
Path Queries for Transportation Networks: Dynamic Reordering
and Sliding Window Paging Techniques *

Yun-Wu Huang Ning Jingt
University of Michigan ChangshaInstitute of Technology

ywh@eecs.umich.edu ningjing@pdns.nudt.edu.cn

Elke A. Rundensteinerl
Worcester Polytechnic Institute

rundenst@cs.wpi.edu

Abstract
It is well-known that standard relational database engines arc not
equipped to efficiently process path finding queries required by di-
verse applications, such as Geographic Information Systems (GIS),
Intelligent Transportation Systems (ITS), etc. In this paper, we
explore the development of special-purpose disk-based techniques
for supporting the processing of path queries on transportation net-
works. To process high-throughput path queries, our solution ma-
terializes parh views and employs several innovative p&h view rc-
freshing strategies. One key technique is to perform dynamic re-
ordering of link tuples in breadth-first order based on recent I/O ac-
tivities. This reclustering approach trades extra I/O overhead re-
quired by reordering for the performance gains achievable by path
starch on approximately topologically ordered link tuplcs. We also
introduce a sliding window paging policy that further reduces page
misses. We present experiments conducted in evaluating our ap-
proach and in comparing it with previously published disk-based
methods using both real GIS data (city road maps) and synthetic grid
graphs. Our results show that our new approach outperforms the al-
ternative approaches significantly for highly cyclic graphs such as
GIS maps.

1 Introduction

1 .l Motivation: ITS Shortest Path Finding

Path finding is an essential feature for many Geographic
Information Systems including navigation systems, urban
planning, emergency response and traveler information sys-
tems. This paper in particular investigates the route guid-
ance services offered by IntelligenccTransportation Systems

‘This work was supported in part by the University of Michigan ITS
Research Ccntcr of Excellence grant (DTFH61-93-X-00017-Sub) span-
sored by th’e U.S. Dept. of Transportation and by the Michigan Dept. of
Transportation.

ohis work w.ns performed while the author was visiting the University
of Michigan.

ohis work wns performed while the author wes a faculty member of the
University of Michigan.

Permission to m.nke digitnbhnrd copies of all or p.ul ofthis materinl for
personal or classroom use is granted without fee provided thnt the copies
are not made or distributed for profit or commercial advantnge, the COPY-

right notice. the title of the publication .nnd it< dntc nppe.nr, and notice is
given thnt copy+@ is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on serverS or to redistribute to lists. requires specific
permission nnd/or fee
GLS 96 Rockvillle MD l&A
Copyright 1997 ACM O-89791-874-6/96/1 1 ..%3.50

9

(ITS). In centralized beacon-based route guidance approach,
each ITS vehicle in the system submits path finding queries
through roadside beacons to the Traffic Management Centers
(TMCs) and, in real-time, receives instructions of where to go
next. The widespread deployment of the beacons guarantees
that the guided vehicles travel along the shortest paths that
are continuously computed en route, based on dynamic traf-
fic conditions. This paper focuses on path query optimization
strategies for an ITS database that supports such path queries.

For applications that require such high throughput path
query support, conducting a full-scale path starch for each
path query submitted is not feasible. To satisfy the time COII-

straint for a potentially large numbers of path queries submit-
ted during high-traffic hours, we propose the TMCs create
and maintain a materialized view of best roulcs, called the
path view 193. Thus, path queries can be serviced by direct
lookup of the thepath view rather than computing paths OII-

the-fly. The path query turnaround time is minimized at the
cost of periodical path view computation. To maintain the
correctness of the path view, which is crucial due to dynam-
ically changing traffic patterns, recomputation of the pal/z
vie~l must be efficient so that it can bc refreshed liequcntly.

To support path queries at the database system level, we
must consider the situation when the availability of the DBMS
system memory buffer is limited due to simultaneous tasks
frommultipleusers. In addition, the DBMS cnginc may have
to concurrently process I/O-intensive constraints of complex
path queries, such as “Find the shortest path from Ann Ar-
bor to Detroit that does not go through flooded areas” - thus
requiring major portions of the shared system buffer for this
spatial consfruint computation. Last but not least the poten-
tial size of thcpulh views can bc prohibitively large for large
graphs. All of this points towards the requirement of disk-
based solutions. This paper presents an innovative approach
that efliciently computes path views in a disk-based environ-
ment by exploiting unique propertics of the transportaLion
networks modeled by ITS maps.

1.2 Previous Approaches: ITS Versus General Path
Problems

Recent database transitive closure (TC) research 1.2, 3, 12,
13, 141 is dominated by solving general path problems with

the focus on ;Jroviding recursive query capabilities for gen-
eral databases. Such research thus typically starts with the
“reachability” problem and treats the shortest path problem
as a side product. This is evident in the two techniques
adopted by many of the recent approaches for database TC
proposed in the literature., namely node collapsing and topo-
logical ordering. Both are not effective in solving the short-
est path problem for cyclic graphs, denoted as SPeyelic in this
paper. Node collapsing techniques [191 cannot be applied to
solve SPcl,eric prohlem because shortest paths between two
arbitrary nodes in the strongly connected component arc not
identical as is the case for “reachability”. Topological or-
dering insures that reachability TC computed for the descen-
dent nodes can be shared by their ancestor nodes without
additional computation. For SPeycric, the ancestor relation
is mostly bi-directional. The topological ordering technique.
only preserves the ‘ancestor relation in one direction; it does
not guarantee good paging behavior when the computation
traverses the other direction.

We argue that SPcYc~;c is a unique yet important problem
in that solutions designed to solve the general path problems
generally have bad performance when applied to SPcyclie.
Note that experiments for SPeyclic were done with graphs of
only up to 200 nodes in [13] and under 300 nodes in [2], and
for both the performance was already deteriorating drannati-
tally. This is clearly not sufficient for ITS applications where
graph sizes are typically above one thousand nodes.

1.3 Our Proposed Solution: The BSR Approach

Our solution is based on the observation that ITS graphs
that model city road maps have several unique properties.
They are highly cyclic, have low outdegree (mostly 2 lo
5), a large number of nodes (up to tens of thousands), and
high locality’. In this paper, we propose an integrated ITS
path view solution, called BSR”, that effectively exploits the
above propertics of transportation networks. Our solution is
designed to address the prohlems of the target application ‘and
as our experimental results demonstrate, this new approach
indeed is a significant improvement over previous disk-based
tcchniqucs for ITS graphs.

One key technique of our proposed solution is to, based on
recent J/O activities, perform cfynamic rmrdering of link tu-
pies in breadth-first order. This reclustering approach trades
off extra I/O overhead required by reordering with the pcr-
Cormancc. gains achievable by path search 011 approximately
breadth-first ordered link tuples. In order to effectively dcdl

with a limited main memory buffer size we introduce a sfid-
ing win&v paging policy that further reduces page misses.
In this paper we propose and study different criteria for re-
ordering that include historical trends and fixed intervals.

We also present detailed analyses and experimental re-
sults eva.luating our proposed BSR system, and comparing it

1 WC Mine high locality maps by when the two end nodes of all links &are
geographically closely Iocafed.

‘BSR stands for Breadth-first search using Sliding windows and dy-
namic Keordermg techniques.

against alternative approaches. These alternatives include a
RF’S algorithm with only prcordering, a reverse Depth First
Search DFS algorithm that is similar to the shortest J>ath al-
gorithm, PathB’1’C [13], and the Wurshall algorithm. We ex-
perimented with a real GJS map and synthclic grid maps of
sizes up to 1,600 nodes. Gur results show that BSR c~u~per-

forms the other three algorithms dramatically on these highly
cyclic maps. The superior performance of BSR 011 smaller
buffer sizes demonstrates that our solution remains effective
in a shared-buffer database environmcnl with multiple tasks
running at the same time. It is ohvious that larger buffer :;izes
c‘an handle even larger maps. We believe our solution IS an
important improvement over known results considering that
previous research only tested cyclic maps with sizes up to 300
nodes for the SPeycric problem.

1.4 Paper Outline

The paper is organized as follows. We describe the re:atcd
work and background in Section 2. 111 Section 3, we present
the proposed path view solution. We describe our tcstb:d in
Section 4 and present the experimental results in Section 5.
In Section 6. we conclude this paper and provide an outlook
of our future work.

2 Related Work and Background
2.1 Related Work

Recently proposed disk-based transitive closure algorithms
[2, 3, 4, 6, ‘7, 11, 12, 13, 181 in the literature generally fo-
cuscd on the reachability problem, and then extend the solu-

tions to solve other path problems. Some of them 16, 5, 181
could not be extended to solve the shortest path problem for
cyclic graphs (SPcycric) and only a few of them addressed the
shormst path problem for cyclic graphs [2, 131.

The experimental results reported in 112, 131 showed that
their algorithms are not suited to solve SJ’cycric because their
performance dctcriorated dramatically when the graph sizes
go beyond 300 nodes. Our experimental. results (Secti:)n 5)
show that our proposed BSR has a better pcrformancc and can

handle much larger graphs for solving .YPcy,:li,: problems.
Shckar et al. in 1161 focused 011 the compute-on-de:nand

iipprOiiCl1 by COIll~li~iII& several typical roulc COIll~lLll.illi~Il

algorithms, such as Dijkstrrr, breadth-first starch and A’
heuristic search. By implementing these algorithms directly
on relational DBMS products, they found that the response
time to process a shortest path query can he up lo 20 minutes

for a GIS street map of about 1000 nodes.
Agrawal and Jagadish [l] presented (,using simulation) a

path encoding structure that has an acceptable storage ovcr-
head -compared to maintaining all possible paths. A shortest
path version of it can hc adopted to materialize encotfedpath
views [9]. The BSR with minor moditication a11 be consid-
ered an l/O efficient algorithm that creates disk-based encod-
ing structures for ITS graphs.

Ourprcvious work [9] compincd path query processing he-
tween thepdtlt views and the single-pair path search approach

10

approaches. WC found that that the parh view approach is
more efficient for high throughput path finding requirements
as found in ITS systems. In the context of an in-memory ap-
proach, we also explored hierarchical optimization strategies
- both optimal [lS] and heuristic ones [lo]. In [8], we focus
on compute-on-demand path finding with constraints be eval-
uating various clustering optimizations.

2.2 ITS Graph Characteristics

Graphs that model road transportation networks are a sub-
set of the general graphs defined above. They exhibit some
unique characteristics that can be exploited by a path com-
putation system such as the BSR presented in this paper. In
general, such ITS graphs

1) have a large numbers of nodes, up to tens of thousand.
2) have uniformly low outdegree (usually 2 - 5).
3) exhibit a high locality, which means the two end nodes

of each link are usually geographically closely located.
4) arehighly cyclic (indeed, mostroads are two-directional,

thus resulting in numerous cycles of 2 links in each direction,
and any node is typically reachable from any other node).

5) are near-planar with a few exceptions such as over-
passes.

2.3 Data Representation

In this paper, we assume the topological information of a
graph is modeled by a a relation (table) that stores all thelinks
in the graph. The data representation of this link relation is
an ordered set of tuples of the form < source, destination,
weight >. We assume that tuples of the same source arc
clustered together in the link relation. Links of the same
mme are ordered by destination. We define the handle
of a node i, &i, to bc the reference to the link relation
that points to the first tuple whose Source is i. The data
representation for the path view is also an ordered set of
tuples of the form < source, destination, weight >, with
~weight corresponding to the cost of the shortest path from the
source to destination. The tuples in the path vielo are sorted
with sollrce as primary key and destination as secondary key.
In practice, the next hop or the previous hop can be added to
each path view tuple to facilitate the retrieval of the next hop
or the entire shortest path in a trivial manner.

3 The BSR - An Integrated Solution

The BSR matcrializcs the parh vieivs for a given graph by
computing a single-source puth view for every node in the
graph using a single-source BI;S shortest path algorithm.
The BSR deploys two optimizations: the sliding windolv
paging method and the d,ynumic reordering technique. Note
that other single-source shortest path algorithms such as the
Dijkstrn or A’ can also be used but their I/O behavior
dictated by ON sliding winnow optimization would show the
same patterns as that of the BFS algorithm.

3.1 The Single-Source UFS Shortest Path Algorithm

The single-sourcebreadth-first search shortest path algorithm
expands nodes in the graph in breadth-first traversal order. To
expand a node ~iicans to traverse the links from this node to
all its children nodes. In our in~plen~cntation, the traversal is
done by retrieving thelink tuples whose SO~L~CP is the current
expansion node. If the tuples are. not in main memory, then
they must be read in from the link relation that is stored 011

disk. If the main memory is full, a paging mechanism takes
action to make room for them.

For cyclic graphs, the children nodes of the expansion
node may or may not have been expanded before. We say a
child node of the expansion node is good for future expansion
and called it a prosyecl node if one of the two following
conditions is true:
1. The child node has not been expanded before.
2. The child node has been expanded, but the current expan-
sion results in a shorter path weight from the root node to this
child node.

3.2 The Sliding Window Method: Optimization 1

We now propose an intru- single-source BFS optimization,
called the sliding window. The basic idea of the sliding win-
dobv method is to load a contiguous portion of the link re-
Won, called the window, into main memory, and to con-
duct breadth-first search within the window. Any expansion
thread that references tuples outside of the window is dc-
layed until all inlru-window expansion threads have com-

plcted. Figure 1 illustrates the projection of the window in
the link relation onto the main memory. If the size of the main
memory is larger than the size of the link relation, the window
contains the entire link relation and the BSR approach degcn-
erates into a main memory shortest path BFS algorithm. It is
thereversecase that is more complex and more l/O intensive,
and on which we shall focus our discussion in this paper.

r-l

-. Wlndow (

thlk Relation (9 pages)

on Secondary Storags Maln Memory

hk relation pages

4 Pages)

Figure 1: The Sliding Window.

The link relation is segmented into pages and the size ol’ the
window is a multiple of that of a page. During path search
expansions, all threads that traverse outside of the window
are suspended. When iIll intru-window expansion threads
are exhausted, we slide the window down one page on the
link relation, wrapping around if necessary. Once a new

11

window is brought up, the suspended expansion threads that
reference to the tuples in the new page are recovered and their
expansions restarted. The method terminates when there is
no intra-window expansion and suspended threads left.

3.3 Dynamic Link Reordering: Optimization 2

The dynninic reordering is an optimization that exploits the
characteristics of ITS maps. Based on the ITS graph charac-
teristics outlined in Section 2.2, typical ITS maps resemble
grid graphs. By studying grid graphs, we observe that, for
any link tuple < i, j, ?u > in the BFS-ordered link relation of
a grid graph, ki and &j will not be far apart. To illustrate this,
consider 13FS as a priority search based on the accumulated
path label d where d is the aggregation of all linklabcls of the
search path, and label for each link is set to 1. The expansion
starts with d = 0 which is the root node itself, d = 1 which
are the children nodes of the root node, then d = 2 which
arc the nodes reachable by the root node in two hops, etc.
Suppose the root node is the center node of the grid graph,
such process creates waves of diamond-shaped outward ex-
pansions, depicted in Figure 2 using dotted lines. We denote
Ci as the number of nodes expanded for the wave of expan-
sion such that d = i. Let the grid graph be a m x 7~ graph
where n == nh2 and n is the number of nodes in the graph, we
derivevi, Ci 2 2 X (712 - 1).

Figure 2: Distance Between Two End Nodes of A Link for A
Grid Graph.

Although the BFS reordering of the link refnfion involves
link tuples as shown in Figure2 (b), wecan conceptualize the
result of the reordering heing a list of source nodes (Figure
2 (cl). We conclude that, within the BFS ordering of the
source nodes, node i and node j are separated by no more
than 2 x (nz - 1) nodes if < i, j, ‘10 > is a tuple in the link
relation. For example, in Figure 2 (c), the two end nodes of
a link that are farthest apart in the BFS ordering are node 11
and node 20, which are separated by S nodes. Themaximum
Ci are CZ = C:, = 2 x (5 - 1) = 8. Note that the maximum

C’i is actually smaller if the root node is a corner node hcc:lusc
the expansion waves form lines of 45’, maximizing a~. the
diagonal line where C,r,-l = 711. Comparing with the
possihlenlaximum of m x 7rt -2 nodes betwvccn the two nodes
of a linkin unordered link relation, the dist.ance of 2 ‘x (7/l.- 1)
represents a good expansion locality.

For node i such that Bi is close to the top of the.ordered link
relation, fresh expansions” in the single-sourccpatlz vie3.v go
mostly in one direction (left figure of Figure 3). Because :ach
expansion reaches only nearby nodes, the single-source path
view computation for nodei is likely to display a good ex,oun-
sion locality in the link relation. With sufiicient window size
that covers this esxpansion locality, tie expect that the single-
source path view computation exhibits excellent paging be-
havior.

, I---

i-

\ I---- , ---...c-gl-- I

Figure 3: Expansion Locality: Node Near Top Versus Node
in the Middle.

This is not true for nodes that arc away from the lop of
the ordered link relation (right figure of Figure 3), because
the fresh expansions go both ways. The expansiorz locality
in the link relation grows as nodes are being expanded. It is
likely that the expansion locality may eventually exceed the
size of the main memory, causing deteriorated I/O or worse.,
thrashing.

Based on the above observation, we propose to reorder
the link rrlntion periodically so that the single-source pnfl?
view is computed for nodes that are always at the top of the
link relation. As a result. the overall I/ID in computing the
pnflz view for all nodes is optimized at the cost of processing
reorderings repeatedly. The e.xtremc case would be to rcordcr
the link rebztion for cvcry node whose single-source pcllk
view is to he computed. This may not be tcasihlc hecause the
cost of reordering could out-weigh the saving in l/O c:ilusrd
by the reordering. Therefore, there exists a halance between
too many reorderings which increase the reordering cost and
too few reorderings which wouldresult in deterioration 1:)1‘1/0
for path vierv computation.

For this reason, we propose a rfynamic reurdering mccha-
nism that reorders the link relation hased on recent historical
I/O performance. The c~jm?tnic ordering mechanism dcter-
mines the frequency and timing of rcortlering using two pa-
rameters, 1%: ‘and l?. I< captures the number of nodes whose
single-source path views were last computed. I? is t:lc rc-
order threshold. The average I/O for the last I< single-c,ource

12

computations, called Recent Average I/O, is recalculated af-
ter each new single-source path view is computed. We also
keep the. average l/O of the first 10 single-source path view
computations4 immediately after the last reordering. We call
this the Initial Average I/O. The Initial Average I/O corre-
sponds to the average I/O for nodes that are on the topmost
part in the ordered link reZation. Computations for these
nodes should exhibit excellent paging behavior because their
fresh expansions are mostly one way.

Our dynamic reordering strategy can be described as fol-
lows. Dynamic reordering happens when the Recent Average
l/O is worst than theZnitialAverage I/O by a percentage of R
or more. Therefore, the smaller R is for a given Ii’, the more
frequently the reordering will be performed. The smaller I<
is for a given R the more sensitive the reordering is to the
variations of recent I/O. For example, if K is 10, reordering
is performed only when the average I/O of the last 10 nodes
is worse than the Initial Average I/O by R. A small number
of spikes in I/O in the last 10 nodes will not raise the aver-
age high enough to invoke reordering. If Ii’ is set to 2, any
spike in I/O in the last 2 nodes is likely to increase the aver-
age enough to cause reordering.

3.4 The BSR = BFS + Sliding Window + Dynamic
Reordering

The BSR first preorders the link relation in the BFS order.
Then it conducts single-source BFS shortest path algorithm
with the sliding window optimization for each node in the
graph exactly once.. The processing order of the iteration is
determined by each node’s offset in the link relation, in as-
cending order. In other words, the BSR traverses the BFS
ordered link relation from the root node downwards. The
BSR takes two parameters, Ii’ and R, and uses them to de-
termine when reordering of the link relation needs to be per-
formed. In Section 5, WC will present experiments evaluating
the effectiveness of different value combinations for param-
ete.rs K and IZ. After reordering, it starts from the top of the
link relation downwards and runs the single-source BFS al-
gorithm for the next sollrce node whose single-source path
views have not yet been computed. The BSR continues the
reorder-compute cycle until the single-source path views for
all nodes in the graph are computed.

3.5 Main Memory Management of the BSR

The main memory is segmented into pages of equal size. We
use P to denote the number of total pages in main memory.
The P pages are further separated into two regions, the in-
put region (L) and the output region (77). The sliding win-
dow corresponds to the inputregion which is used to store the
link tuples from the link relation. The output region is used
to store the single-source path view during its computation.
When the computation of a single-source path view is com-
pleted, it is written out to disk from the output region which

4 10 is an arbitrary number. From our experiments. the I/O of the single-
source ynlh view computations for the first 20 - 50 nodes are always equally
good. So 10 is a safe number.

is reused for next single-source computation. Each single-
source path view is written out exactly once. Figure 4 illus-
trates the two regions of the main memory.

Figure4: Main Memory Paging Configuration.

4 Testbed Setup
4.1 Alternative Approaches for Comparison

For comparison purposes, we implemented three alternative
algorithms, the BFS shortest path algorithm, the reverse DFS
algorithm and the Warshall algorithm. We call them BFSSP,
RDFS, and Warshall, respectively. All three algorithms fol-
low the same data representation presented in Section 2 and
use LRU as their paging policy.

The BFSSP algorithm first preorders the link relation in
BFS order by thesource nodes. It then runs the single-source
BFS algorithm iteratively for each node in the graph. The
order of the iteration is determined by each node’s handle in
the link relation in ascending order. This algorithm therefore
corresponds to a partial BSR without the sliding window and
dynamic reordering optimizations.

The RDFS algorithm simulates Ioannidis et al.‘s recently
proposed PathBTC [13]. In PathBTC, pages are segmented
into blocks to minimize internal fragmentation and to reduce
page I/O. In our context, the number of descendents in each
dcscendcnt set is equal to the number of nodes in the graph
hecause the GIS map we tested is strongly connected in
whole. Therefore, it suffices to treat the single-source path
view and the descendent set as one structure in the RDFS
algorithm.

The Warshall algorithm is a direct implementation of the
well-known Warshuff matrix-based shortest path algorithm
based on secondary storage [21].

4.2 Implementation Environment

All algorithms are implemented on an IBM-RS6000 worksta-
tion that runs the Unix (AIX) operating system. The some
and destination fields of the link tuples and the shortest path
tuples are each a 2-byte short integer and weight is a 4-hytc
integer, making each tuple 8 bytes in length [both same as in
[13]). The path view is sorted first by the Source field, then by

13

by the desfinafion field. The part] view enumerates all pos-
sihlc sor~rce-destination pairs. If the shortest path hetwccn
3 .ronrrr-destination pair does not exist, its ?~~cighf field re-
mains a after the computation of thcpath view is complete.
This however will not happen for the GIS map in our exper-
iments bczause it is strongly connected.

The majority of themain memory is seimcnted into pages,
each 2K bytes in length (same as in [13]). To present a
consistent benchmark comparison, we use the same buffer
sizes used in [13], namely 10 and 20 pages. In addition to
the paged memory, we keep several data structures in main
memory. These are two bitmaps for marking status, an array
of half-bytes to store the outdegree of each node, an array of
2-byte short integers to store the handles in the link relation
for each node, and an array of 2-byte short integer for queue
or stack operations. The length of all these data structures is
the total number of nodes in the graph.

We test both synthetic grid graphs and a real map repre-
senting th.e street map of Troy City in Michigan. The grid
graphs are created by establishing perfect grid graphs as in
Figure2, hut with the outdegree of the randomly selected 5%
of thelink.sreduccd to 2,20% reduced to 3, and 10% raised to
5. The percentage of deletion and addition of links simulates
the outdcgree distribution of the Troy City map.

5 Experimental Results

This section presents theresults of our experiments. Because
the Unix operating system does its own file block buffering,
the elapse time can not serve as an accurate barometer for per-
formance. In our experiments, the performance is evaluated
using the simulated number of I/O in pages.

5.1 Experiments on Dynamic Reordering

Figure 5 shows the progression of T/O activities between &
namic reordering and no reordering running the BSR on the
real Troy City map. We USC: a lo-page main memory huffer,
and set the dynamic reordering parameters K. to 20 and 11.

Reordering Vs. No Reordering: Real Map (1590 nodes). P=20

no reordering +
reordering: K=2, FL20 -+--

0 200 400 600 800 1000 1200 1400 1600
n-th source node processed

Figure 5: Reordering Vs. No Reordering.

to 2. This means the reordering is performed when the avcr-
age l/O of the two most recent single-source path view L’OIII-
putations is ‘worse than the average I/O of 10 computations
recorded rigA alicr the last reordering by 20%. We record
the average l/O for every 20 consecutive. conlputations and
plot the resu:lts in Figure 5.

Figure 5 shows that if no reordering is done, the paging bc-
havior is good only for the first 60 nodes, or so. It becomes
erratic and tends to go upwards as the computations of the
single-sourcepafh view continues for nodes not at the begin-
ning of the link relation. In comparison, the T/O cost remains
flat if the dvnamic reordering mechanism is incorporated.

5.2 Reordering Policy: Dynamic vs. Static vs. No
Reordering

We experiment with BSR using three reordering policies:
&numic reordering, static reordering, and no reordering.
For c(ynumic reordering, we vq Ii over 2, 5 and 10. and
for each I< value, WC vary I?. from 5 to 160. For :ratic
reordering, we choose a parameter N und conduct reordering
whenever N single-source puth views have been computed.
We experiment with N ranging from 10 to 100. For e.ach set
of experiments, wc use three. types of graphs: a 900~node grid
graph with I’ = IO, a 1600-nodegrid graph with P = 20 and
the real map with I’ = 20.

The results of the experiments on shcnvn in Figure S the
900-node grid graph, in Figure 7 for the 1590-node real map,
and in Figures 8 for the 1600-node grid graph. The horizontal
straight lines in all experiments represent the l/O costs if 110

reordering is conducted.
It is clear from these results of Figure 6 that dynamic

reordering with R < 100 results in best performance in
terms of page I/O. For clarity, we combine the dynamic and
the static reordering re.sults into one chart although their x-
axis values have differe.nt meaning. For dynamic reordering,
the. x-axis represents the reorder threshold perccntagc while
for stutic reordering, the x-axis stands for constant intervals
between recrderings. From Figures 6, 7, and 8, it is evident

23000
Reordering Policies: 900.node Grid Map. P=lO

-

g
; 22000

P

& 21000
@
5
2
: 20000
5

:
g 19000

9
1
E

16000

17000
0 100 150

R - Deteriorat& percentage (%) as reorder threshold

Figure 6: Reordering Politics: 900-node Grid Map.

14

Dynamic Reordering: Real Map (1590 nodes), P-20

p 36000
5

+
g

35000

3 ! 34000

9 33000

a
2 32000

I static

--+.-
. . * . . .
-
-.---

31000 ’
0

R . Deterioration perc%ge (%) as reordering tt%shold

Figure 7: Reordering Policies: 1590-node Real Map.
.

Reordering Policies: 1600.node Grid Map, PSO
60000 , I

g
z 75000

P

E 70000

.G

i
.g 65000

I
g 60000

9
z 55000

I-

no reordering -
dynamic. K=2 ---*-
dynamic, KC5 --.--

dynamic. K=lO ----o -.
static --.+.---

0
R - Delerioratio5nOppercentage (Sb) aA%rdering 1hresh0~~~

Figure 8: Reordering Policies: 1600-node Grid Map.

that the lowest point of the dynamic reordering is lower than
any point of the slntic reordering in all cases. We conclude
clynamic reordering is superior to stutic reordering.

Our results show that the performance of dynamic reorder-
ing is the best when ri < 40. This means that more sensitive
dynumic reordering results in better performance. Further-
more, when R < 40, the l/G performances for K = 2 and
5 are better than those for Ii’ = 10. This indicates that re-
ordering performance is better when it is more sensitive to re-
cent I/Operformance by deriving Recent Average I/O using a
small history window (I<). All I/O costs in theresults include
the I/O incurred by the reordering process itself. These sets
of experiments confirm that, for GIS maps, sensitive dynamic
reordering helps reduce I/O in the computation of the path
view. The overall regulated paging behavior far outweights
the additional cost incurred by the reordering processes.

In Figures 9, we pick the winners fromdynamic reordering
and stafic reordering, and compare them with no reordering.
It is clear from this figure (Figure 9), sensitive dynamic re-
ordering dominates static reordering and no reordering.

Dynamic Reordemg
K.2. I%10

Stat,;~;;detig No Reordering

Figure9: Dynamic Reordering Vs. Static Reordering Vs. No
Reordering in I/O.

5.3 BSR Vs. Alternative Algorithms

We compare the BSR against the alternative shortest path al-
gorithms introduced in Section 4, namely the BFSSP algo-
rithm, theRDI;S algorithm, and the Wurshull algorithm. The
experiments are performed using synthetic grid graphs of size
196, 400, 625 and 900, and with 10 pages in main memory.
For BSR, we set the reordering parameters to Ii’ = 2 and
R = 10. The results in page I/G are displayed in Figure 10.
The BSR clearly dominates others. For graphs of size 196 and
400, the size of the link relafion is smaller than the input re-
gion of the memory, making the sliding window method of
the BSR and the LRU paging policy of the BFSSP algorithm
irrelevant. The I/O costs of graphs of size 196 and 400, for
both the BSR and the BFSSP, include one read through the
link relation and one write-out of the entirepath view. Hence,
BSR reduces down to the main memory version of the simpler
BFSSP in this case.

It is reported in [13] that it takes PuthBTC about 8000
I/O pages to compute the shortest path transitive closure for
a 200-node cyclic graph using 10 2K-byte pages in main
memory. Our experiment results in Figure 10 show that
RDFS needs 2403 l/O pages to compute the shortest path
transitive closure for a 196~node grid graph using the same
amount of main memory. We don’t claim that RDFS is better
than PathBTC, rather our goal was to design an algorithm
that is similar in computational efficiency to the PathBTC
algorithm. When the graph size grows from 196 to more
than 400 in our experiments, the I/O for RDFS increases
dramatically. This is caused by the increase in the size and
the number of the descendent sets that need to be brought
into main memory, and by the fact that the time complexity of
RDFS is O(n”). We think the Path-BTC algorithm will have

Page Ix) BSR
Ks?. RrlO BFSSP RDFS Warshall

196-node Glid P-10

40&pnCy,Gtid

1iZ5;n-F~ Grid

199 199 2403 63460

806 806 16460 .345Kd

4709 47810 102314 927710

90,pn,zd;Gdd 17770 257110 464594 1967649

Figure 10: Comparison Between Disk-based Algorithms.

15

a similar increase pattern for large graphs, although [13] does
not report any result for graphs of size larger than 200.

6 Conclusion and Future Work
In this paper, we address the problem that standard relational
database engines are not efficient in path queryprocessingre-
quircd by applications such as IntelligentTransportation Sys-
tems (ITS) [161. Our solution is to materialize a palh view of
all shortest paths and to perform look-up instead of complete
path search from-scratch for incoming path query requests.
This allows efficient processing of path queries with a higher
throughput. To refresh the path view efficiently, we pro-
pose the BSR algorithm. BSR incorporates several innova-
tive disk-based optimization techniques, namely sliding win-
tioow and dynnmic reordering techniques. We present experi-
ments conducted in evaluating our approach and in compar-
ing it with existing disk-based methods using real GIS map
data and synthetic grid graphs. Our results show while sen-
sitive dynamic reorderings yield best performance, our new
approach in general outperforms the alternative approaches
proposed in the literature [13. 211 significantly for cyclic
graphs such as GIS maps. Therefore, BSR can be deployed
in centralized ITS routeguidance for more efficientpath view
recomputation.

Our future work includes comparing BSR with other graph
clustering techniques such as min-cut partitioning, topologi-
cal ordering, spatialpartitioning,connectivityclustering [17],
etc.

References

VI

PI

[31

[41

[51

[61

[71

Agra.wal, R. ‘and Jagadish, H. V., “Materialization and
Incremental Update of Path Information”, IEEE 5thInt.
Con& on Data Engineering, 1989, pp. 374 - 383.

Agrawal, R., Dar, S., and Jagadish, H. V., “Direct Tran-
sitive Closure Algorithms: Design and Performance
Evaluatj on,” ACM Transwtions on Dafabuse Systems,
Vol. 15, No. 3, Sep. 1990, pp. 427 - 458.

Agrawal, R. and Jagadish, H. V., “Hybrid Transitive
Closure Algorithms,” Proc. of the 16th VLDB ConjZ
Brisbane, Australia, 1990, pp. 326 - 334.

Bancilhon, F., “Naive Evaluation of Recursively De-
fined Relations”, In On Knowledge Base Management
Systems - Integrating Database and Al systems, M.
Brodie and J, Mylopoulos, Eds., Springer-Verlag, New
York, 1985

Dijkstra, E. W. “A Note on Two Problems in Connec-
tion with Graphs”, Nutner: March, 1959, pp. 269 - 271.

Ebert, J., “A Sensitive Transitive Closure Algorithm”,
Information Processing Letters, 12. , 1981, pp. 255 -
258.

Eve., J. and Kurki-Suonio, R., “On Computing the Tran-
sitive Closure of a Relation”, Acta Informutica. 8. ,
1977, pp. 303 - 314.

VI

PI

[lOI

i-111

v21

1131

[I41

[I51

[la

u71

H81

r191

wa

i-211

Huang, Y.W., Jing, N., ‘and Rundensteiner, E. A., “Ef-
fective Graph Clustering for Path Queries in Digital
Map Databases”, Proc. 5th Int’l Conj: CIKM. Nov.
1996.

Huang, Y. W., Jing, N. and Rundensteiner, E., “A Semi-
Materialized View Approach for Route MaintenLlnce
in Intelligent Vehicle Highway Systems,” The Second
ACM U’orkshop on Geographic Infi)rmation Systems,
Washington, DC., Nov. 1994.

Huang, Y.W., Jing, J., and Rundensteincr, E. A., “Hi-
erarchical Path Views: A Model Based on Fragmenta-
tion and Transportation Road Types,” ACM Workshop
on Geographic Information Systems, Nov. 1995, pp. 93
- 100.

Ioannidis, Y. E., “On the Computation of the Transitive
Closure of Relational Operators,” Proc. 12th Tnt ‘1 Co@
VLDB, .Aug. 1986, pp. 403 - 411.

Ioannidis, Y. E. and Ramakrishnan, R., “An EiTic.ient
Transitive Closure Algorithm,” Proc. 14fk In1 ‘I Cunf:
VLDB, Aug.-&p. 1988, pp. 382 - 394.

Ioannidis, Y. E., Ramakrishn~l, R.,
and Winger, L.., “Transitive Closure Algorithms Based
on Graph Traversal,” ACM Transactions on Database
Systems, Vol. 18, No. 3, Sep. 1993, pp. 512 - 576.

Jagadish, H. V. and Agrawal, R., “A Study of Transi-
tive Closure as a Recursion Mechanism,” Proc. ACM-
SIGMOD, May 1987, pp. 331- 344.

Jing, N., Huang, Y.W., and Rundensteiner, E. A.,
“Himarchical Optimization of Optimal Path Finding
for Transportation Applications” Proc. 5th Int ‘1 Conf
CIKM, Nov. 1996.

Shekar, S., Kohli, A. and Coyle, M., “Path Computation
Algorithms for Advanced Traveller Information Sys-
tems,” IEEE 9th Int. Con& on Data Engineering, 1993,
pp. 31 -- 39.

Shckar, S. and Liu, D.R., “CCAM: A Connectivity-
Clustered Access Method for Aggregate Queries on
Transportation Networks : A Summary of Results,”
1EEE 11th Inf. Conf; on Data Engineering, 1995, pp.
410-419.

Schmitz, I., “An Improved Transitive Closure Algo-
rithm,” Computing 30, 1983, pp. 359 - 371.

Tarjan, R. E., “Depth-First Search and Linear Graph
Algorithms,” SIAM J, Computing, 1, 2, 1972, pp. 146
- 160.

Warren, H.S. “A Modification of Warshall’s Algorithm
for the Transitive Closure of Binary Relations,” Cr,mlm.
ACM, .I& 4, 1975, pp. 218 - 220

Warshall, S. “A Theorem on Boolean Matrices,” JACM,
9, I, 1962, pp. 11 - 12

16

