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Abstract 
It is well-known that standard relational database engines arc not 
equipped to efficiently process path finding queries required by di- 
verse applications, such as Geographic Information Systems (GIS), 
Intelligent Transportation Systems (ITS), etc. In this paper, we 
explore the development of special-purpose disk-based techniques 
for supporting the processing of path queries on transportation net- 
works. To process high-throughput path queries, our solution ma- 
terializes parh views and employs several innovative p&h view rc- 
freshing strategies. One key technique is to perform dynamic re- 
ordering of link tuples in breadth-first order based on recent I/O ac- 
tivities. This reclustering approach trades extra I/O overhead re- 
quired by reordering for the performance gains achievable by path 
starch on approximately topologically ordered link tuplcs. We also 
introduce a sliding window paging policy that further reduces page 
misses. We present experiments conducted in evaluating our ap- 
proach and in comparing it with previously published disk-based 
methods using both real GIS data (city road maps) and synthetic grid 
graphs. Our results show that our new approach outperforms the al- 
ternative approaches significantly for highly cyclic graphs such as 
GIS maps. 

1 Introduction 

1 .l Motivation: ITS Shortest Path Finding 

Path finding is an essential feature for many Geographic 
Information Systems including navigation systems, urban 
planning, emergency response and traveler information sys- 
tems. This paper in particular investigates the route guid- 
ance services offered by IntelligenccTransportation Systems 
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(ITS). In centralized beacon-based route guidance approach, 
each ITS vehicle in the system submits path finding queries 
through roadside beacons to the Traffic Management Centers 
(TMCs) and, in real-time, receives instructions of where to go 
next. The widespread deployment of the beacons guarantees 
that the guided vehicles travel along the shortest paths that 
are continuously computed en route, based on dynamic traf- 
fic conditions. This paper focuses on path query optimization 
strategies for an ITS database that supports such path queries. 

For applications that require such high throughput path 
query support, conducting a full-scale path starch for each 
path query submitted is not feasible. To satisfy the time COII- 

straint for a potentially large numbers of path queries submit- 
ted during high-traffic hours, we propose the TMCs create 
and maintain a materialized view of best roulcs, called the 
path view 193. Thus, path queries can be serviced by direct 
lookup of the thepath view rather than computing paths OII- 

the-fly. The path query turnaround time is minimized at the 
cost of periodical path view computation. To maintain the 
correctness of the path view, which is crucial due to dynam- 
ically changing traffic patterns, recomputation of the pal/z 
vie~l must be efficient so that it can bc refreshed liequcntly. 

To support path queries at the database system level, we 
must consider the situation when the availability of the DBMS 
system memory buffer is limited due to simultaneous tasks 
frommultipleusers. In addition, the DBMS cnginc may have 
to concurrently process I/O-intensive constraints of complex 
path queries, such as “Find the shortest path from Ann Ar- 
bor to Detroit that does not go through flooded areas” - thus 
requiring major portions of the shared system buffer for this 
spatial consfruint computation. Last but not least the poten- 
tial size of thcpulh views can bc prohibitively large for large 
graphs. All of this points towards the requirement of disk- 
based solutions. This paper presents an innovative approach 
that efliciently computes path views in a disk-based environ- 
ment by exploiting unique propertics of the transportaLion 
networks modeled by ITS maps. 

1.2 Previous Approaches: ITS Versus General Path 
Problems 

Recent database transitive closure (TC) research 1.2, 3, 12, 
13, 141 is dominated by solving general path problems with 



the focus on ;Jroviding recursive query capabilities for gen- 
eral databases. Such research thus typically starts with the 
“reachability” problem and treats the shortest path problem 
as a side product. This is evident in the two techniques 
adopted by many of the recent approaches for database TC 
proposed in the literature., namely node collapsing and topo- 
logical ordering. Both are not effective in solving the short- 
est path problem for cyclic graphs, denoted as SPeyelic in this 
paper. Node collapsing techniques [ 191 cannot be applied to 
solve SPcl,eric prohlem because shortest paths between two 
arbitrary nodes in the strongly connected component arc not 
identical as is the case for “reachability”. Topological or- 
dering insures that reachability TC computed for the descen- 
dent nodes can be shared by their ancestor nodes without 
additional computation. For SPeycric, the ancestor relation 
is mostly bi-directional. The topological ordering technique. 
only preserves the ‘ancestor relation in one direction; it does 
not guarantee good paging behavior when the computation 
traverses the other direction. 

We argue that SPcYc~;c is a unique yet important problem 
in that solutions designed to solve the general path problems 
generally have bad performance when applied to SPcyclie. 
Note that experiments for SPeyclic were done with graphs of 
only up to 200 nodes in [13] and under 300 nodes in [2], and 
for both the performance was already deteriorating drannati- 
tally. This is clearly not sufficient for ITS applications where 
graph sizes are typically above one thousand nodes. 

1.3 Our Proposed Solution: The BSR Approach 

Our solution is based on the observation that ITS graphs 
that model city road maps have several unique properties. 
They are highly cyclic, have low outdegree (mostly 2 lo 
5), a large number of nodes (up to tens of thousands), and 
high locality’. In this paper, we propose an integrated ITS 
path view solution, called BSR”, that effectively exploits the 
above propertics of transportation networks. Our solution is 
designed to address the prohlems of the target application ‘and 
as our experimental results demonstrate, this new approach 
indeed is a significant improvement over previous disk-based 
tcchniqucs for ITS graphs. 

One key technique of our proposed solution is to, based on 
recent J/O activities, perform cfynamic rmrdering of link tu- 
pies in breadth-first order. This reclustering approach trades 
off extra I/O overhead required by reordering with the pcr- 
Cormancc. gains achievable by path search 011 approximately 
breadth-first ordered link tuples. In order to effectively dcdl 

with a limited main memory buffer size we introduce a sfid- 
ing win&v paging policy that further reduces page misses. 
In this paper we propose and study different criteria for re- 
ordering that include historical trends and fixed intervals. 

We also present detailed analyses and experimental re- 
sults eva.luating our proposed BSR system, and comparing it 

1 WC Mine high locality maps by when the two end nodes of all links &are 
geographically closely Iocafed. 

‘BSR stands for Breadth-first search using Sliding windows and dy- 
namic Keordermg techniques. 

against alternative approaches. These alternatives include a 
RF’S algorithm with only prcordering, a reverse Depth First 
Search DFS algorithm that is similar to the shortest J>ath al- 
gorithm, PathB’1’C [13], and the Wurshall algorithm. We ex- 
perimented with a real GJS map and synthclic grid maps of 
sizes up to 1,600 nodes. Gur results show that BSR c~u~per- 

forms the other three algorithms dramatically on these highly 
cyclic maps. The superior performance of BSR 011 smaller 
buffer sizes demonstrates that our solution remains effective 
in a shared-buffer database environmcnl with multiple tasks 
running at the same time. It is ohvious that larger buffer :;izes 
c‘an handle even larger maps. We believe our solution IS an 
important improvement over known results considering that 
previous research only tested cyclic maps with sizes up to 300 
nodes for the SPeycric problem. 

1.4 Paper Outline 

The paper is organized as follows. We describe the re:atcd 
work and background in Section 2. 111 Section 3, we present 
the proposed path view solution. We describe our tcstb:d in 
Section 4 and present the experimental results in Section 5. 
In Section 6. we conclude this paper and provide an outlook 
of our future work. 

2 Related Work and Background 
2.1 Related Work 

Recently proposed disk-based transitive closure algorithms 
[2, 3, 4, 6, ‘7, 11, 12, 13, 181 in the literature generally fo- 
cuscd on the reachability problem, and then extend the solu- 

tions to solve other path problems. Some of them 16, 5, 181 
could not be extended to solve the shortest path problem for 
cyclic graphs (SPcycric ) and only a few of them addressed the 
shormst path problem for cyclic graphs [2, 131. 

The experimental results reported in 112, 131 showed that 
their algorithms are not suited to solve SJ’cycric because their 
performance dctcriorated dramatically when the graph sizes 
go beyond 300 nodes. Our experimental. results (Secti:)n 5) 
show that our proposed BSR has a better pcrformancc and can 

handle much larger graphs for solving .YPcy,:li,: problems. 
Shckar et al. in 1161 focused 011 the compute-on-de:nand 

iipprOiiCl1 by COIll~li~iII& several typical roulc COIll~lLll.illi~Il 

algorithms, such as Dijkstrrr, breadth-first starch and A’ 
heuristic search. By implementing these algorithms directly 
on relational DBMS products, they found that the response 
time to process a shortest path query can he up lo 20 minutes 

for a GIS street map of about 1000 nodes. 
Agrawal and Jagadish [l] presented (,using simulation) a 

path encoding structure that has an acceptable storage ovcr- 
head -compared to maintaining all possible paths. A shortest 
path version of it can hc adopted to materialize encotfedpath 
views [9]. The BSR with minor moditication a11 be consid- 
ered an l/O efficient algorithm that creates disk-based encod- 
ing structures for ITS graphs. 

Ourprcvious work [9] compincd path query processing he- 
tween thepdtlt views and the single-pair path search approach 
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approaches. WC found that that the parh view approach is 
more efficient for high throughput path finding requirements 
as found in ITS systems. In the context of an in-memory ap- 
proach, we also explored hierarchical optimization strategies 
- both optimal [lS] and heuristic ones [lo]. In [8], we focus 
on compute-on-demand path finding with constraints be eval- 
uating various clustering optimizations. 

2.2 ITS Graph Characteristics 

Graphs that model road transportation networks are a sub- 
set of the general graphs defined above. They exhibit some 
unique characteristics that can be exploited by a path com- 
putation system such as the BSR presented in this paper. In 
general, such ITS graphs 

1) have a large numbers of nodes, up to tens of thousand. 
2) have uniformly low outdegree (usually 2 - 5). 
3) exhibit a high locality, which means the two end nodes 

of each link are usually geographically closely located. 
4) arehighly cyclic (indeed, mostroads are two-directional, 

thus resulting in numerous cycles of 2 links in each direction, 
and any node is typically reachable from any other node ). 

5) are near-planar with a few exceptions such as over- 
passes. 

2.3 Data Representation 

In this paper, we assume the topological information of a 
graph is modeled by a a relation (table) that stores all thelinks 
in the graph. The data representation of this link relation is 
an ordered set of tuples of the form < source, destination, 
weight >. We assume that tuples of the same source arc 
clustered together in the link relation. Links of the same 
mme are ordered by destination. We define the handle 
of a node i, &i, to bc the reference to the link relation 
that points to the first tuple whose Source is i. The data 
representation for the path view is also an ordered set of 
tuples of the form < source, destination, weight >, with 
~weight corresponding to the cost of the shortest path from the 
source to destination. The tuples in the path vielo are sorted 
with sollrce as primary key and destination as secondary key. 
In practice, the next hop or the previous hop can be added to 
each path view tuple to facilitate the retrieval of the next hop 
or the entire shortest path in a trivial manner. 

3 The BSR - An Integrated Solution 

The BSR matcrializcs the parh vieivs for a given graph by 
computing a single-source puth view for every node in the 
graph using a single-source BI;S shortest path algorithm. 
The BSR deploys two optimizations: the sliding windolv 
paging method and the d,ynumic reordering technique. Note 
that other single-source shortest path algorithms such as the 
Dijkstrn or A’ can also be used but their I/O behavior 
dictated by ON sliding winnow optimization would show the 
same patterns as that of the BFS algorithm. 

3.1 The Single-Source UFS Shortest Path Algorithm 

The single-sourcebreadth-first search shortest path algorithm 
expands nodes in the graph in breadth-first traversal order. To 
expand a node ~iicans to traverse the links from this node to 
all its children nodes. In our in~plen~cntation, the traversal is 
done by retrieving thelink tuples whose SO~L~CP is the current 
expansion node. If the tuples are. not in main memory, then 
they must be read in from the link relation that is stored 011 

disk. If the main memory is full, a paging mechanism takes 
action to make room for them. 

For cyclic graphs, the children nodes of the expansion 
node may or may not have been expanded before. We say a 
child node of the expansion node is good for future expansion 
and called it a prosyecl node if one of the two following 
conditions is true: 
1. The child node has not been expanded before. 
2. The child node has been expanded, but the current expan- 
sion results in a shorter path weight from the root node to this 
child node. 

3.2 The Sliding Window Method: Optimization 1 

We now propose an intru- single-source BFS optimization, 
called the sliding window. The basic idea of the sliding win- 
dobv method is to load a contiguous portion of the link re- 
Won, called the window, into main memory, and to con- 
duct breadth-first search within the window. Any expansion 
thread that references tuples outside of the window is dc- 
layed until all inlru-window expansion threads have com- 

plcted. Figure 1 illustrates the projection of the window in 
the link relation onto the main memory. If the size of the main 
memory is larger than the size of the link relation, the window 
contains the entire link relation and the BSR approach degcn- 
erates into a main memory shortest path BFS algorithm. It is 
thereversecase that is more complex and more l/O intensive, 
and on which we shall focus our discussion in this paper. 

r-l 

-. Wlndow ( 

thlk Relation (9 pages) 

on Secondary Storags Maln Memory 

hk relation pages 

4 Pages) 

Figure 1: The Sliding Window. 

The link relation is segmented into pages and the size ol’ the 
window is a multiple of that of a page. During path search 
expansions, all threads that traverse outside of the window 
are suspended. When iIll intru-window expansion threads 
are exhausted, we slide the window down one page on the 
link relation, wrapping around if necessary. Once a new 
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window is brought up, the suspended expansion threads that 
reference to the tuples in the new page are recovered and their 
expansions restarted. The method terminates when there is 
no intra-window expansion and suspended threads left. 

3.3 Dynamic Link Reordering: Optimization 2 

The dynninic reordering is an optimization that exploits the 
characteristics of ITS maps. Based on the ITS graph charac- 
teristics outlined in Section 2.2, typical ITS maps resemble 
grid graphs. By studying grid graphs, we observe that, for 
any link tuple < i, j, ?u > in the BFS-ordered link relation of 
a grid graph, ki and &j will not be far apart. To illustrate this, 
consider 13FS as a priority search based on the accumulated 
path label d where d is the aggregation of all linklabcls of the 
search path, and label for each link is set to 1. The expansion 
starts with d = 0 which is the root node itself, d = 1 which 
are the children nodes of the root node, then d = 2 which 
arc the nodes reachable by the root node in two hops, etc. 
Suppose the root node is the center node of the grid graph, 
such process creates waves of diamond-shaped outward ex- 
pansions, depicted in Figure 2 using dotted lines. We denote 
Ci as the number of nodes expanded for the wave of expan- 
sion such that d = i. Let the grid graph be a m x 7~ graph 
where n == nh2 and n is the number of nodes in the graph, we 
derivevi, Ci 2 2 X (712 - 1). 

Figure 2: Distance Between Two End Nodes of A Link for A 
Grid Graph. 

Although the BFS reordering of the link refnfion involves 
link tuples as shown in Figure2 (b), wecan conceptualize the 
result of the reordering heing a list of source nodes (Figure 
2 (cl). We conclude that, within the BFS ordering of the 
source nodes, node i and node j are separated by no more 
than 2 x (nz - 1) nodes if < i, j, ‘10 > is a tuple in the link 
relation. For example, in Figure 2 (c), the two end nodes of 
a link that are farthest apart in the BFS ordering are node 11 
and node 20, which are separated by S nodes. Themaximum 
Ci are CZ = C:, = 2 x (5 - 1) = 8. Note that the maximum 

C’i is actually smaller if the root node is a corner node hcc:lusc 
the expansion waves form lines of 45’, maximizing a~. the 
diagonal line where C,r,-l = 711. Comparing with the 
possihlenlaximum of m x 7rt -2 nodes betwvccn the two nodes 
of a linkin unordered link relation, the dist.ance of 2 ‘x (7/l.- 1) 
represents a good expansion locality. 

For node i such that Bi is close to the top of the.ordered link 
relation, fresh expansions” in the single-sourccpatlz vie3.v go 
mostly in one direction (left figure of Figure 3). Because :ach 
expansion reaches only nearby nodes, the single-source path 
view computation for nodei is likely to display a good ex,oun- 
sion locality in the link relation. With sufiicient window size 
that covers this esxpansion locality, tie expect that the single- 
source path view computation exhibits excellent paging be- 
havior. 

, I--- 

i- 

\ I---- , ---...c-gl-- I 

Figure 3: Expansion Locality: Node Near Top Versus Node 
in the Middle. 

This is not true for nodes that arc away from the lop of 
the ordered link relation (right figure of Figure 3), because 
the fresh expansions go both ways. The expansiorz locality 
in the link relation grows as nodes are being expanded. It is 
likely that the expansion locality may eventually exceed the 
size of the main memory, causing deteriorated I/O or worse., 
thrashing. 

Based on the above observation, we propose to reorder 
the link rrlntion periodically so that the single-source pnfl? 
view is computed for nodes that are always at the top of the 
link relation. As a result. the overall I/ID in computing the 
pnflz view for all nodes is optimized at the cost of processing 
reorderings repeatedly. The e.xtremc case would be to rcordcr 
the link rebztion for cvcry node whose single-source pcllk 
view is to he computed. This may not be tcasihlc hecause the 
cost of reordering could out-weigh the saving in l/O c:ilusrd 
by the reordering. Therefore, there exists a halance between 
too many reorderings which increase the reordering cost and 
too few reorderings which wouldresult in deterioration 1:)1‘1/0 
for path vierv computation. 

For this reason, we propose a rfynamic reurdering mccha- 
nism that reorders the link relation hased on recent historical 
I/O performance. The c~jm?tnic ordering mechanism dcter- 
mines the frequency and timing of rcortlering using two pa- 
rameters, 1%: ‘and l?. I< captures the number of nodes whose 
single-source path views were last computed. I? is t:lc rc- 
order threshold. The average I/O for the last I< single-c,ource 

12 



computations, called Recent Average I/O, is recalculated af- 
ter each new single-source path view is computed. We also 
keep the. average l/O of the first 10 single-source path view 
computations4 immediately after the last reordering. We call 
this the Initial Average I/O. The Initial Average I/O corre- 
sponds to the average I/O for nodes that are on the topmost 
part in the ordered link reZation. Computations for these 
nodes should exhibit excellent paging behavior because their 
fresh expansions are mostly one way. 

Our dynamic reordering strategy can be described as fol- 
lows. Dynamic reordering happens when the Recent Average 
l/O is worst than theZnitialAverage I/O by a percentage of R 
or more. Therefore, the smaller R is for a given Ii’, the more 
frequently the reordering will be performed. The smaller I< 
is for a given R the more sensitive the reordering is to the 
variations of recent I/O. For example, if K is 10, reordering 
is performed only when the average I/O of the last 10 nodes 
is worse than the Initial Average I/O by R. A small number 
of spikes in I/O in the last 10 nodes will not raise the aver- 
age high enough to invoke reordering. If Ii’ is set to 2, any 
spike in I/O in the last 2 nodes is likely to increase the aver- 
age enough to cause reordering. 

3.4 The BSR = BFS + Sliding Window + Dynamic 
Reordering 

The BSR first preorders the link relation in the BFS order. 
Then it conducts single-source BFS shortest path algorithm 
with the sliding window optimization for each node in the 
graph exactly once.. The processing order of the iteration is 
determined by each node’s offset in the link relation, in as- 
cending order. In other words, the BSR traverses the BFS 
ordered link relation from the root node downwards. The 
BSR takes two parameters, Ii’ and R, and uses them to de- 
termine when reordering of the link relation needs to be per- 
formed. In Section 5, WC will present experiments evaluating 
the effectiveness of different value combinations for param- 
ete.rs K and IZ. After reordering, it starts from the top of the 
link relation downwards and runs the single-source BFS al- 
gorithm for the next sollrce node whose single-source path 
views have not yet been computed. The BSR continues the 
reorder-compute cycle until the single-source path views for 
all nodes in the graph are computed. 

3.5 Main Memory Management of the BSR 

The main memory is segmented into pages of equal size. We 
use P to denote the number of total pages in main memory. 
The P pages are further separated into two regions, the in- 
put region (L) and the output region (77). The sliding win- 
dow corresponds to the inputregion which is used to store the 
link tuples from the link relation. The output region is used 
to store the single-source path view during its computation. 
When the computation of a single-source path view is com- 
pleted, it is written out to disk from the output region which 

4 10 is an arbitrary number. From our experiments. the I/O of the single- 
source ynlh view computations for the first 20 - 50 nodes are always equally 
good. So 10 is a safe number. 

is reused for next single-source computation. Each single- 
source path view is written out exactly once. Figure 4 illus- 
trates the two regions of the main memory. 

Figure4: Main Memory Paging Configuration. 

4 Testbed Setup 
4.1 Alternative Approaches for Comparison 

For comparison purposes, we implemented three alternative 
algorithms, the BFS shortest path algorithm, the reverse DFS 
algorithm and the Warshall algorithm. We call them BFSSP, 
RDFS, and Warshall, respectively. All three algorithms fol- 
low the same data representation presented in Section 2 and 
use LRU as their paging policy. 

The BFSSP algorithm first preorders the link relation in 
BFS order by thesource nodes. It then runs the single-source 
BFS algorithm iteratively for each node in the graph. The 
order of the iteration is determined by each node’s handle in 
the link relation in ascending order. This algorithm therefore 
corresponds to a partial BSR without the sliding window and 
dynamic reordering optimizations. 

The RDFS algorithm simulates Ioannidis et al.‘s recently 
proposed PathBTC [13]. In PathBTC, pages are segmented 
into blocks to minimize internal fragmentation and to reduce 
page I/O. In our context, the number of descendents in each 
dcscendcnt set is equal to the number of nodes in the graph 
hecause the GIS map we tested is strongly connected in 
whole. Therefore, it suffices to treat the single-source path 
view and the descendent set as one structure in the RDFS 
algorithm. 

The Warshall algorithm is a direct implementation of the 
well-known Warshuff matrix-based shortest path algorithm 
based on secondary storage [21]. 

4.2 Implementation Environment 

All algorithms are implemented on an IBM-RS6000 worksta- 
tion that runs the Unix (AIX) operating system. The some 
and destination fields of the link tuples and the shortest path 
tuples are each a 2-byte short integer and weight is a 4-hytc 
integer, making each tuple 8 bytes in length [both same as in 
[13]). The path view is sorted first by the Source field, then by 
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by the desfinafion field. The part] view enumerates all pos- 
sihlc sor~rce-destination pairs. If the shortest path hetwccn 
3 .ronrrr-destination pair does not exist, its ?~~cighf field re- 
mains a after the computation of thcpath view is complete. 
This however will not happen for the GIS map in our exper- 
iments bczause it is strongly connected. 

The majority of themain memory is seimcnted into pages, 
each 2K bytes in length (same as in [13]). To present a 
consistent benchmark comparison, we use the same buffer 
sizes used in [13], namely 10 and 20 pages. In addition to 
the paged memory, we keep several data structures in main 
memory. These are two bitmaps for marking status, an array 
of half-bytes to store the outdegree of each node, an array of 
2-byte short integers to store the handles in the link relation 
for each node, and an array of 2-byte short integer for queue 
or stack operations. The length of all these data structures is 
the total number of nodes in the graph. 

We test both synthetic grid graphs and a real map repre- 
senting th.e street map of Troy City in Michigan. The grid 
graphs are created by establishing perfect grid graphs as in 
Figure2, hut with the outdegree of the randomly selected 5% 
of thelink.sreduccd to 2,20% reduced to 3, and 10% raised to 
5. The percentage of deletion and addition of links simulates 
the outdcgree distribution of the Troy City map. 

5 Experimental Results 

This section presents theresults of our experiments. Because 
the Unix operating system does its own file block buffering, 
the elapse time can not serve as an accurate barometer for per- 
formance. In our experiments, the performance is evaluated 
using the simulated number of I/O in pages. 

5.1 Experiments on Dynamic Reordering 

Figure 5 shows the progression of T/O activities between & 
namic reordering and no reordering running the BSR on the 
real Troy City map. We USC: a lo-page main memory huffer, 
and set the dynamic reordering parameters K. to 20 and 11. 

Reordering Vs. No Reordering: Real Map (1590 nodes). P=20 

no reordering + 
reordering: K=2, FL20 -+-- 

0 200 400 600 800 1000 1200 1400 1600 
n-th source node processed 

Figure 5: Reordering Vs. No Reordering. 

to 2. This means the reordering is performed when the avcr- 
age l/O of the two most recent single-source path view L’OIII- 
putations is ‘worse than the average I/O of 10 computations 
recorded rigA alicr the last reordering by 20%. We record 
the average l/O for every 20 consecutive. conlputations and 
plot the resu:lts in Figure 5. 

Figure 5 shows that if no reordering is done, the paging bc- 
havior is good only for the first 60 nodes, or so. It becomes 
erratic and tends to go upwards as the computations of the 
single-sourcepafh view continues for nodes not at the begin- 
ning of the link relation. In comparison, the T/O cost remains 
flat if the dvnamic reordering mechanism is incorporated. 

5.2 Reordering Policy: Dynamic vs. Static vs. No 
Reordering 

We experiment with BSR using three reordering policies: 
&numic reordering, static reordering, and no reordering. 
For c(ynumic reordering, we vq Ii over 2, 5 and 10. and 
for each I< value, WC vary I?. from 5 to 160. For :ratic 
reordering, we choose a parameter N und conduct reordering 
whenever N single-source puth views have been computed. 
We experiment with N ranging from 10 to 100. For e.ach set 
of experiments, wc use three. types of graphs: a 900~node grid 
graph with I’ = IO, a 1600-nodegrid graph with P = 20 and 
the real map with I’ = 20. 

The results of the experiments on shcnvn in Figure S the 
900-node grid graph, in Figure 7 for the 1590-node real map, 
and in Figures 8 for the 1600-node grid graph. The horizontal 
straight lines in all experiments represent the l/O costs if 110 

reordering is conducted. 
It is clear from these results of Figure 6 that dynamic 

reordering with R < 100 results in best performance in 
terms of page I/O. For clarity, we combine the dynamic and 
the static reordering re.sults into one chart although their x- 
axis values have differe.nt meaning. For dynamic reordering, 
the. x-axis represents the reorder threshold perccntagc while 
for stutic reordering, the x-axis stands for constant intervals 
between recrderings. From Figures 6, 7, and 8, it is evident 
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Figure 6: Reordering Politics: 900-node Grid Map. 
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Dynamic Reordering: Real Map (1590 nodes), P-20 
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Figure 7: Reordering Policies: 1590-node Real Map. 
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Figure 8: Reordering Policies: 1600-node Grid Map. 

that the lowest point of the dynamic reordering is lower than 
any point of the slntic reordering in all cases. We conclude 
clynamic reordering is superior to stutic reordering. 

Our results show that the performance of dynamic reorder- 
ing is the best when ri < 40. This means that more sensitive 
dynumic reordering results in better performance. Further- 
more, when R < 40, the l/G performances for K = 2 and 
5 are better than those for Ii’ = 10. This indicates that re- 
ordering performance is better when it is more sensitive to re- 
cent I/Operformance by deriving Recent Average I/O using a 
small history window (I<). All I/O costs in theresults include 
the I/O incurred by the reordering process itself. These sets 
of experiments confirm that, for GIS maps, sensitive dynamic 
reordering helps reduce I/O in the computation of the path 
view. The overall regulated paging behavior far outweights 
the additional cost incurred by the reordering processes. 

In Figures 9, we pick the winners fromdynamic reordering 
and stafic reordering, and compare them with no reordering. 
It is clear from this figure (Figure 9), sensitive dynamic re- 
ordering dominates static reordering and no reordering. 

Dynamic Reordemg 
K.2. I%10 

Stat,;~;;detig No Reordering 

Figure9: Dynamic Reordering Vs. Static Reordering Vs. No 
Reordering in I/O. 

5.3 BSR Vs. Alternative Algorithms 

We compare the BSR against the alternative shortest path al- 
gorithms introduced in Section 4, namely the BFSSP algo- 
rithm, theRDI;S algorithm, and the Wurshull algorithm. The 
experiments are performed using synthetic grid graphs of size 
196, 400, 625 and 900, and with 10 pages in main memory. 
For BSR, we set the reordering parameters to Ii’ = 2 and 
R = 10. The results in page I/G are displayed in Figure 10. 
The BSR clearly dominates others. For graphs of size 196 and 
400, the size of the link relafion is smaller than the input re- 
gion of the memory, making the sliding window method of 
the BSR and the LRU paging policy of the BFSSP algorithm 
irrelevant. The I/O costs of graphs of size 196 and 400, for 
both the BSR and the BFSSP, include one read through the 
link relation and one write-out of the entirepath view. Hence, 
BSR reduces down to the main memory version of the simpler 
BFSSP in this case. 

It is reported in [13] that it takes PuthBTC about 8000 
I/O pages to compute the shortest path transitive closure for 
a 200-node cyclic graph using 10 2K-byte pages in main 
memory. Our experiment results in Figure 10 show that 
RDFS needs 2403 l/O pages to compute the shortest path 
transitive closure for a 196~node grid graph using the same 
amount of main memory. We don’t claim that RDFS is better 
than PathBTC, rather our goal was to design an algorithm 
that is similar in computational efficiency to the PathBTC 
algorithm. When the graph size grows from 196 to more 
than 400 in our experiments, the I/O for RDFS increases 
dramatically. This is caused by the increase in the size and 
the number of the descendent sets that need to be brought 
into main memory, and by the fact that the time complexity of 
RDFS is O(n”). We think the Path-BTC algorithm will have 

Page Ix) BSR 
Ks?. RrlO BFSSP RDFS Warshall 

196-node Glid P-10 

40&pnCy,Gtid 

1iZ5;n-F~ Grid 

199 199 2403 63460 

806 806 16460 .345Kd 

4709 47810 102314 927710 

90,pn,zd;Gdd 17770 257110 464594 1967649 

Figure 10: Comparison Between Disk-based Algorithms. 
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a similar increase pattern for large graphs, although [13] does 
not report any result for graphs of size larger than 200. 

6 Conclusion and Future Work 
In this paper, we address the problem that standard relational 
database engines are not efficient in path queryprocessingre- 
quircd by applications such as IntelligentTransportation Sys- 
tems (ITS) [ 161. Our solution is to materialize a palh view of 
all shortest paths and to perform look-up instead of complete 
path search from-scratch for incoming path query requests. 
This allows efficient processing of path queries with a higher 
throughput. To refresh the path view efficiently, we pro- 
pose the BSR algorithm. BSR incorporates several innova- 
tive disk-based optimization techniques, namely sliding win- 
tioow and dynnmic reordering techniques. We present experi- 
ments conducted in evaluating our approach and in compar- 
ing it with existing disk-based methods using real GIS map 
data and synthetic grid graphs. Our results show while sen- 
sitive dynamic reorderings yield best performance, our new 
approach in general outperforms the alternative approaches 
proposed in the literature [13. 211 significantly for cyclic 
graphs such as GIS maps. Therefore, BSR can be deployed 
in centralized ITS routeguidance for more efficientpath view 
recomputation. 

Our future work includes comparing BSR with other graph 
clustering techniques such as min-cut partitioning, topologi- 
cal ordering, spatialpartitioning,connectivityclustering [17], 
etc. 
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