribution, and reflects the domain percentage, as measured
by the underlying uncertainty measure (eitherPr or Π), that the designer feels
must be ensured.α will be termed theconfidence factor. If α = 0, then
only the most likely value is considered. Ifα = 1, then all values in the NPS
must be satisfied. For some design problems,α might need to be expressed
absolutely,i.e.,α = 0.999999 to satisfy designs to six standard deviations. For
others,α might be made a function of the preferenceµ, so when the achievable
preference is high, the necessity range is increased (α is increased); when the
achievable preference is low, the necessity range is decreased (α is decreased),
easing the degree of difficulty in satisfying the design.

Thus, there is a requirement of determining the domain (NPS) percentage
required to be satisfied. A subsetNα ∈ B, called thenecessary set, is defined
as the subset of the NPS that is desired to be satisfied.

Given the necessary subsetNα, any other subsetN in B can be identified as
necessary. IfN lies within Nα, then the subsetN is necessary, otherwise it is
not. Thus, a necessity measure of each subsetN can be constructed given the
necessary subsetNα. This measure can be defined by

Nα(N) =

{
0 N ⊆ Nα

1 N 6⊆ Nα.
(3.11)

Any measureg satisfying Equation 3.11 will be called anecessity measure,
and is denoted byNα. Thus, only if all points within a setN are necessary
does the setN become necessary.

The necessity measure is a{0, 1} placed measure. The designer uncertainty
will be incorporated intoα ∈ [0, 1], to determine the extent ofNα. Thus the
uncertainty is incorporated into specification ofNα (the necessary set), not in
Nα (the measure of a set inB).

An uncertainty integral can be constructed with the necessity measure. The
integral of performance becomes the worst case performance across the ne-
cessity space, as measured by the necessity measure. Given a necessity space
(NPS,B,Nα), the preferential performance of a pointd ∈ DPS is defined by

µα(d) = inf {max{µ(d, n),Nα(N)} | N ∈ {Nj} disjoint ∈ B} (3.12)
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whereµ(d, n) = P(µ1, . . . , µN ), n ∈ N . Again, the limit as the partition
becomes finer inB is used. Thus,µα(d) is the necessary expectation ofµ(d, n)
across the necessary space with respect to the necessary measureNα.

The problem is thus well formed, provided the setNα can be identified.
How much of the NPS should be ensured? For an NPS' IRq independent,
this has typically been done withconfidence intervals[16]. This formalism,
however, assumes that the underlying uncertainty measure (Pr or Π) is con-
structed from a density function (pdf or π), which requires an ordering on the
NPS. In any case, the portion of the uncertainty space to be satisfied is identi-
fied as theconfidence factor: α.

3.1 Probabilistic Necessary Parameters
When the underlying uncertainty is probabilistic, the density function that

can be used to partition an ordered NPS is the probability density function,
pdf : NPS→ IR+ ∪ {0}. Thepdf can be used to define the necessary subset
of the NPS, for any confidence factorα:

Nα = {n ∈ NPS| pdf(n) ≥ Θ} (3.13)

where

Θ = inf
{

θ

∣∣∣∣ pdf(n) ≥ θ and
∫

NPS
χ{pdf(n)≥θ}(n) dPr ≤ α

}
. (3.14)

Thus,Θ is the lowest levelpdf value withα equal to thePr of all n whose
pdf ≥ Θ. This forms the set of elementsn whose totalPr = α, and whosen
all havepdf ≥ Θ.

For example, in the case of NPS' IR, andpdf as the normal distribution,
Nα becomes a class interval:

Nα = [E − r,E + r]

whereE is the expected value, andr is a radial distance from the expected
value such thatPr([E − r,E + r]) = α.

The most preferred design parameter set and the maximal preference in light
of probabilistic necessary parametersn then becomes:

d∗ : µα(d∗) = sup {inf {µ(d, n) | n ∈ Nα} | d ∈ DPS} . (3.15)

To see this definition’s meaning, consider a one variable design with a prob-
abilistic necessary distribution, as shown in Figure 3.3. Each value along the
design parameter axis is uncertain because of the normal probabilistic varia-
tion as shown. Therefore the preference curveµ must be reduced at each point
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Figure 3.3 Probabilistic necessary parameter preference resolution.

to the lowest preference it can take on, given a probabilistic variation, and a
degree. For example, as shown in Figure 3.3, at a design parameter valued0 a
95% confidence interval (α = 0.95) can produce variations in the range from
d− to d+. The lowest preferenceµ in that range[d−, d+] becomes theµα for
d0. This is repeated for all design parameter points to obtain theµα curve. The
maximum of thisµα curve is the “best” solution, that is, the most preferred
design parameters subject to the necessary probabilistic distribution.

3.2 Possibilistic Necessary Parameter
When the underlying uncertainty is possibilistic, the density function which

can be used to partition the NPS is the possibility density functionπ : NPS→
[0, 1]. π can be used to define the necessary subset of the NPS, for any confi-
dence factorα:

Nα = {n ∈ NPS| π(n) ≥ 1 − α}. (3.16)

The most preferred design parameter set and the maximal preference in light
of possibilistic necessary parametersn then becomes:

d∗ : µα(d∗) = sup {inf {µ(d, n) | π(n|d) ≥ 1 − α, n ∈ NPS} | d ∈ DPS} .
(3.17)
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Figure 3.4 Possibilistic necessary parameter preference resolution.

This definition is illustrated in Figure 3.4. Here theπ denotes the necessary
region, andn is considered as the design parameter (n = d). Therefore the
solution is the entire support of theπ distribution, and the object is to rank
the degree of preference for the range. Therefore the preferenceµα must be
the lowest preference within the support ofπ. For example, as graphed in
Figure 3.4, at a degree of necessityα, the domain of necessity is fromd− to
d+. The lowest preferenceµ in that range[d−, d+] becomes theµα for the
necessary range.

4. Hybrid Uncertainty
For problems with multiple uncertainty forms, Equations 3.7 through 3.17

must be combined. Such a combination is possible, but requires making ex-
plicit the precedence relationamong the parameters. This is discussed in [9,
10] for Taguchi’s method and optimization.

As an example, consider the design of a uni-directional accelerometer, which
indicates accelerations above a threshold with a switch closure. It can be mod-
eled as a simple mass spring system, as shown in Figure 3.5. Under specified
accelerations, the accelerometer mass must contact a switch within specified
time durations. Suppose, however, that the spring is a thin metal sheet manu-
factured by a stamping procedure. The inaccuracies introduced by the stamp-
ing manifest themselves as a variation in the value fork, the spring constant.
This uncertainty occurs randomly. Hence due to the manufacturing process, it
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Figure 3.5 Example: accelerometer.

is difficult to set precise actuation times (time for the mass to move into con-
tact with the actuation switch). The design has, however, a method to overcome
these manufacturing errors in the spring. Specifically, during manufacturing,
the backstop of the mass can be adjusted to compensate for variations ink.
This backstop positioning distance is a tuning parameter of the design. During
manufacture, the spring constant of every accelerometer is measured, and the
backstop of each accelerometer is positioned accordingly to meet the specified
actuation times.

Such parameters are denotedtuning parameters, and are introduced in [10].
They are not an artifact of the imprecision formulation, they exist in any for-
mulation. They must be accounted for, however, when selecting the design
parameters.

Such relations between design, confounding, and tuning parameters are
readily modeled using imprecision. A tuning parameter’s range of possibil-
ity forms a possibilistic uncertainty. Therefore one can combine Equations 3.7
through 3.17, but care must be taken that the equations are combined in their
proper order: design parameters on the outside, and tuning parameters on the
inside (relative to the confounding noise parameters).

Thus, with multiple forms of uncertainty, thed∗ are chosen as

µ(d∗) = sup

{∫
Pr(δd)

sup {µ(d, δd, t) | t ∈ TPS} × dPr(δd)
∣∣∣∣ d ∈ DPS

}

(3.18)
whereδd are the manufacturing errors andt are the tuning parameters. The
maximization of the tuning parameter selection occurs inside the integral across
the manufacturing errors, and the maximization of the design parameter selec-
tion occurs outside the integral across the manufacturing errors.
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It is not always true that possibilistic uncertainty has its evaluation inside
the probabilistic integral. If there had been possibilistic uncertainty associated
with the design parametersd to limit the designer’s choice, then this combina-
tion occurs outside the manufacturing error integral. Similarly, if the designer
had particular preferences for tuning parameter values, then this combination
occurs inside the integral. The precedence relation among the variables is de-
termined by the variable type (design, noise, and tuning parameters) not on
the uncertainty forms associated with each parameter (imprecision, probabil-
ity, and possibility).

For a general design problem, the evaluation order of the maximizations,
minimizations, and integrals will depend on the precedence relation among the
variables. This is not an artifact of the imprecision formulation. The same
problem occurs with any other formulation (such as probabilistic optimization
or an extended form of Taguchi’s method); the reader is referred to [10] for
demonstration of the precedence relation ordering in these other formulations.
Imprecision simply sets the metric across the space to be preference (µ) rather
than, for example, a single performance parameter expression.

Finally, the tuning parameter’s value is a possibilistic uncertainty from the
design engineer’s perspective. It has a range of possible values and the value
that should be used cannot be set by the design engineer, since it will depend
on the manufacturing errors. But the expected value of the probabilistic man-
ufacturing error can be determined. Since the possibilistic tuning parameter’s
values depend on the probabilistic manufacturing error, then from the design
engineer’s viewpoint (pre-manufacturing) the tuning parameter expected value
can also be found. That is, the possibilistic tuning parameter will adjust its
value based on the probabilistic manufacturing error. Hence, there will be,
from the design engineer’s viewpoint, a probabilistic distribution for the tun-
ing parameter as well, even though it has no probability aspect associated with
it at all. Taking a view of the tuning parameter before the noise occurs, it can
be said to have a distribution. But, inherent in the parameter itself (i.e., from
the manufacturing engineer’s perspective who must actually set the variable’s
value after the noise has occurred), the parameter has absolutely nothing to do
with probability.

5. Example
The example presented herein considers the design of a pressurized air tank,

and is the same problem as presented in Papalambros and Wilde [11], page
217. The reader is referred to reference [11] to see the restrictions applied to
the problem to permit it to be solved using crisp constraints and an optimiza-
tion methodology. The same problem is considered in a previous paper with
no uncertainty, only imprecision and preferences [8]. The example is simple
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Figure 3.6 Hemispherical and flat head air tank designs.

but was chosen for that reason, and also the ability of its preferences to be
represented on a two-dimensional plane for a visual interpretation.

The design problem is to determine length and radius values in an air tank
with two different choices of head configuration: flat or hemispherical. See
Figure 3.6.

There are four performance parameters in the design. The first is the metal
volumem:

m = 2πKsr
2l + 2πChKhr3 + πK2

s r2l (3.19)

This parameter is proportional to the cost, and the preference ranks ofm are
set because of this concern. Another is the tank capacityv:

v = πr2l + πKvr
3 (3.20)

This parameter is a measure of the attainable performance objective of the
tank: to hold air, and the desired level of this performance ranks the preference
for values. Another performance parameter is an overall height restrictionL0,
which is imprecise:

l + 2(Kl + Kh)r ≤ L0 (3.21)
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Finally, there is an overall radius restrictionR0, which is also imprecise:

(Ks + 1)r ≤ R0 (3.22)

The last two performance parameters have their preference ranks set as a result
of spatial constraints.

The coefficientsK are from the ASME code for unfired pressure vessels.
S is the maximal allowed stress,P is the atmospheric pressure,E is the joint
efficiency, andCh is the head volume coefficient.

Kh =

{
2
√

CP/S flat
P

2SE−.6P hemi
(3.23)

Kl =
{

0 flat
4/3 hemi

(3.24)

Ks =
P

2SE − .6P
(3.25)

Kv =
{

0 flat
1 hemi

(3.26)

This example’s design space is spanned by 2 design parametersl andr. The
preferences for values of these design parameters and the four performance
parameters are shown in Figures 3.7 through 3.12.

The problem, however, is confounded by noises. There are manufacturing
errors onl andr that limit how well one can specify their values. We assume,
for this example, that this error is Gaussian, however, noise with any distribu-
tion can be incorporated in the same manner. Error is also introduced by the
supplied material variability. This error is manifested in the allowable stress
S, which varies (in this example) with a beta distribution. The effects of these
errors are desired to be minimized.

Finally, there is error introduced in the variability of the welds made. This
error is manifested in the joint efficiencyE, which varies (in this example)
with a beta distribution. The effects of these errors must be reduced such that
even the least efficient weld, within the chosen tolerance, will not fail, since
failure in a weld represents a safety concern. Therefore, this error is modeled
as a necessary probabilistic uncertainty.

The other unknown in the problem is the applied pressureP , which can vary
with use. This is represented as a range of possibilistic necessity from−15 and
120 psi, since this design must satisfy all these pressures.

These distributions are shown in Figures 3.13 through 3.16. The necessary
parameters used a value ofα = 0.9, or the variables were satisfied90 percent
of the time. These delimiters are also shown in the figure.
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Figure 3.7 Lengthl preference.
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Figure 3.8 Radiusr preference.
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Figure 3.9 Metal volumem preference.
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Figure 3.10 Capacityv preference.



Design Parameter Selection in the Presence of Noise 87

Figure 3.11 Outer radiusR0 preference.
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Figure 3.12 Outer lengthL0 preference.
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Figure 3.13 Lengthl and radiusr uncertainty distribution
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Figure 3.14 Allowable stressS uncertainty distribution
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Figure 3.15 Joint efficiencyE uncertainty distribution
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Figure 3.16 Applied PressureP possibility distribution



Design Parameter Selection in the Presence of Noise 93

The problem, then, is to find the values forl andr that maximize overall
preference. It is yet to be determined how to evaluate this objective –i.e.,
a strategy must be set [8]. In this particular example the non-compensating
design strategy will be used. This means that among the multiple goals of the
design, the worst performing goal will be improved, if any improvement can
be made at all, by changing values of the design parametersl andr.

For a non-compensating design strategy, the problem to be solved is to find
l∗, r∗, where:

µ(l∗, r∗) =

sup
{

inf
{∫

S

∫
δr

∫
δl

min {µl, µr, µv, µm, µL0 , µR0}

pdf(S) pdf(δr) pdf(δl) dS d(δl) d(δr)
∣∣∣∣ (P,E) ∈ N0.9

} ∣∣∣∣ (l, r) ∈ IR2
}

(3.27)

This will determine thel∗ andr∗ that maximizes the poorest design aspect’s
preference, yet considers the confounding probabilistic noise effects, and sat-
isfies the necessary parameters 90 percent of the time.

The design space is shown in Figure 3.17 for the flat head design and in
Figure 3.18 for the hemispherical head design. The peak preference point
represents the design parameter values to use: those with maximum expected
preference, given the designer specified preference curves, necessary distribu-
tions, and the noise distributions. The results are different from the case when
no noise or necessity was considered. When only preference information is
considered (the expected values are considered for the noise parameters), the
resultingl andr values are chosen directly on the imprecise constraint bound-
aries, as shown in a previous paper [8]. The consideration of noise moves the
chosen parameter values from the imprecise preference curves to more robust
values, as shown in Figure 3.17.

This differs from the results of the various problem formulations presented
in Papalambros and Wilde [11]. For example, the non-linear programming
formulation solves the problem by minimizing the metal volume with the rest
of the goals as crisp constraints. The preference formulation allows the con-
straints to be elastic, so the final design parameter values determined are dif-
ferent than if crisp constraints had been used. If the example had selected step
functions for preference curves on the constraint performance parameters and
no noise was considered, the results would reduce to a non-linear programming
solution. The addition of noise to the problem with step function constraints
would reduce the problem to a probabilistic optimization formulation, as dis-
cussed in Siddall [13].
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Figure 3.17 The expected preference across the design space (r,l) for the Flat head design.



Design Parameter Selection in the Presence of Noise 95

µ

1

0

l
625

r

Figure 3.18 The expected preference across the design space (r,l) for the Hemispherical head
design.
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6. Conclusion
Imprecise preference functions have been used to solve design problems

with multiple, incommensurate goals. A global metric is constructed across
the design space from the preference rankings of the parameters. The result of
applying the design’s global metric has a simple interpretation as the overall
preference for the design.

The imprecision methodology of resolving design parameter values is ex-
tended to include different confounding noise forms. Probabilistic noise re-
quires the use of the probabilistic expectation process. This allows for the
determination of the design parameter values that produce the highest overall
quality. Possibilistic uncertainties, on the other hand, require the use of the
possibilistic mathematics to confine the design to select the best value among
only those that are possible.

The formulation is also extended to include necessary requirement forms.
Necessary parameters can be either probabilistic or possibilistic in nature, and
the parameter’s necessity range is determined accordingly. Non-linear formu-
lations are possible that tieα to µ. Such a formulation will permit trade-offs
between preference and degree of necessity.

Design problems that have different variable types (design parameters, noise
parameters, and tuning parameters) can now be solved. This work allows the
designer to determine the “best” design parameter set to use, given uncertain
design specifications and uncertainty in manufacturing processes.
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