
, 1 
i 

Generating the Architecture of GE3 Applications with Design Patterns 
S. Gordillo, F. Balaguer, F. Das Neves 

LIFIA-Departamento de InformSltica, Facultad de Ciencias Exactas, UNLP 
CC ll(l900) La Plats, Buenos Aires, Argentina 

[gordillo,fede,babell73@sol.info.unlp.edu.ar 
Tel/Fax : (54) (21) 228252 

*also CIC-Pcia de Buenos Aires 

Abstract: 
In this paper we show the impact of Design Patterns in 

the generation of the software architecture underlying a GIS 
application. We first discuss the problem of adding spatial 
features to Iegacy object oriented applications, then we present 
three Design Patterns specific to this domain: Reference System, 
Roles and Appearances to illustrate our claims. 

We introduce Design Patterns as a conceptual tool both, 
to record design experience and to support evolvable design 
micro-architectures, and describe the previously mentioned 
patterns, exemplifying their use within the design of GIS 
applications. Finally, we discuss some further issues in our 
research. 

l-Introduction 
The complexity of the underlying domains of GIS 

applications, the variety of data types including spatial data and 
sophisticated relationships and the strong need of performance 
and accuracy in the final product, usually lead the GIS design task 
as a process closer to the implementation than to a software 
engineering process. 

However, expert GIS designers do not solve every 
problem from scratch. Most of the time they reuse previous 
solutions to solve similar problems. But this reuse of experiences 
is difficult to transmit to non-expert designers and therefore, 
lacking an adequate procedure to record experience, the sharing of 
knowledge is not effective in helping the designer to reason in 
term of GIS structures; critical design decisions, such as 
relationships between spatial features and conceptual ones remain 
hidden in the code or are poorly documented. Many other 
decisions cannot be even deduced from either code or 
documentation. These strategies of reuse are caged in the 
designer’s mind. 

The problem of reusing design in GIS applications has 
become also a need because in the last times, more and more users 
are building GIS applications based on open systems instead of 
using a particular GIS product (like ARCInfo, GENAMAP, etc). 
The rapid growing of the WWW as a host for different kind of 
applications and the emergence of Java as an object-oriented 
programming language well suited for developing efficient, 
distributed applications, also shows us the need to find a 
systematic approach for reusing design experience in the context 
of GIS applications. This is particularly true when a designer must 
face hybrid applications dealing with conventional transaction- 
based systems and must be upgraded to incIude spatial features 
that are not built in the underlying software. 

Permission to mnke digital/hard copies ol’all or p:u~ ofthis material for 
personnl or clnssroom use is grmkd without fee provided that the copies 
are 1101 made or distributed liar prolit or comlcrcinl ndvantny. lhr copy- 
right notice. the title ofthe publication and its date nppenr, and tloticu is 
given lhnt copyrighl is by pcnnissio~l ofthe ACM. Inc. To copy olhenvise, 
to republish. IO posl 011 swvcm or IO rcdislrihrlc to IisLx rcquiresspccific 
pernlissio~~ sndlor Ite. 

GlS 97 Lmvegl7s iveI’c7dr7 11,Y.l 

Copyright 1997 ACM I-5X113-017-l/97/1 l.XI.50 

Examples of solutions extending traditional applications 
with spatial features are proposed in [8],where applications which 
deal with very large databases contalning geographical 
information (terrain elevation, satellite and aerial images, detailed 
street maps, etc. ) have to be built based on conventional 
applications. 

Real estate agencies, telecommunications compnnies, 
hotel chains, news organizations, and survey entities usually find 
themselves struggling to add geographical information to their 
products or legacy information systems in order to cnhancc its 
ability to produce and visualize some particular dntn in thclr 
conceptual domain. For example, real estate agencies can browso 
maps finding alternatives which satisfy customer prcfercncos 
(cost, distance to downtown, neighborhood style, etc. ). All thcsc 
applications have to support geographical queries dealing with 
objects within the geographical domain (downtown, 
neighborhood ), but also with objects like houses which could 
have been probably defined in the conceptual domain, 

Web applications providing access to geographic data 
captured from legacy systems are another examplc of this kind of 
applications. Developers have to write custom applications to 
visualize the required information. In this way we can obtain, a sot 
of software architectures constructed in terms of design patterns 
that result the basis for extending object oriented applications 
with spatial features. 

Using objects as the basis for the design of GIS 
applications has been recently proposed by many authors[3], [G], 
[ll], We claim, however, that object-oriented design methods and 
class libraries are only a part of the solution to the problem of GIS 
design. We think that the GIS community must record its design 
expertise in terms of Design Patterns as shown in this paper. 

In the following sections we present a brief introduction 
to design patterns. Then we show how to use an existing design 
pattern Decorator [5] to incrementally construct a GIS dcsign 
model. We next propose some design patterns spccitic to the GIS 
domain: Roles, Reference System and Appenrnncc, nnd nnalyzc 
them in the context of concrete applications. WC finally motivnto 
the need for further work in this area. 

Z-Design Patterns. An Introduction 
Good designers use the same solution for n specific 

problem again and again in different applications. Recognizing n 
recurrent problem and using a good solution makes the difforenco 
between expert designers and inexperienced ones. Commonly, 
these solutions remain in the designor’s mind. There nro not 
systematic ways to record not only, the description of the problem 
itself but also documenting the solution, its rntionnlc and 
implementation. It is clear that, this information will help another 
designers in the construction of other applications. 

Design Patterns represent the state of the art solution for 
recording and reusing design experience. Basically, they dcscrlbc 
situations that commonly occurs in an application field, and the 
core of the solution to these problems. Using patterns, rcusc of 
design and architecture is not only possible but also a natural wny 
of working. 



I___ _ ----- ..^_.~. - 

Christopher Alexander [l] defined the purpose of 
Design Patterns as follows: “Each pattern describes a problem 
which occurs over and over again in our environment, and then 
describes the core of the solution to that problem, in such a way 
that you can use this solution a million times over, without ever 
doing it the same way twice”. 

Design patterns are usually described by stating the 
problem in which the pattern may be applied, the elements that 
make up the design, their relationships, responsibilities and 
collaborations. These elements are described in an abstract way, 
because patterns are like templates that can be applied in many 
different situations. The consequences and trade-off of applying 
the pattern are also important because they allow evaluating 
design alternatives. 

As it is discussed in [lo] design patterns: 
-Enable widespread reuse of sofnvare architectures. 
-Patterns improve communication within and across 

sofivare development teams. 
-Pattenrs explicitly capture knowledge that experienced 

designers use implicitly. 
-Patterns descriptions explicitly record engineering 

tradeoffs and design alternatives. 
-Patterns help to transcend “environment-centric” 

viewpoints. 
In [5] an initial catalog of design patterns is presented. 

We next show an approach for building the basic architecture of a 
GIS application relating conceptual objects with their geographic 
features using one of these design patterns called Decorator. 

3Using Decorators to provide Geographical features 
Constructing GIS applications is not an easy task 

Designers deal with two very different kinds of data types which 
define (in most GIS environment) at the implementation level, 
two separate databases: one of them contains spatial information 
and, the other one stores the conceptual characteristics. Legacy 
systems that are going to be upgraded to include geographic 
characteristics can also be thought in terms of conceptual and 
geographic objects. 

In some way, the complexity of the system resides in the 
definition and use of the spatial information more than in the 
behavior of conceptual objects. Our primary idea is to think in 
terms of the existence of two models : a conceptual and a 
geographical model. Objects in the conceptual model do not have 
the same responsibilities than objects in the geographic model, 
even when two objects may represent the same entity. The 
difference consists in the need to realize different operations in 
both models. In GIS applications we probably want to compute 
specific geographical operations (i.e. areas that were influenced 
by some phenomenon, entities holding a particular spatial 
property, etc.), but these operations are not the concern of 
conceptual objects like tax-payers or traffic statistic records, 
whose behavior is not directly related to spatial features. 

Instead of modifying the conceptual classes to handle 
spntial features (for example by subclassing them or making them 
geographic classes), we can “wrap” the conceptual objects with 
other objects that implement the spatial handling. These objects, 
cnlled “decorators”, mimic the protocol of the conceptual object 
they wrap, but delegates the implementation of the non-spatial 
protocol to the conceptual object. Decorator is a design pattern 
defined in [5]. Its intent is to attach additional responsibilities to 
an object dynamically, Decorators provide a flexible alternative to 
subclassing for extending functionality. The substantial difference 
between using decorators and subclassing is that the former is 

_ --.. 
____ - _ -. -- 

dynamic while the later is static.The decorator conforms to the 
interface of the component it decorates, so that its presence is 
transparent to the component’s clients, and augments its interface. 
It forwards requests to the component and may perform additional 
actions before or after forwarding. Transparency lets you nest 
decorators recursively, thereby allowing an unlimited number of 
added responsibilities [SJ. 

We use the basic idea of this design pattern to construct 
the basic GIS model, adding spatial features to an object in a 
dynamic and transparent way. By using decorators, we can add 
functionality without modifying existing classes, at the cost of 
some extra coding in the decorator classes. The same scheme is 
useful both as a conceptual tools for new designs and to leverage 
existing designs to include geographic information. 

Figure 1 is an example of how decorators are applied to 
augment conceptual classes. A Harbour class is shown here. This 
class was part of some existing application to track cargo ships. 
Lacking support for geographic information, the Harbour only 
knows the average depth and tide records of its surrounding bay. 
Later, geographic information about the harbours were available, 
and so it was needed to upgrade harbours to include the spatial 
information, but without breaking the existing class scheme. The 
solution is to define a GeoHarbour class, that works as a decorator 
of the harbour object. GeoHarbour includes the detailed harbour 
map contour, and adds a method able to calculate the depth of the 
harbour waters in different coordinates and times of the day, 
according the new geographic information and the tide tables. 

pCi3UOIl I 

Fig. 1 : The GeoHarbour adds spatial features to a Harbour 

In a more general sense, there may be objets that do not 
have an associated conceptual object and therefore, they only 
belong to a geographical model. We can think in an abstract class 
which groups the common behavior of those objects belonging to 
the GIS application model, plus those that has been wrapped from 
the conceptual model. Figure 2 shows this hierarchy. 

AbstractGeoObiect 
ob~ectAtPos# 
location0 

piii%sq p?&iq 
Figure 2 : A Geo-Object hierarchy. 

The abstract class AbstractGeoObject defines the 
protocol to manipulate geo-referenced features, like behavior of 
general geographical functions (a point belonging to an area, 
perimeter, etc.). A geographical object always knows a location 
and, associated to the location a geometry is defined. Location has 
been defined as in [7] and it contains behavior about position and 
temporal data. Location also has a reference system and the 
necessary transformations to manipulate different types of geo- 
references. The geometry detines whether the object is 
represented as one or more polygons, lines, point, etc. Figure 3 
shows the relationships among Conceptual classes, GeoClasses, 
its location, the representation and the reference system. 



~y+iiEiq+~ 
Figure 3 : Architecture to extend existing classes using decorators 

This scheme is the basic building block to build the 
object-oriented architecture of GE applications, composed of 
geo-referenced objects, some of them extending existing 
conceptual objects. All geoferenced objects have a location and a 
geometry defined as a point or a curve parameterized by a set of 
points. Point values are interpreted in the context of a reference 
system, that gives a meaning to the raw numbers with respect to 
an origin. 

There are three ways in which this basic brick can be 
used’as the foundation of a more comprehensive architecture for 
GIS applications. 
l we can look deeper into the geographic objects, to think in 

terms of roles that defines different aspects of the 
responsibilities of geo-objects (Role pattern) and allows us to 
derive layers. 

l we can explore how to build a reference systems that 
successfully handle coordinates (Reference System); 

l finally, we can associate a geo-object with one or more visual 
representations. This association does not compromise the 
overall architecture (Appearance). 

The following sections comment these patterns in detail, taking 
the above definition of gee-objects as a departure point. 

4- Patterns for GIS design 
In this section we describe three design pattern that can 

be used in common situation in GIS applications. We define them 
in terms of their intent, motivation, solution, participants, 
collaboration and implementation, This notation constitutes a 
combination of [S] and [l]. We use the OMT notation defined in 
[9] to describe the structure of the presented patterns 

4.1-The Role design pattern 
Intent: 

Represent different geographic roles of an geo-object. 
Role lets you decouple an object by separating geographic aspects 
which may evolve and be used independently. Roles are the base 
to construct layers. 
Motivution: 

We are modelling a country in a geographical 
application. There are different aspects about a country that we 
may be interested about, like soils, demographic areas, climates, 
ozone distribution, topographic characteristics, etc. If we give to 
every geo-class the responsibility to maintain all the aspects it is 
interested about, the result is that similar code is repeated through 
different classes. Many times it is not easy to find a superclass to 
factorize the common methods, and as a result we have a set of fat 
classes, a poor design and future maintainability problems. 
Solution: 

Decoupling the responsibility of managing different 
aspects from the corresponding geo-object, by defining a 
hierarchy of roles associated to a geographical object. 

Roles can be derived from other roles. Suppose that we 
are interested in the population of a country and its states. Then 
we define a role of Demographic Areas. The role Demographic 
Areas in a country is a derived role which takes information of the 

role Demographic Area assigned to states, as shown in figure 4, 
The country has a Derived Demographic role, that computes the 
total population from the population of the parts of its owner. 
States have an atomic demographic role, that actually keeps the 
number of people living in the state. Note that both derived and 
atomic demographic roles are not tied to Countries and States, and 
work with any other geo-objects that needs to keep demographic 
information or compute the information from other objects. Many 
different kinds of roles can be defined and dynamically attached 
to geo-objects. 

Figure 4 : Relationship between a country and its demographic role. 

Structure: 
The following figure shows the general structure of the 

role design pattern. 

Figure 5: The Role pattern structure 

Participant: 
GeoUbject : an object with spatial characteristics belonging to the 

GIS model, that may be considered playing different roles, 
ConcreteGeoObject : implements a concrete spatial object, 
Role: defines the abstract behavior of all roles. 
ConcreteRole: a role that geographic object plays in a specific 

context 
DerivedConcreteRole : collaborates with its owner’s parts to 

compute a responsibility. These parts are also roles, 
AtomicConcreteRole: a role that does not rely on other role 

objects to compute a value 
Collaborations: 

Geographic Object delegates the responsibility of 
assuming a concrete role and the manipulation of the informallon 
and behavior to the corresponding role object . 

Role forwards requests to its geographic object. It may 
optionally perform additional operations before and after 
forwarding the request. 
Consequences: 

It decouples behavior related with a parlicular role from 
the more basic operations. 

Roles allows us to define layers (see below), 

32 



i ~. --__ - -..-~__ - 

4.1.1 Defining layers with roles 
Roles provide the basic information to construct layers. 

Layers could be constructed with information from only one role 
or combining information from many of them and probably from 
the geographic object. They also could be constructed from 
different roles of different geographical and conceptual objects. 
This approach allows us to deal layers as a temporal specification, 
while roles define stored information in the geographical 
database. Moreover, we could construct layers by demand 
according to users’ needs. 

To build a layer we define a builder [5] which combines 
the required information of one or more roles belonging to the 
same or different geographic object. The builder is able to access 
geographic objects and roles, and generates a layer with the 
required information. Figure 6 shows the relationships between 
the builder and geographic objects. 

Figure 6 : The layer Builder structure 

The Builder executes a number of query objects over a set of 
instnnces, in a similar way to the described in the Reports pattern 
[2]. The query result is a layer object that comprises a set of geo- 
objects, every geo-object possibly being a wrapper of a conceptual 
object. It is worth noting that these geo-objects are not necessarily 
the ones that satisfy the query. The reason is that a query can 
include spatial operators, like intersection or join. The result of 
the npplicntion of the operator to a geo-object may be a new geo- 
object that references the same conceptual object and reference 
system that the original geo-object, but that has a different 
geometry. 

4.2.Reference System 
Inleril: 

Decouple a measure from its reference system, which 
makes possible to explain the value. The reference system 
provides a knowledge background related to the value. Without a 
reference system, the measure acts like an isolated value, thus 
loosing testing and comparing capabilities. 
Molivalion: 

There nre different ways to represent the position of an 
entity on the earth. Multiple reference systems may be used to 
support different abstractions of the earth; these systems make 
possible to explain measures and operations. 

For example, one of these reference systems uses elliptic 
coordinates; three magnitudes are required to use this system, two 
angular measures and one scalar. While angles represent latitude 
nnd longitude respectively; the scalar one represents the altitude 
from the surfnce of the earth. It means that a zero value represents 
an element on the surface of the earth; thus it is possible to model 
the coordinates’ center like an ellipsoid. 
Sollltioll: 

A solution based on Reference System is proposed. It 
implies making an object architecture, which contains the 
Location, the Reference System hierarchy, the Center and Units. 

This pattern is useful for supporting multiple ways to 
represent geo-referenced entities of the real world. Furthermore, it 
makes possible to change or translate from one system to another. 

This change does not affect the referenced object. Each location 
knows the unit which is used to represent a measured value [4] 
For example, it is possible to build an object which has the 
responsibility of explaining the elliptic reference system, Figure 7 
shows the referred classes and their relationships. In the same 
way, it is possible to model other reference systems based on’ 
spheroids or planes. 

Each ReferenceSystem has to implement its legal 
operations such as: computing distances between points, 
comparing elements, calculating areas, etc.; besides it has to 
specify translation operations to other systems. Coordinate&enter 
implements different kind of center for a specific reference 
system, this center can be represented such as: one point 
(CentralPoint) or one complex element (CentralShape) 
Structure: 

uattem. 
Figure 7 shows the structure of the Reference System 

Ia@ I 
Figure 7: The reference system and its relationships 

Participants: 
Locution: implements the basic behavior to support positioning. It 

can explain where an entity of the real world is. 
ReferenceSystem : describes an abstract protocol, which is used to 

describe the context where a Location is defined. 
CoordinatesCenter: models the center of the reference system. 

The coordinates center is a characteristic aspect of each 
kind of ReferenceSystem : generally it would be a point or 
a complex shape, which is defined by an equation. 

Center: is the object which represents the coordinate center of the 
reference system 

Unit : it is used to represent a measured value 
Collaborations: 

Reference System provides a set of valid operations. 
Each time Location needs to use geo operations, it asks for these 
operations ‘to Reference System. Location provides an unified 
protocol to represent location within a specific reference system. 
Consequences: 

-It decouples measures (such as positions) from the 
reference system being used. 

-If only one reference system is used or if it is l- 
dimensional, the pattern produces an overhead because it works 
within fine granularity abstraction. 

- Instances of the ReferenceSystem hierarchy can be 
implemented following the Singleton pattem.[S] 

4SAppearance 
Intent : 

Produce visual representations of geo-objects 
independently of their geometrical representation. 
Motivation: 

Usually, geographic information systems produce a 
graphical output of the information. The way in which 
geographical objects are perceived in the user interface depends 
on the user’s preferences. Moreover, the representation chosen by 
the user could be different from the geometical representation 
defined in the system. 

33 



I- --_- --- ~- 

Looking at the relationships between conceptual objets 
and GeoObjetcs expressed in section 3, a first attempt to solve this 
problem would consider assigning the representation 
responsibilities to the GeoObject thus considering it as a 
conceptual object’s view. The problem is that the same conceptual 
object may have many different views in different user interfaces. 

For example, while the geometrical representation for a 
shii, .in a delivery application is a point, we define an user 
interface where the ship is seen as a silhouette and another one 
where it is seen as a point moving on the water. 
Solution: 

Consider the representation as a separated object , and 
associate it to the GeoObject by a Model/View [5] scheme. This 
object knows how to display the GeoObject, according to some 
appearance properties, such as color, definition level, line 
thickness, etc. 

)I +TGG---1 
Figure 8 : the Appearance design patterns 

. 
Participants: 
AbstractGeoUbject : Defines the common protocol for all geo- 

referenced objects (see section 3). 
ConcreteGeoObject : Extends the protocol of GeoObject for 

specific geo-referenced entities 
Appearance: Speticies the protocol to receive notification of 

changes from the model object, and to display an object in 
a particular media 

AppProperties: Abstract class that defines the set of properties 
that modifies how the Shape is displayed by the 
Appearance object 

ConcreteAppearance : Implements and redefines the protocol of 
Appearance to display ConcreteGeoObjects through a 
Media. Objects according to a set of properties. 

Media : Implements the operations needed by 
ConcreteAppearances to display GeoObjects in different 
media (text stream, graphic devices, etc.) 

Shape: An Arbitrary object whose protocol is known by the 
ConcreteAppearance object, and that the later is able to 
display 

Collaborations : 
All GeoObjects that are going to be displayed have one 

or more associated Appearance objects, that are recorded by the 
GeoObjects by sending the attach0 message. An Appearance 
object knows the GeoObject that works as its model when it 
receives the assign0 message. 

When Appearance objects are created, they get a Media 
object assigned. The Media object knows how to draw or write in 
a specific media, like a bitmap or text stream. 

ConcreteGeoObjects notify changes in their state to 
their Apearances. The ConcreteAppearance object calls one or 
more methods in the Media object to create the representation. 
Consequences 
By decoupling the representation from the geometry, the 
Apearance Design Pattern simplifies the specification of multiple 
views of the GeoObject. 

S-Discussion and further work 

34 

We have presented some design patterns generating the 
architecture of GIS applications. Systematically applying the 
solutions discussed above we can build evolvablc applications 
that combine both spatial features with more conventional object- 
oriented behavior. Using “GeoWrappers” results in nn 
architecture where non-spatial features are decoupled from 
geographic ones thus allowing them to evolve indcpcndcntly. 
Reference System provides a knowledge background related to 
spatial values, Role allows us to define contexts in which diffcrcnt 
information results of relevance, finally, Appearance is used when 
we want to separarte representation from geometry. 

We have implemented them using the 
GemstoneNisualWorks object oriented database management 
system and found them rather useful both as the basis for 
extending legacy o-o applications with geographical features and 
to build new, modular applications from reusable components. 
We are now extending our approach by defining new genernl 
patterns, like Isopleth which allows us to group the information 
and behavior to construct curves connecting points with n spccilic 
logic. We are also studying new patterns that appear while using 
the WWW as the infrastructure for GIS applications. 

&References 
[l] C. Alexander, S.Ishikawe, M.Silverstein, M.Jacobson, 

I.Fiksdahl-King and S.Angel : “A Pattern Language”, Oxford 
University Press, New York, 1977. 

[Z] J. Brant and J. Yoder: “Reports”, Proceedings of PLoP96, 
Conference of Pattern Langeges of Programming, Washington 
University Technical Report WUCS-97-07 

[3] Pei Min Chen, Shou Yi Tseng, Young Chang Hou and Bln 
Bin Loah: “An Object-Oriented Geographic Information 
System Shell”. Proceedings of GIS’95, Vancouver, Canada, pp 
413-420. 

[4] M.Fouler : “Patterns : Reusable Object Model”. Addison 
Wesley, 1997 

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides: “Design 
Patterns. Elements of reusable Object-Oriented Sofiwarc”, 
Addison Wesley, 1995. 

[6] C. B. Medeiros, M. A. Casanova and G. Camnra: “T/le Dotufts 
project. Building an OODB GIS for envirotwental cout~ol” 
Proceedings of IGIS’94. International Workshop on Advanced 
Research in GIS, Springer Verlag LNCS, N. 884, pp 45-54 

[7] Open GIS Consortium (OGC) (1996b), The Open GIS Guide - 
A Guide to Interoperable Geoprocessing, Available at 
http://ogis.org/guide/guidel.html 

[8] M.Postmesil : “Maps Alive : Viewing Geospntial Information 
on the www”. Proceedings of the Six International World 
Wide Web Conference, 1997. Available at http:// 
www6.nttlabs.com/Hypemews/get/PAPERl3O.htm 

[9] J. Rumbaugh, M. Blaha, M. Premerlani and W, Lorenscn: 
“Object-Oriented Modelling and Design”. Prentice Hnll, 
Englewoods Cliff, New Jersey, 1991 

[IO] D. Schmidt: “Using Design Patterns to Develop Rerrsable 
Object-Oriented Communication Sojhvare”. Comm. of the 
ACM, October 1995, pp 65-74. 

[ll] N. Tryfona and T. Hadzilacos: “Geographic Applications 
Development: Models and Tools for the Conceptual Level”. 
Proceedings of ACM-GISP5. Baltimore, Maryland, USA, pp 
19-28. 


