
© March 2009 Altera Corporation

QII51017-9.0.0
8. Best Practices for Incremental
Compilation Partitions and

Floorplan Assignments
Introduction
The Quartus® II incremental compilation feature allows you to partition a design,
compile partitions separately, and reuse results for unchanged partitions. It provides
the following benefits:

■ Reduces compilation times by as much as 70%

■ Preserves performance for unchanged design blocks

■ Provides repeatable results and reduces the number of compilations

■ Enables true team-based design

This document provides a set of guidelines to help you partition your design to take
advantage of Quartus II incremental compilation, and to help you create a design
floorplan (using LogicLockTM regions) to support the flow.

This document contains the following sections:

■ “Overview: Incremental Compilation”

■ “Why Plan Partitions and Floorplan Assignments for Incremental Compilation?”
on page 8–4

■ “Creating Design Partitions: General Partitioning Guidelines” on page 8–6

■ “Creating Design Partitions: Design Guidelines” on page 8–9

■ “Creating Design Partitions: Consider Additional Design Suggestions” on
page 8–23

■ “Checking Partition Quality” on page 8–29

■ “Introduction to Design Floorplans” on page 8–35

■ “Creating a Design Floorplan: Placement Guidelines” on page 8–38

■ “Checking Floorplan Quality” on page 8–43

■ “Recommended Design Flows and Application Examples” on page 8–45

■ “Potential Issues with Creating Partitions and Floorplan Assignments” on
page 8–47

Overview: Incremental Compilation
Quartus II incremental compilation is an optional compilation flow that enhances the
default Quartus II compilation. If you do not divide up your design for incremental
compilation, your design is compiled using the default “flat” compilation flow. This
section provides an overview of the incremental flow, and highlights several best
practices.
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–2 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Overview: Incremental Compilation
f For details about feature usage and application examples, refer to the Quartus II
Incremental Compilation for Hierarchical and Team-Based Design chapter in volume 1 of
the Quartus II Handbook.

The following procedure outlines the general Quartus II incremental compilation
flow:

1. Set up your design hierarchy and source code to support partitioning along logical
hierarchy boundaries. If you use a third-party synthesis tool, set up your tool to
generate separate netlist files.

2. Create design partition assignments in the Quartus II software to specify which
hierarchy blocks are compiled independently as partitions (including empty
partitions for any missing or incomplete logic blocks).

3. When the design is compiled, Quartus II Analysis and Synthesis and the Fitter
create separate netlists for each partition. These netlists are internal post-synthesis
and post-fit database representations of the design.

4. Select which netlist type to preserve for each partition. You can reuse the synthesis
or fitting netlist, or instruct the software to resynthesize the source files. You can
also import compilation results from another project as part of a bottom-up design
flow, as described in “Top-Down versus Bottom-Up Compilation Flows” on
page 8–3.

5. After part of the design changes, the software recompiles only the required
partitions and merges the new compilation results with existing netlists for other
partitions, according to the settings from step 4.

In some cases, as described in “Introduction to Design Floorplans” on page 8–35, you
should create a design floorplan with placement assignments to constrain each part of
the design to a specific region of the device.

Choosing the Netlist Type and Fitter Preservation Level
You must specify which post-compilation netlist you want to use in subsequent
compilations by specifying a Netlist Type setting for each partition. For post-fit
netlists, you also specify a Fitter Preservation Level setting to indicate the amount of
fitting information you want to preserve. Use the following general guidelines for
these standard Netlist Type settings:

■ Source File: Use this setting to resynthesize the source code (with any new
assignments and replace any previous synthesis or Fitter results)

■ If you modify the design source, the software automatically resynthesizes the
appropriate partitions with standard Netlist Type settings, so setting the
partition to Source File is optional in this case

■ Most assignments do not trigger an automatic recompilation, so setting the
partition to Source File is optional in this case

■ Post-Synthesis (default): Use this setting to re-fit the design (with any new Fitter
assignments) but preserve the synthesis results
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–3
Overview: Incremental Compilation
■ Post-Fit: Use this setting to preserve placement and performance results

■ The default setting for post-fit is to preserve placement and reroute the entire
design; this usually allows the router to find the best routing for all partitions
given their placement on the design, and gives very good performance
preservation

■ Post-Fit with Fitter Preservation Level set to Placement and Routing: Use these
settings to reserve routing, only if necessary

■ Use post-fit with routing if necessary to meet the timing requirements for
specific partitions

Top-Down versus Bottom-Up Compilation Flows
The Quartus II incremental compilation feature supports both top-down and
bottom-up compilation flows, and combinations of the two. The design flow affects
how much impact design partitions have on the design optimization.

f For more information about the different types of incremental design flows and
example applications, refer to the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

With top-down compilation, one designer performs placement and routing on the
entire design in one Quartus II project, although different designers or IP providers
can create and verify HDL code separately, or you can optimize critical design blocks
or IP cores before adding the rest of the design. Bottom-up design flows allow
individual designers or IP providers to complete the optimization of their design in
separate Quartus II projects, and then export the lower-level design partitions for
import and integration into the top-level project.

A top-down flow is generally simpler to perform than its bottom-up counterpart. For
example, having to export and import lower-level designs is eliminated. In addition, a
top-down approach provides the design software with information about the entire
design so it can perform some global placement and routing optimizations. Therefore,
it is often easier to ensure good quality of results with a top-down flow than with a
bottom-up flow.

The Quartus II incremental compilation feature is very flexible and supports
numerous design methodologies. You can mix top-down and bottom-up flows within
a single project. If the top-level design includes one or more design blocks that are
optimized by different designers or IP providers, you can import those blocks (using a
bottom-up methodology) into a project that also includes partitions for a top-down
incremental methodology. In addition, as you perform timing closure for a design,
you can create a subproject for one block of the design to be optimized by another
designer in a separate Quartus II project, and pass information about the rest of the
design to the subproject to obtain the best results.

By following a mixed design methodology, you can take advantage of the team-based
capabilities of a bottom-up flow while maintaining the advantages of a top-down
flow for most of the design logic.
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

8–4 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Why Plan Partitions and Floorplan Assignments for Incremental
1 Bottom-up incremental compilation is not supported in HardCopy® ASIC migration
flows. You cannot use a bottom-up methodology if you want to migrate to a
HardCopy ASIC. The Revision Compare feature requires that the HardCopy and
FPGA netlists are the same, and all operations performed on one revision must also
occur on the other revision. Unfortunately, using the bottom-up flow and importing
partitions does not support this requirement.

Generating Bottom-Up Design Partition Scripts for Project Management
If you are using a bottom-up or team-based methodology, you can create design
partition scripts to pass top-level constraints (such as floorplan assignments or
optimization constraints) to the designers of lower-level blocks.

The bottom-up design partition scripting feature provides a project manager interface
for managing resource and timing budgets in the top-level design. This interface
makes it easier for designers of lower-level modules to implement the instructions
from the project lead, and avoid conflicts between projects when importing and
incorporating the projects into the top-level design. Using the scripts also helps
reduce the need for further optimization to the designs after integration and improves
overall designer productivity and team collaboration.

The feature creates Tcl files that each designer can run to set up a project and
makefiles for designers who use a make environment. To use this feature, first set up
the top-level project with appropriate constraints and floorplan assignments to be
passed to lower levels. Then generate design partition scripts after successful
compilation of the top-level design. (You can perform a Fast Synthesis and Early
Timing Estimation instead of full compilation to reduce compilation time.) The
top-level design can have empty partitions when you generate the scripts. To generate
the scripts, on the Project menu, click Generate Bottom-Up Design Partition Scripts
and set the appropriate options.

f For details about using these scripts, refer to the Quartus II Incremental Compilation for
Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Why Plan Partitions and Floorplan Assignments for Incremental
Compilation?

Incremental compilation flows require more up-front planning than flat compilations.
For example, you might have to structure your source code or design hierarchy to
ensure that logic is grouped correctly for optimization. It is easier to implement the
correct logic grouping early in the design cycle than to restructure the code later.
Incremental compilation generally requires that you be more rigorous about
following good design practices than flat compilations.

Planning involves setting up the design logic for partitioning and may involve
planning placement assignments to create a floorplan. Not all design flows require
floorplan assignments. If you decide to add floorplan assignments later, when the
design is close to completion, well-planned partitions make floorplan creation much
easier. Poor partition or floorplan assignments can hurt design area utilization and
performance, making timing closure more difficult.
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–5
Why Plan Partitions and Floorplan Assignments for Incremental Compilation?
As FPGA devices get larger and more complex, following good design practices
becomes more important for all design flows.These planning issues are similar to the
requirements for a multiple-chip solution if you were using smaller devices, although
planning for one chip is much easier. Adhering to the recommended synchronous
design practices makes designs more robust and easier to debug. Using an
incremental compilation flow adds additional steps and requirements to your project,
but can provide significant benefits in design productivity by preserving the
performance of critical blocks and reducing compilation times.

Partition Boundaries and Optimization
If there are any cross-boundary optimizations between partitions, the software cannot
obtain separate results for each individual partition. Figure 8–1 describes this effect in
more detail. To allow the software to synthesize and place each partition
independently, the logical hierarchical boundaries between partitions are treated as
hard boundaries for logic optimization. It is important to understand this effect so
that you can effectively plan your design partitions.

To avoid cross-boundary optimizations, the software synthesizes each partition
without using any information about logic contained in other partitions. In a flat
compilation, the software uses unconnected signals, constants, inversions, and other
design information to perform optimizations. When you partition a design, these
types of optimizations do not take place on partition I/O ports. Good design
partitions do not rely on these types of logic optimizations.

When all partitions are placed together, the Fitter can perform placement optimizations
on the design as a whole to optimize the placement of cross-partition paths.
(However, the Fitter can never perform any logic optimizations such as physical
synthesis across the partition boundary.) When partitions are fit separately in a
bottom-up flow or if some partitions use previous post-fitting results, the Fitter does
not place and route the entire cross-boundary path at the same time and cannot fully
optimize placement across the partition boundaries. Good design partitions can be
placed independently because cross-partition paths are not the critical timing paths in
the design.

Figure 8–1. Effects of Partition Boundaries during Logic Optimization

Hierarchy A

Hierarchy B

Compile
with

partition
 boundaries

Compile
without
partition

boundaries

Hierarchy A

Hierarchy A

Hierarchy B

Hierarchy B

Presence of cross-boundary
optimization

Cannot obtain results of an
individual hierarchy for

incremental compilation

Hierarchies remain independent
during logic optimizations

Possible to incrementally
recompile each hierarchy

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–6 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: General Partitioning Guidelines
Because cross-boundary logic and placement optimizations cannot occur, the quality
of results may decrease as the number of partitions increases. Although more
partitions allow for greater reduction in compilation time, you might want to limit the
number of partitions to prevent degradation in the quality of results. Creating good
design partitions and good floorplan location assignments helps improve the
performance results for cross-partition paths. Guidelines for creating these
assignments are discussed in the following sections.

Creating Design Partitions: General Partitioning Guidelines
The first stage in planning your design partitions is to organize your source code so
that it supports good partition assignments. Although you can assign any hierarchical
block of your design as a design partition, following the design guidelines presented
in this section ensures better results. This section includes the following topics:

■ “Plan Design Hierarchy and Source Design Files” on page 8–6

■ “Partition Design by Functionality and Block Size” on page 8–8

■ “Partition Design by Clock Domain and Timing Criticality” on page 8–8

■ “Consider What Is Changing” on page 8–8

Plan Design Hierarchy and Source Design Files
Start by planning the entities in the design hierarchy. When you assign a hierarchical
instance as a design partition, the partition includes the assigned instance and any
entities instantiated below it that are not defined as separate partitions. You cannot
group separate hierarchical entities into one partition. Take advantage of the design
hierarchy to provide flexibility for partitioning and to support different design flows.
Keep logic in the “leaves” of the hierarchy tree instead of having a lot of logic at the
top level of the design. Doing so ensures that you can isolate partitions if required.

Create entities that can lead to partitions of approximately equal size. For example, do
not instantiate a lot of small entities at the same hierarchy level because it will be
difficult to group them to form reasonably sized partitions.

Figure 8–2 represents the logic blocks in a design hierarchy. The left side does not
follow the recommendations for entity organization, while the right side provides
much more flexibility for creating good partitions.
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–7
Creating Design Partitions: General Partitioning Guidelines
Create each entity in an independent file. The compiler uses a file checksum to detect
changes, and automatically recompiles a partition if its source file changes (for
standard Netlist Type settings). If the design entities for two partitions are defined in
the same file, changes to the logic in one partition trigger recompilation for both
partitions.

Design dependencies also affect which partitions are compiled when a source file
changes. If two partitions rely on the same lower-level entity definition, changes in
that lower level affect both partitions. Commands such as VHDL use and Verilog
HDL `include create dependencies between files, so that changes to one file can
trigger recompilations in all dependent files. Avoid these types of file dependencies if
they are not required. The Partition Dependent Files report for each partition in the
Analysis & Synthesis folder of the Compilation Report lists which files contribute to
each partition.

f For more details about what changes trigger an automatic recompilation, refer to the
Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook.

Using Partitions with Third-Party Synthesis Tools
Incremental compilation works well with third-party synthesis tools in addition to
Quartus II integrated synthesis. If you use a third-party synthesis tool, set up your
tool to create a separate Verilog Quartus Mapping File (.vqm) or EDIF Input File (.edf)
netlist for each hierarchical partition. In the Quartus II software, assign the top-level
entity from each netlist to be a design partition. The .vqm or .edf netlist file is treated
as the source file for the partition in the Quartus II software.

f For more details about incremental synthesis in third-party tools, refer to your tool
vendor's documentation or the Quartus II Incremental Compilation for Hierarchical and
Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Figure 8–2. Design Hierarchy Recommendations

Lots of logic in top-level block, small

entities all at same level –

hierarchy for incremental compilation
Large blocks are at “leaves” of tree, blocks are

similar sizes – Better design hierarchy

Poor design

TopTop
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

8–8 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: General Partitioning Guidelines
Partition Design by Functionality and Block Size
Initially, partition your design along functional boundaries. In a top-level system
block diagram, each block often is a natural design partition. Typically, each block of a
system is relatively independent and has more signal interaction internally than
interaction between blocks, which helps reduce optimizations between partition
boundaries. Keeping functional blocks together means that synthesis and fitting can
optimize related logic as a whole, which can lead to improved optimization.

Consider how many partitions you want to maintain in your design to determine how
large each partition should be. How much compilation time reduction you want to
achieve is also a factor, because compiling small partitions is typically faster than
compiling large partitions.

There is no minimum size for partitions; however, having too many partitions can
reduce the quality of results by limiting optimization. Ensure that the design
partitions are not too small. As a general guideline, each partition should be more
than ~2,000 logic elements (LEs) or adaptive logic modules (ALMs). If your design is
not yet complete when you partition the design, use previous designs to help you
estimate the size that each block is likely to be.

Partition Design by Clock Domain and Timing Criticality
Consider which clock in your design feeds the logic in each partition. If possible, keep
clock domains within one partition. When a clock signal is isolated to one partition, it
reduces dependence on other partitions for timing optimization. Isolating a clock
domain to one partition also allows better use of regional clock routing networks if
the partition logic is going to be constrained to one region of the design. In addition,
limiting the number of clocks within each partition simplifies the timing requirements
for each partition during optimization. Use an appropriate subsystem to handle any
clock domain transfers (such as a synchronization circuit, dual-port RAM, or FIFO).
You can include this logic inside the partition at one side of the transfer.

Try to isolate timing-critical logic from logic that you expect to meet its timing
requirements easily. Doing so allows you to preserve the satisfactory results for
non-critical partitions and focus optimization iterations on just the timing-critical
portions of the design to minimize compilation time.

Consider What Is Changing
When assigning partitions, think about what is changing in the design. Is there any
intellectual property (IP) or reused logic for which the source code will not change
during future design iterations? If so, define the logic in its own partition so that you
can compile once and immediately preserve the results, and you will not have to
compile that part of the design again. Is some logic being tuned or optimized, or are
specifications changing for part of the design? If so, define changing logic in its own
partition so that you can recompile only the changing part while the rest of the design
stays the same.

As a general rule, create partitions to isolate logic that will change from logic that will
not change. Partitioning a design in this way maximizes the preservation of
unchanged logic and minimizes compilation time.
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–9
Creating Design Partitions: Design Guidelines
Creating Design Partitions: Design Guidelines
Follow the partitioning guidelines presented in this section when creating or
modifying the HDL code for each design block that you might want to assign as a
design partition. Not all of these recommendations have to be followed exactly to be
successful with incremental compilation, but adhering to as many as possible
maximizes your chances of success.

This section includes the following topics:

■ “Register Partition Inputs and Outputs” on page 8–9

■ “Minimize Cross-Partition-Boundary I/O” on page 8–10

■ “Avoid the Need for Logic Optimization Across Partitions” on page 8–11

This last subsection includes examples of the types of optimizations that are
prevented by partition boundaries, and describes how you can structure or modify
your partitions to avoid such optimizations.

Register Partition Inputs and Outputs
Use registers at partition input and output connections that are potentially
timing-critical. Registers minimize the delays on inter-partition paths, and prevent the
need for cross-boundary logic optimizations.

If every partition boundary has a register as shown in Figure 8–3, every
register-to-register timing path between partitions includes only routing delay.
Therefore, the timing paths between partitions are likely not timing-critical, and the
Fitter can generally place each partition independently from other partitions. This
advantage makes it easier to create floorplan location assignments for each separate
partition, and is especially important for bottom-up flows in which each partition is
placed completely independently. In addition, the partition boundary does not affect
combinational logic optimization because each register-to-register logic path is
contained within a single partition.

If a design cannot include both input and output registers for each partition due to
latency or resource utilization concerns, choose to register one end of each connection.
If you register every partition output, for example, the combinational logic that occurs
in each cross-partition path is included in one partition so that it can be optimized
together.

It is also good synchronous design practice to include registers for every output of a
design block. Registered outputs ensure that the input timing performance for each
design block is controlled exclusively within the destination logic block.

Figure 8–3. Registering Partition I/O

Partition A Partition B

Cross-partition
routing delay is not the

critical timing path

D Q D Q D Q D Q
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–10 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Design Guidelines
The statistics described in “Partition Statistics Report” on page 8–33 list how many
I/Os are registered or unregistered. The Incremental Compilation Advisor described
on page 8–43 lists the unregistered ports for each partition.

Minimize Cross-Partition-Boundary I/O
Minimize the number of I/O paths that cross between partition boundaries to keep
logic paths within a single partition for optimization. Doing so makes partitions more
independent for both logic and placement optimization.

This guideline is most important for the timing-critical and high-speed connections
between partitions, especially in cases where the input and output of each partition is
not registered. Slow connections that are not timing-critical are acceptable because
they should not impact the overall timing performance of the design. If there are
timing-critical paths between partitions, rework the partitions to avoid these
inter-partition paths.

When dividing your design into partitions, consider the types of functions at the
partition boundaries. Figure 8–4 shows an expansive function with more outputs than
inputs on the left side, which makes a poor partition boundary, and a better place to
assign the partition boundary that minimizes cross-partition I/Os on the right side.
Adding registers to one or both sides of the cross-partition path in this example would
improve the partition quality even more.

Another way to minimize connections between partitions is to avoid using
combinational “glue logic” between partitions. You can often move the logic to the
partition at one end of the connection to keep more logic paths within one partition.
For example, the bottom diagram in Figure 8–5 includes a new level of hierarchy C
that is defined as a partition instead of block B. It is clear that there are fewer I/O
connections between partitions A and C than between partitions A and B in the top
diagram.

Figure 8–4. Minimizing I/O between Partitions by Moving the Partition Boundary

Expansive function;
Not ideal partition boundary

A A B

Better part of design to assign
a partition output boundary

B

Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–11
Creating Design Partitions: Design Guidelines
The statistics described in “Partition Statistics Report” on page 8–33 list the number of
I/O ports as well as the number of inter-partition connections for each partition. The
Incremental Compilation Advisor described on “Incremental Compilation Advisor”
on page 8–43 lists the number of intra-partition (within a partition) and inter-partition
(between partitions) timing edges.

Avoid the Need for Logic Optimization Across Partitions
As discussed in “Partition Boundaries and Optimization” on page 8–5, partition
boundaries prevent logic optimizations across partitions. Remember this rule: Logic
cannot be optimized or merged across a partition boundary.

To ensure correct and optimal logic optimization, follow the guidelines in this section.
In some cases, especially if part of the design is already complete or comes from
another designer, these guidelines may not have been followed when the source code
was created. These guidelines are not mandatory to implement an incremental
compilation flow, but can improve the quality of results. If assigning a partition affects
resource utilization or timing performance of a design block as compared to the flat
design, it might be due to one of the issues described in this section. Many of the
examples provide suggestions for making simple changes to your design or hierarchy
to move the partition boundary and improve your results.

These guidelines ensure that your design does not require any logic optimization
across partitions:

■ “Keep Logic in the Same Partition for Optimization and Merging”

■ “Keep Constants in the Same Partition as Logic” on page 8–13

■ “Avoid Unconnected Partition I/O” on page 8–14

■ “Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together” on
page 8–14

Figure 8–5. Minimizing I/O between Partitions by Modifying Glue Logic

Top

A B
Glue
Logic

Many cross-partition paths: Poor design partition assignment

Fewer cross-partition paths: Better partitions

Top

A
C

Glue
Logic

B

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–12 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Design Guidelines
■ “Invert Clocks in Destination Partitions” on page 8–16

■ “Connect I/O Directly to I/O Register for Packing Across Partition Boundaries”
on page 8–16

■ “Do Not Use Internal Tri-States” on page 8–20

■ “Include All Tri-State and Enable Logic in the Same Partition” on page 8–20

■ “Include Bidirectional I/O Registers in the Same Partition” on page 8–21

Keep Logic in the Same Partition for Optimization and Merging
If any design logic requires logic optimization or merging to obtain optimal results,
ensure all the logic is part of the same partition.

If a combinational logic path is split across two partitions, the logic cannot be
optimized or merged into one logic cell in the device. This effect can result in an extra
logic cell in the path, increasing the logic delay. As a very simple example, consider
two inverters on the same signal in two different partitions, A and B, as shown in the
left side of Figure 8–6. To maintain correct incremental functionality, these two
inverters cannot be removed from the design during optimization because they occur
in different design partitions. The software cannot use information about other
partitions when it compiles each partition, because each partition is allowed to change
independently from the other. On the right side of the figure, a new hierarchy block C
has been created and defined as a partition to group the logic in blocks A and B
instead of having two separate partitions. With the logic contained in one partition,
the software can optimize the logic and remove the two inverters (shown in gray
color), which reduces the delay for that logic path. Removing two inverters is not a
significant reduction in resource utilization because inversion logic is readily
available in Altera device architecture; however, it is a good demonstration of the
types of logic optimization that are prevented by partition boundaries.

In a flat design, the Quartus II Fitter can also merge logical instantiations into the
same physical device resource. With incremental compilation, logic defined in
different partitions cannot be merged to use the same physical device resource.

For example, the Fitter can merge two single-port RAMs from a design into one
dedicated RAM block in the device. If the two RAMs are defined in different
partitions, the Fitter cannot merge them into one dedicated device RAM block.

Figure 8–6. Keeping Logic in the Same Partition for Optimization

A B

Inverters in separate partitions A and B
cannot be removed from design:
Poor design partition assignment

Inverters in same partition C can be removed:
Better partition

A

C

B

Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–13
Creating Design Partitions: Design Guidelines
This limitation is a concern only if merging is required to fit the design in the target
device. Therefore, you are more likely to encounter this issue during troubleshooting
than during planning, if your design uses more logic than is available in the device.

Merging PLLs and Transceivers (GXB)

Multiple instances of the ALTPLL megafunction can use the same PLL resource on the
device. Similarly, GXB transceiver instances can share high-speed serial interface
(HSSI) resources in the same quad as other instances.

The Fitter can merge multiple instantiations of these blocks into the same device
resource, even if it requires optimization across partitions (beginning with the
Quartus II software version 7.2). Therefore, there are no restrictions for PLLs and
high-speed transceiver blocks when setting up partitions.

Keep Constants in the Same Partition as Logic
Because the software cannot optimize across a partition boundary, constants are not
propagated across partition boundaries. A signal that is constant (1/VCC or 0/GND) in
one partition cannot affect another partition.

For example, the left side of Figure 8–7 shows part of a design in which partition A
defines some signals as constants (and assumes that the other input connections come
from elsewhere in the design and are not shown in the figure). Constants like this
could appear due to parameter/generic settings or configurations with parameters,
setting a bus to a specific set of values, or could result from optimizations that occur
within a group of logic. Because the blocks are independent, the software cannot
optimize the logic in block B based on the information from block A. The right side of
Figure 8–7 shows a new partition C that groups the logic in blocks A and B, instead of
having the two separate partitions. Within the single partition, the software can use
the constants to optimize and remove much of the logic in block B (shown in gray
color).

The statistics described in “Partition Statistics Report” on page 8–33 list how many
input ports are fed by GND or VCC. The Incremental Compilation Advisor described
on page 8–43 lists the ports.

Figure 8–7. Keeping Constants in the Same Partition as the Logic They Feed

Connections to constants in another partition:
Poor design partition assignment

Constants in same partition C are used to optimize:
Better partition

VCC

GND

A

C

A

D Q

VCC

GND

BB

D Q
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–14 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Design Guidelines
Avoid Unconnected Partition I/O
When a port is left unconnected, optimizations might be able to remove logic driving
that port and improve results, similar to a constant connection. However, these
optimizations are not allowed across partitions in incremental compilation, because
they would create cross-partition dependence. Connect ports to an appropriate node
or remove them from the partition. If you know a port will not be used, consider
defining a wrapper module with a port interface that reflects this fact.

For example, the left side of Figure 8–8 shows a design that has a 10-bit function
defined in partition A, but has only 5 bits connected in partition B. In a flat design,
you would expect the logic for the other unused 5 bits to be removed during
synthesis. With incremental compilation, synthesis does not remove the unused logic
from partition A because partition B is allowed to change independently from
partition A. Therefore, you could later connect all 10 bits in partition B and use all 10
bits from partition A. In this case, if you know that you will not use the other 5 bits of
partition A, you should remove the unconnected ports and replace them with ground
signals inside A. You can create a new wrapper file in the design hierarchy to do this,
as shown on the right side of the figure. A new partition C contains the logic from A
but includes only the 5 output ports required for connection with partition B. Within
this new partition C, the logic for the unused 5 bits can be removed from the design,
reducing area utilization.

The statistics described in “Partition Statistics Report” on page 8–33 list how many
I/Os are unconnected. The Incremental Compilation Advisor described on page 8–43
lists the unconnected ports.

Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together
Do not use the same signal to drive multiple ports of a single partition or directly
connect two ports of a partition.

Figure 8–8. Avoiding Unconnected Partition I/O by Creating a Wrapper File

A

10-bit
Logic

Unused logic is
preserved in A:

Poor design
partition

assignment

B

Wrapper file C set
as partition:

Better partition

5-bit
Logic

C

B

A

Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–15
Creating Design Partitions: Design Guidelines
If the same signal drives multiple ports of a partition, or if two ports of a partition are
directly connected, those ports are logically equivalent. However, because the
software has no information about connections made in another partition (including
the Top partition), the compilation cannot take advantage of the equivalence. This
restriction usually results in sub-optimal results.

If your design has these types of connections, redefine the partition boundaries to
remove the affected ports. If one signal from a higher-level partition feeds two input
ports of the same partition, feed the one signal into the partition and then make the
two connections within the partition. If an output port drives an input port of the
same partition, the connection can be made internally without going through any I/O
ports. If an input port drives an output port directly, the connection can likely be
implemented without the ports in the lower-level partition by connecting the signals
in a higher-level design partition.

Figure 8–9 shows an example of one signal driving more than one port. The left
diagram shows a design where a single clock signal is used to drive both the read and
write clocks of a RAM block. Because the RAM block is compiled as a separate
partition A, the RAM block is implemented as though there are two unique clocks. If
you know that the port connectivity will not change (that is, the ports will always be
driven by the same signal in the Top partition in this case), redefine the port interface
so there is only a single port that can drive both connections inside the partition. You
can create a wrapper file to define a partition that has fewer ports, as shown in the
diagram on the right side. With the single clock fed into the partition, the RAM can be
optimized into a single-clock RAM instead of a dual-clock RAM. Single-clock RAM
can provide better performance in the device architecture. In addition, partition A
might use two global routing lines for the two copies of the clock signal. Partition B
can use one global line that fans out to all destinations. Using just the single port
connection prevents overuse of global routing resources.

The Incremental Compilation Advisor described on “Incremental Compilation
Advisor” on page 8–43 lists partition ports that have the same driving signal, and
ports that are directly connected together.

Figure 8–9. Preventing One Signal from Driving Multiple Partition Inputs

Top

rd_clk

wr_clk

Dual-
clock
RAM

A

Clock

Top

rd_clk

wr_clk

Single-
clock
RAM

A

Clock

B

Two clocks cannot be
treated as the same signal:

Poor design partition assignment

With Partition B, RAM can
be optimized for one clock:

Better partition
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–16 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Design Guidelines
Invert Clocks in Destination Partitions
For best results, clock inversion should be done in the destination logic array block
(LAB), because each LAB contains clock inversion circuitry in the device architecture.
In a flat compilation, the software can optimize a clock inversion to propagate it to the
destination LABs regardless of where the inversion takes place in the design
hierarchy. However, clock inversion cannot propagate through a partition boundary
to take advantage of the inversion architecture in the destination LABs.

With partition boundaries as shown on the left side of Figure 8–10, the Quartus II
software uses logic to invert the signal in the partition that defines the inversion (the
Top partition in this example), and then routes the signal on a global clock resource to
its destinations (in partitions A and B). The inverted clock acts as a gated clock with
high skew. A better solution is to invert the clock signal in the destination partitions as
shown on the right side of the figure. In this case the correct logic and routing
resources can be used, and the signal is not a gated clock.

Notice that this diagram also shows another example of a single pin feeding two ports
of a partition boundary. In the left diagram, partition B does not have the information
that the clock and inverted clock come from the same source. In the right diagram,
partition B has more information to help optimize the design because the clock is
connected as one port of the partition.

Connect I/O Directly to I/O Register for Packing Across Partition Boundaries
Cross-partition register packing of I/O registers is allowed in certain cases where
your input and output pins exist in the top-level hierarchy (and the Top partition), but
the corresponding I/O registers exist in other partitions.

The following specific circumstances are required for input pin cross-partition register
packing:

■ The input pin feeds exactly one register.

■ The path between the input pin and register includes only input ports of partitions
that have one fan-out each.

The following specific circumstances are required for output register cross-partition
register packing:

■ The register feeds exactly one output pin.

Figure 8–10. Inverting Clock Signal in Destination Partitions

Inverter acts as clock gating (skew!):
Poor design partition assignment

Clock inverted inside destination LABs,
only one global routing signal: Better partition

Clock

Top Top

Clock

A

B

A

B

Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–17
Creating Design Partitions: Design Guidelines
■ The output pin is fed by only one signal.

■ The path between the register and output pin includes only output ports of
partitions that have one fan-out each.

The following examples of I/O register packing illustrate this point using block
diagram file (.bdf) schematics to describe the design logic.

Example 1—Output Register in Partition Feeding Multiple Output Pins

In this example, a subdesign contains a single register, as shown in Figure 8–11.

If the top-level design instantiates the subdesign with a single fan-out directly feeding
an output pin, and designates the subdesign as a separate design partition, the
Quartus II software can perform cross-partition register packing because the single
partition port feeds the output pin directly.

In this example, the top-level design instantiates the subdesign as an output register
with more than one fan-out signal, as shown in Figure 8–12.

In this case, the software does not perform output register packing. If there is a Fast
Output Register assignment on pin out, the software issues a warning that the Fitter
cannot pack the node to an I/O pin because the node and the I/O cell are connected
across a design partition boundary.

This type of cross-partition register packing is not permitted because it requires
modification to the interface of the subdesign partition. To perform incremental
compilation, the software must preserve the interface of design partitions.

To allow the software to pack the register in the subdesign from Figure 8–11 with the
output pin out in Figure 8–12, restructure your HDL code so that output registers
directly connects output pins by making one of the following changes:

Figure 8–11. Subdesign with One Register, Designated as a Separate Partition

Figure 8–12. Top-Level Design Instantiating the Subdesign in Figure 8–11 with Two Output Pins
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–18 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Design Guidelines
■ Place the register in the same partition as the output pin. The simplest option is to
move the register from the subdesign partition into the partition containing the
output pin. This guarantees that the Fitter can optimize the two nodes without
violating any partition boundaries.

■ Duplicate the register in your subdesign HDL as in Figure 8–13 so that each
register feeds only one pin, then connect the extra output pin to the new port in the
top-level design as shown in Figure 8–14. This converts the cross-partition register
packing into the simplest case where each register has a single fan-out.

Example 2—Input Register in Partition Fed by an Inverted Input Pin or Output Register in
Partition Feeding an Inverted Output Pin

In this example, a subdesign designated as a separate partition contains a register, as
shown in Figure 8–11. The top-level design in Figure 8–15 instantiates the subdesign
as an input register with the input pin inverted. The top-level design in Figure 8–16
instantiates the subdesign as an output register with the signal inverted before
feeding an output pin.

Figure 8–13. Modified Subdesign from Figure 8–11 with Two Output Registers and Two Output Ports

Figure 8–14. Modified Top-Level Design from Figure 8–12 Connecting Two Output Ports to Output Pins
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–19
Creating Design Partitions: Design Guidelines
In these cases, the software does not perform register packing. If there is a Fast Input
Register assignment on pin in in Figure 8–15 or a Fast Output Register assignment
on pin out in Figure 8–16, the software issues a warning that the Fitter cannot pack
the node to an I/O pin because the node and I/O cell are connected across a design
partition boundary.

This type of register packing is not permitted because it requires moving logic across a
design partition boundary to place into a single I/O device atom. To perform register
packing, either the register must be moved out of the subdesign partition or the
inverter must be moved into the subdesign partition to be implemented in the
register.

To allow the software to pack the register in the subdesign from Figure 8–11 with the
input pin in in Figure 8–15 or the output pin out in Figure 8–16, restructure your
HDL code to place the register in the same partition as the inverter by making one of
the following changes:

■ Move the register from the subdesign partition into the top-level partition
containing the pin. This ensures that the Fitter can optimize the I/O register and
inverter without violating any partition boundaries.

■ Move the inverter from the top-level block into the subdesign, then connect the
subdesign directly to a pin in the top-level design. This allows the Fitter to
optimize the inverter into the register implementation, so the register is directly
connected to a pin, which enables register packing.

Figure 8–15. Top-Level Design Instantiating the Subdesign in Figure 8–11 as an Input Register with an Inverted Input Pin

Figure 8–16. Top-Level Design Instantiating the Subdesign in Figure 8–11 as an Output Register Feeding an Inverted Output
Pin
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–20 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Design Guidelines
Do Not Use Internal Tri-States
Internal tri-state signals are not recommended for FPGAs because the device
architecture does not include internal tri-state logic. If designs do use internal
tri-states in a flat design (with no partitions), the tri-state logic is typically converted
to OR gates or multiplexing logic. But if tri-state logic occurs on a hierarchical
partition boundary, the software cannot convert the logic to combinational gates
because the partition could be connected to a top-level device I/O through another
partition.

Figure 8–17 shows a design with partitions that are not supported for incremental
compilation due to the internal tri-state output logic on the partition boundaries.
Instead of using internal tri-state logic for partition outputs, implement the correct
logic to select between the two signals. Doing so is good practice even when there are
no partitions, because such logic explicitly defines the behavior for the internal signals
instead of relying on the software to convert the tri-state signals into logic.

Do not use tri-state signals or bidirectional ports on hierarchical partition boundaries,
unless the port is connected directly to a top-level I/O pin on the device. If you must
use internal tri-state logic, ensure that all the control and destination logic is contained
in the same partition, in which case the software can convert the internal tri-state
signals into multiplexing logic like in a flat design. If possible, you should avoid using
internal tri-state logic in any Altera FPGA design to ensure that you get the desired
implementation when the design is compiled for the target device architecture.

Include All Tri-State and Enable Logic in the Same Partition
When multiple output signals use tri-state logic to drive a device output pin, the
Quartus II software merges the logic into one tri-state output pin. The software cannot
merge tri-state outputs into one output pin if any of the tri-state logic occurs on a
partition boundary. Similarly, output pins with an output enable signal cannot be
packed into the device I/O cell if the output enable logic is part of a different partition
from the output register. To allow register packing for output pins with an output
enable signal, structure your HDL code or design partition assignments so that the
register and enable logic are defined in the same partition.

Figure 8–17. Unsupported Internal Tri-State Signals

Design results in Quartus II error message:
The software cannot synthesize this

design and maintain incremental functionality

Top
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–21
Creating Design Partitions: Design Guidelines
Figure 8–18 shows a design with tri-state output signals that feed a device
bidirectional I/O pin (assuming that the input connection feeds elsewhere in the
design and is not shown in the figure). On the left side of the figure, the tri-state
output signals appear as the outputs of two separate partitions. In this case, the
software cannot implement the specified logic and maintain incremental functionality.
On the right side, another level of hierarchy C has been created to group the logic
from blocks A and B. With this single partition C, the Quartus II software can merge
the two tri-state output signals and implement them in the tri-state logic available in
the device I/O element.

Include Bidirectional I/O Registers in the Same Partition
For a bidirectional partition port that feeds a bidirectional I/O pin at the top level, all
the logic that forms the bidirectional I/O cell must reside in the same partition. This
guideline applies to the Stratix II family, Cyclone® II family, and all older Altera device
families that include I/O registers. In addition, as discussed in the previous two
recommendations, the I/O logic must feed the I/O pin without any intervening logic.

In Figure 8–19, for the software to implement all three registers in the I/O element
along with the tri-state logic, all the I/O logic must be defined inside the same
partition. The logic connected to the registers can occur in the same partition or any
other partition; only the I/O registers must be grouped with the tri-state logic
definition. The bidirectional I/O port of the partition must be directly connected to
the bidirectional device pin at the top level. The signal can go through several
partition boundaries if necessary, as long as the connection path contains no logic.

Figure 8–18. Including All Tri-State Output Logic in the Same Partition

A

B

Top

A

B

Multiple tri-states on partition boundaries:
Illegal partitions

Tri-state output logic within same partition C:
Better partition

Top Top

C

Top

A

B

© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–22 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Design Guidelines
Summary of Guidelines Related to Logic Optimization Across Partitions
Follow the guidelines presented in this section to ensure that your design does not
require any logic optimization across partitions:

■ Keep logic in the same partition for optimization and merging

■ Keep constants in the same partition as logic

■ Avoid unconnected partition I/O

■ Avoid signals that drive multiple partition I/O or connect I/O together

■ Invert clocks in destination partitions

■ Connect I/O directly to I/O register for packing across partition boundaries

■ Do not use internal tri-states

■ Include all tri-state and enable logic in the same partition

■ Include bidirectional I/O registers in the same partition

Remember that these guidelines are not strict rules to implement an incremental
compilation flow, but can improve the quality of results. When creating source design
code, keep these guidelines in mind and organize your HDL code to support good
partition boundaries. For designs that are already complete, assess whether assigning
a partition affects the resource utilization or timing performance of a design block as
compared to the flat design, and make the appropriate changes to your design or
hierarchy to improve your results.

Figure 8–19. Including All Bidirectional I/O Registers in the Same Partition

Logic
to/from

any
partition

Top

Output Enable Register

Output
Register Tri-State

Logic

Input
Register

Partition

D

D

D

Q

Q

Q

Bidirectional logic is within one partition, and I/O logic directly feeds I/O pin

Bidir.
pin
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–23
Creating Design Partitions: Consider Additional Design Suggestions
Creating Design Partitions: Consider Additional Design Suggestions
This section includes several additional design practices that may improve success in
incremental compilation flows, if they are applicable to your design:

■ “Balance Logic Resources” on page 8–23

■ “Balance Global Routing Signals and Clock Networks if Required” on page 8–24

■ “Assign Virtual Pins in Bottom-Up Flows” on page 8–25

■ “Perform Timing Budgeting if Required” on page 8–26

■ “Consider a Cascaded Reset Structure” on page 8–26

■ “Drive Clocks Directly in Bottom-Up Flows” on page 8–28

■ “Recreate PLLs for Lower-Level Partitions if Required in Bottom-Up Flows” on
page 8–28

Balance Logic Resources
When using incremental compilation, the software synthesizes each partition
separately with no data about the resources used in other partitions. This means that
device resources could be overused in the individual partitions during synthesis,
thus, the design may not fit in the target device when the partitions are merged.

In a bottom-up design flow in which designers optimize their lower-level designs and
export them to a top-level design, the software places and routes each partition
separately. In some cases, partitions can use conflicting resources when combined at
the top level.

For example, in the standard synthesis flow, the Quartus II Compiler can perform
automated resource balancing for DSP blocks or RAM blocks and convert some of the
logic into regular logic cells to prevent overuse. Without data about DSP and RAM
blocks used in other partitions, it is possible for the logic in each separate partition to
maximize the use of a particular device resource.

To avoid these effects, you may have to perform manual resource balancing across
partitions. This is more applicable to bottom-up design flows, because top-down
compilation usually handles resource balancing without any user intervention.

To prevent overuse of device resources such as DSP or RAM blocks, you may be able
to manually balance the resources. You can use the Quartus II synthesis options to
control inference of megafunctions that use the DSP or RAM blocks. You can also use
the MegaWizardTM Plug-In Manager to customize your RAM or DSP megafunctions to
use regular logic instead of the dedicated hardware blocks.

To assign a number of DSP or RAM resources for each partition, use the following
logic options to specify the maximum number of dedicated logic blocks that the
software can use in the specified partition: Maximum DSP Block Usage, Maximum
Number of M4K/M9K Memory Blocks, or Maximum Number of M-RAM/M144K
Memory Blocks. You can set these options globally for all partitions. To set an option
for all partitions, on the Assignments menu, click Settings. Under Category, select
Analysis & Synthesis Settings. Click More Settings, and in the Existing option
settings list, select the appropriate option. You can also set the option for a specific
partition using the Assignment Editor. Select the assignment name, apply it to the root
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–24 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Consider Additional Design Suggestions
entity of a partition, and set an integer as the value. The partition-specific assignment
overrides the global assignment, if any. However, each partition that does not have a
partition-specific assignment can use the number of DSP or RAM blocks set by the
global assignment. Be aware that this behavior can lead to over-allocation of
dedicated logic blocks, eventually resulting in a no-fit error.

f For more information about resource balancing when using Quartus II synthesis, refer
to the “Megafunction Inference Control” section in the Quartus II Integrated Synthesis
chapter in volume 1 of the Quartus II Handbook. For more tips about resource
balancing and reducing resource utilization, refer to the appropriate “Resource
Utilization Optimization Techniques” section in the Area and Timing Optimization
chapter in volume 2 of the Quartus II Handbook.

It is often helpful to create a LogicLock region to isolate the placement of each
partition, especially in bottom-up flows, to minimize the chance that the logic in more
than one partition uses the same logic resource. However, there are situations in
which partition placement may still cause conflicts at the top level. For example, you
can design a partition one way in a lower-level design (such as using an M-RAM
memory block) and then instantiate it in two different ways in the top level (such as
one using an M-RAM block and another using an M4K block). In this case, you can
export a post-fit netlist with no placement information from the lower-level design
and allow the software to refit the logic at the top level.

Balance Global Routing Signals and Clock Networks if Required
If your design is very complex and has many clocks, you may have to allocate global
routing resources between the different design partitions. In most cases, you do not
have to allocate routing because the software finds the best solution for the global
signals.

Global routing signals can cause conflicts when multiple projects are imported into a
top-level design. The Quartus II software automatically promotes high fan-out signals
to use global routing resources available in the device. Lower-level partitions can use
the same global routing resources, thus causing conflicts at the top level. In addition,
LAB placement depends on whether the inputs to the logic cells within the LAB are
using a global clock signal. Therefore, problems can occur if a design does not use a
global signal in the lower-level design, but does use a global signal in the top-level
design.

To avoid these problems, the project lead can first determine which partitions use
which type of global routing signals. Each designer of a lower-level partition can then
assign the appropriate type of global signals manually and prevent other signals from
using global routing resources, or set a maximum number of clocks for the partition.

You can use the Global Signal assignment to force or prevent the use of a global
routing line, making the assignment to a clock source node or signal. You can also
assign certain types of global clock resources in some device families, such as regional
clocks that cover only part of the device. Alternatively, designers of lower-level
partitions can specify the number of clocks allowed in the project using the maximum
clocks allowed options. On the Assignments menu, click Settings. Under Category,
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–25
Creating Design Partitions: Consider Additional Design Suggestions
select Fitter Settings. Click More Settings, and in the Existing option settings list,
select the appropriate option. Choose Maximum number of clocks of any type
allowed, or use the Maximum number of global clocks allowed, Maximum number
of regional clocks allowed, and Maximum number of periphery clocks allowed
options to restrict the number of clock resources of a given type in the project.

You can view the resource coverage of regional clocks in the Chip Planner, and then
align LogicLock regions that constrain partition placement with available global clock
routing resources. For example, if the LogicLock region for a particular partition is
limited to one device quadrant, that partition’s clock can use a regional clock routing
type that covers only one device quadrant. If all partition logic is available, the project
lead can compile the entire design at the top level with floorplan assignments to allow
the use of regional clocks that span only a part of the chip. You can use the Fitter ’s
results to make assignments when optimizing the lower-level partitions in separate
Quartus II projects.

If you require more control when planning a design with imported partitions, you can
assign a specific signal to use a particular clock network in Stratix II devices and
newer device families by assigning the clock control block instance called CLKCTRL.
Use the Global Clock CLKCTRL Location logic option. You can make a
point-to-point assignment from a clock source node to a destination node, or a
single-point assignment to a clock source node. Set the assignment value to the name
of the clock control block: CLKCTRL_G<global network number> to choose one of the
global routing networks or CLKCTRL_R<regional network number> to choose one of the
dedicated regional routing networks in the device.

If you want to disable the automatic global promotion performed in the Fitter to
prevent other signals from being placed on global (or regional) routing networks, turn
off the Auto Global Clock and Auto Global Register Control Signals options. On the
Assignments menu, click Settings. On the Fitter Settings page, click More Settings
and change the settings to Off.

If you are performing a bottom-up flow using design partition scripts, the software
can automatically write the commands to pass global constraints and turn off the
automatic options. For more information, refer to “Generating Bottom-Up Design
Partition Scripts for Project Management” on page 8–4.

Alternatively, to avoid problems when importing, direct the Fitter to discard the
placement and routing of the imported netlist by setting the Fitter preservation level
property of the partition to Netlist Only. With this option, the Fitter reassigns all the
global signals for this particular partition when compiling the top-level design.

Assign Virtual Pins in Bottom-Up Flows
Virtual pins map lower-level design I/Os to internal cells. Use them when the number
of I/Os on a lower-level design exceeds the device I/O count, and to increase the
timing accuracy of cross-partition paths.

Make a Virtual Pin assignment in the Assignment Editor for lower-level design I/Os
that will become internal nodes in the top level. Leave clock pins mapped to I/O pins
to ensure proper routing.

You can specify locations for the virtual pins that correspond to the placement of other
partitions. You can also make timing assignments to the virtual pins to define a timing
budget, as described in the following section.
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–26 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Consider Additional Design Suggestions
Virtual pins are created automatically from the top-level design if you use the
Generate Bottom-Up Design Partition Scripts command. The scripts place the
virtual pins to correspond with other partitions’ placement from the top-level design.
Refer to “Generating Bottom-Up Design Partition Scripts for Project Management” on
page 8–4 for details.

Perform Timing Budgeting if Required
If you optimize lower-level partitions independently and import them to the top level,
or compile with empty partitions, any unregistered paths that cross between
partitions are not optimized as an entire path. In these cases, the Compiler has no
information about the placement of the logic that connects to the I/O ports. If the logic
in one partition is placed far away from logic in another partition, the routing delay
between the logic can lead to problems in meeting the timing requirements. You can
reduce this effect by ensuring that input and output ports of the partitions are
registered whenever possible.

To ensure that the Compiler correctly optimizes the input and output logic in each
partition, you may be required to perform some manual timing budgeting. For each
unregistered timing path that crosses between partitions, make timing assignments
on the corresponding I/O path in each partition to constrain both ends of the path to
the budgeted timing delay. Assigning a timing budget for each part of the connection
ensures that the Compiler optimizes the paths appropriately.

When performing manual timing budgeting in a lower-level partition for I/O ports
that become internal partition connections in a top-level design, you can assign
location and/or timing constraints to the virtual pin that represents each connection
to further improve the quality of the timing budget. Refer to the previous section for a
description of virtual pins.

If you are performing a bottom-up flow using the design partition scripts, the
software can write I/O timing budget constraints automatically for virtual pins. Refer
to “Generating Bottom-Up Design Partition Scripts for Project Management” on
page 8–4 for details.

Consider a Cascaded Reset Structure
Designs typically have a global asynchronous reset signal where a top-level signal
feeds all partitions. To minimize skew for the high fan-out signal, the global reset
signal is typically placed onto a global routing resource.

In some cases, having one global reset signal can lead to recovery and removal time
problems. This issue is not specific to incremental flows; it could be applicable in any
large high-speed design. For incremental flows, the global reset signal also creates a
timing dependency between the Top partition and lower-level partitions.

For incremental compilation, minimizing the impact of global structures is helpful. To
isolate each partition, consider adding reset synchronizers. By using cascaded reset
structures, the design intent is to reduce the inter-partition fan-out of the reset signal,
thereby minimizing the effect of the global signal. Reducing the fan-out of the global
reset signal also provides more flexibility in routing the cascaded signals, and may
help recovery and removal times in some cases.
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–27
Creating Design Partitions: Consider Additional Design Suggestions
This suggestion can help in large designs, regardless of whether you are using
incremental compilation. However, if one global signal can feed all the logic in its
domain and meet recovery and removal times, you probably do not have to follow
this recommendation. It is more relevant for high-performance designs where
meeting timing on the reset logic can be challenging. Isolating each partition and
allowing more flexibility in global routing structures is an additional advantage in
incremental flows.

If you add additional reset synchronizers to your design, it adds latency to the reset
path, so be sure that this is acceptable in your design. In addition, parts of the design
may come out of reset in different clock cycles. You can balance the latency or add
hand-shaking logic between partitions, if necessary, to accommodate these
differences.

Figure 8–20 shows a cascaded reset structure. The signal is first synchronized as it
comes on the chip, following good synchronous design practices. This logic means the
design asynchronously resets, but synchronously releases from reset to avoid any race
conditions or metastability problems. Then, to minimize the impact of global
structures, the circuit employs a divide-and-conquer approach for the reset structure.
By implementing a cascaded reset structure, each partition’s reset paths are
independent. This reduces the effect of inter-partition dependency because the
inter-partition reset signals can now be treated as false paths for timing analysis. In
some cases, the partition’s reset signal can be placed on local lines to reduce the delay
added by routing to a global routing line. In other cases, the signal can be routed on a
regional or quadrant clock signal.

This circuit as one that may help you achieve timing closure and partition
independence for your global reset signal. Evaluate the circuit and consider how it
works for your design.

Figure 8–20. Cascaded Reset Structure

TopFalse Timing
Paths

VCC

Reset

CLRN CLRN

D DQ Q

CLRN CLRN

CLRN CLRN

VCC

VCC

A

B

A_Reset

B_Reset

D D

DD

Q Q

QQ
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–28 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating Design Partitions: Consider Additional Design Suggestions
Drive Clocks Directly in Bottom-Up Flows
In bottom-up flows, the drive partition clock inputs directly with device clock input
pins.

Connecting the clock signal directly avoids any timing analysis difficulties with gated
clocks. Clock gating is never recommended for FPGA designs because of potential
glitches and clock skew. Clock gating can cause trouble especially in bottom-up flows
because the lower-level partitions have no information about any gating that takes
place at the top level or in another partition. If a gated clock is required in a partition,
perform the gating within that partition, as described for clock inversion in “Invert
Clocks in Destination Partitions” on page 8–16.

Direct connections to input clock pins also allows design partition scripts to send
constraints from the top-level device pin to the lower-level partitions.

Recreate PLLs for Lower-Level Partitions if Required in Bottom-Up Flows
If you use a PLL in your top-level design and connect it to lower-level partitions, the
lower-level partitions do not have information about the multiplication, phase shift,
or compensation delays for the PLL. To accommodate the PLL timing, you can make
appropriate timing assignments in your lower-level Quartus II project to ensure that
clocks are not left unconstrained or constrained with an incorrect frequency.
Alternatively, you can manually duplicate the top-level PLL (or other derived clock
logic) in the lower-level design file to ensure that you have the correct PLL parameters
and clock delays for complete, accurate timing analysis.

Include a copy of the top-level PLL in your lower-level project as shown in
Figure 8–21, and create a design partition for the rest of the lower-level design logic
that will be exported to the top level. When the design is complete, you can export just
the lower-level partition, without exporting any auxiliary PLL components to the
top-level design. When you use the feature to export a partition within a project, the
software exports any hierarchy under the specified partition into the Quartus II
Exported Partition (.qxp) file but does not include logic defined outside the partition
(the PLL in this example).

Figure 8–21. Recreating a Top-Level PLL in a Lower-Level Partition

Device Input
Clock

Other Inputs
from Device

Pins

PLL From
Top-Level

Design

Virtual
Input
Pins

Lower-Level
Partition

to be
Exported

Virtual
Output
Pins

Outputs to
Device Pins

Top Partition
in Lower-Level

Project
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–29
Checking Partition Quality
Checking Partition Quality
This section provides an overview of tools you can use as you make partitions in the
Quartus II software. Take advantage of these tools to assess your partition quality, and
use the information to improve your design or assignments as required to achieve the
best results.

Incremental Compilation Advisor
You can use the Incremental Compilation Advisor to check that your design follows
the recommendations for creating design partitions that are presented in this
document.

On the Tools menu, point to Advisors and click Incremental Compilation Advisor.
Recommendations are split into General Recommendations that apply to all
compilation flows and Bottom-Up Design Recommendations that apply to bottom-up
design methodologies. Each recommendation provides an explanation, describes the
effect of the recommendation, and provides the action required to make the suggested
change.

To check whether the design follows the recommendations, go to the Timing
Independent Recommendations page or the Timing Dependent Recommendations
page (for the TimeQuest Timing Analyzer or the Classic Timing Analyzer), and click
Check Recommendations. For large designs, these operations can take a few minutes.

After you check the design, a symbol appears next to each recommendation that
indicates whether or not your design follows that particular recommendation. Refer
to the Legend on the How to use the Incremental Compilation Advisor page in the
Incremental Compilation Advisor for more information.

In some items, there is a link to the appropriate Quartus II settings page where you
can make a suggested change to assignments or settings. For many items, if your
design does not follow the recommendation, the Check Recommendations operation
creates a table that lists any nodes or paths in the design that could be improved.

For example, if not all of the partition I/O ports follow the Register All Ports
recommendation, the Incremental Compilation Advisor displays a list of unregistered
ports with the partition name and the source and destination nodes for the port.
When the Incremental Compilation Advisor provides a list of nodes, you can
right-click on a node and click Locate to cross-probe to other Quartus II features such
as the RTL Viewer, Chip Planner, or the design source code in the text editor.

1 Opening a new TimeQuest report resets the Incremental Compilation Advisor results,
so you must rerun the Check Recommendations process.

Design Partition Planner
The Design Partition Planner allows you to view design connectivity and hierarchy,
and can assist you in creating effective design partitions that follow the guidelines in
this document. You can also use the Design Partition Planner to optimize design
performance, by isolating and resolving failing paths on a partition-by-partition basis.
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–30 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Checking Partition Quality
To view a design and create design partitions, first compile the design, or perform
Analysis and Synthesis. On the Tools menu, click Design Partition Planner. The
design is displayed as a single top-level design block, containing its lower-level
instances as boxes.

To show connectivity between blocks, extract instances from the top-level design
block. Click on a design block and drag it into the surrounding white space, or
right-click an entity and click Extract from Parent on the Shortcut menu.

When you extract entities, connection bundles are drawn between entities, showing
the number of connections existing between pairs of entities. When you have
extracted a design block that you want to set as a design partition, right-click on that
design block and click Create Design Partition.

The Design Partition Planner also has an Auto-Partition feature that creates partitions
based on the size and connectivity of the hierarchical design blocks. Right-click on the
design block you want to partition (such as the top-level design hierarchy), and
choose Auto-Partition. You can then analyze and adjust the partition assignments as
required.

Figure 8–22 shows the Design Partition Planner after making a design partition
assignment to one instance (in the pale red shaded box), and dragging another
instance away from the top-level block within the same partition (two design blocks
in the pale blue shaded box). The figure shows the number of connections between
each partition and information about the size of each design instance.

Figure 8–22. Design Partition Planner
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–31
Checking Partition Quality
To switch between connectivity display mode and hierarchical display mode, click
Hierarchy Display on the View menu. Alternately, to switch temporarily to a
view-only hierarchy display, click and hold the hierarchy icon in the top-left corner of
any entity.

To control the way the connection bundles are displayed, right-click in the white
space and choose Bundle Configuration. For example, you can remove the
connection lines between partitions and I/O banks by turning off Display
connections to I/O banks. You can also use the settings on the Connection Counting
tab to adjust how the connections are counted in the bundles.

To optimize design performance, it is desirable to confine failing paths within
individual design partitions, so that there are no failing paths passing between
partitions, as discussed in earlier sections. The following steps allow you to view the
critical timing paths from a TimeQuest Timing Analysis:

1. Open the TimeQuest Timing Analyzer and perform a timing analysis on the
design.

2. In the Design Partition Planner, click Show Timing Data on the View menu.

In the top-level entity, child entities containing failing paths are marked by a small red
dot in the upper right corner of the entity box.

f For more details about how to use the Design Partition Planner to analyze your
design and create partitions, refer to “Using the Design Partition Planner” in the
Quartus II Help.

Floorplan Partition Coloring
After making a set of partition assignments, it can be useful to view how the
partitions are placed in the device. The Chip Planner can display nodes for each
partition in a different color.

After compilation, in the Chip Planner Task list, select Partition Display
(Assignment), as shown in Figure 8–23. In this figure, you can see that the three
different-colored partitions are grouped in three fairly independent areas of the
device.
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–32 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Checking Partition Quality
Viewing Design Partition Planner and Floorplan Side-by-Side
You can view the Design Partition Planner together with the Chip Planner’s Partition
Planner, to analyze natural placement groupings in the floorplan view. This
information can help you decide whether the design blocks should be grouped
together in one partition, or whether they will make good partitions for the next
compilation. It can also help determine whether the logic can easily be constrained by
a LogicLock region to create a design floorplan. If logic naturally groups together
when compiled without placement constraints, you can probably assign a reasonably
sized LogicLock region to constrain the placement for future compilations. You can
experiment by extracting different design blocks in the Design Partition Planner and
viewing the placement results of those design blocks from the last compilation.

Open the Design Partition Planner, then open the Chip Planner and select the
Partition Planner task in the Task list. This task selection displays the physical
locations of design entities using the same colors as the Design Partition Planner
display. For ease of viewing, drag and size the Chip Planner and Design partition
Planner windows so they are side-by-side.

In the Design Partition Planner, extract instances of interest from their parents using
the drag and drop method or the Extract from Parent command. Evaluate the
physical locations of instances in the Chip Planner and the connectivity between
instances displayed in the Design Partition Planner. An entity is generally not suitable
to be set as a separate design partition or constrained in a LogicLock region if the Chip
Planner shows it to be physically dispersed over a noncontiguous area of the device

Figure 8–23. Partition Display in the Chip Planner Showing Three Partitions with Different Color
Shades
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–33
Checking Partition Quality
after compilation. You can use the Design Partition Planner as described in “Design
Partition Planner” on page 8–29 to analyze the design connections. For child instances
that are unsuitable to be set as separate design partitions or placed in LogicLock
regions, return those instances to their parent using the drag and drop method or the
Collapse to Parent command.

Figure 8–24 shows a design displayed in both viewers, with different colors for the
top-level design and the three major design instances.

Partition Statistics Report
You can view statistics about design partitions in the Partition Merge Partition
Statistics compilation report and the Statistics tab in the Design Partitions
Properties dialog box. These reports are useful when optimizing your design
partitions in a top-down compilation flow, or when you are compiling the full
top-level design in a bottom-up compilation flow, to ensure that the partitions meet
the guidelines discussed in this document.

The Partition Statistics page under the Partition Merge folder of the Compilation
Report lists statistics about each partition. The statistics for each partition (each row in
the table) include the number of logic cells it contains, as well as the number of input
and output pins and how many are registered. This report also lists how many ports
are unconnected, or driven by a constant VCC or GND. You can use this information to
assess whether you have followed the guidelines for partition boundaries.

Figure 8–24. Top-Level Design and Three Major Instances Shown in Both Viewers
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–34 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Checking Partition Quality
You can also view statistics about the resource and port connections for a particular
partition on the Statistics tab of the Design Partition Properties dialog box. On the
Assignments menu, click Design Partitions Window. Right-click on a partition and
click Properties to open the dialog box. Click Show All Partitions to view all the
partitions in the same report. The Design Partition Properties report also shows
statistics for the Internal Congestion: Total Connections and Registered Connections.
This represents how many signals are connected within the partition. It then lists the
inter-partition connections for each partition, which helps you see how partitions are
connected to each other.

Report Partition Timing in the TimeQuest Timing Analyzer
The TimeQuest Timing Analyzer includes a diagnostic report called Report Partitions,
and the report_partitions SDC command. The resulting Partition Timing
Overview lists the design partitions and provides the number of failing paths and the
worst case timing slack within that partition. The function also creates a Partition
Timing Details table that lists the number of failing paths and worst-case slack from
each partition to the others.

You can use this report to analyze where the critical timing paths in the design are
with respect to design partitions. If a certain partition contains many failing paths, or
failing inter-partition paths, you may be able to change your partitioning scheme and
improve your timing performance.

f For more information about the TimeQuest report_timing command, see the
Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Ensure Partition Assignments Do Not Impact the Quality of Results
There is often a trade-off between compilation time and quality of results when you
vary the number of partitions in a project. You can ensure that you limit any negative
effect on the quality of results by following an iterative methodology during the
partitioning process. In any incremental compilation flow in which you can compile
the source code for every partition during the partition planning phase, Altera
recommends the following iterative flow:

1. Start with a complete design that is not partitioned and has no location or
LogicLock assignments.

2. To perform a placement and timing analysis estimate, on the Processing menu,
point to Start and click Start Early Timing Estimate.

1 You must perform Analysis and Synthesis and Partition Merge before
performing an Early Timing Estimate.

To run a full compilation instead of the Early Timing Estimate, on the Processing
menu, click Start Compilation.

3. Record the quality of results from the Compilation Report (fMAX, area, and any
other relevant results).

4. Create design partitions following the guidelines described in this chapter.

5. Perform another Early Timing Estimate or a full compilation.
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–35
Introduction to Design Floorplans
6. Record the quality of results from the Compilation Report. If the quality of results
is significantly worse than those obtained in the previous compilation, repeat step
4 through step 6 to change your partition assignments and use a different
partitioning scheme.

7. Even if the quality of results is acceptable, you can repeat step 4 through step 6 by
further dividing a large partition into several smaller partitions. Doing so
improves compilation time in future incremental compilations. You can repeat this
step until you achieve a good trade-off point (that is, all critical paths are localized
within partitions, the quality of results is not negatively affected, and the size of
each partition is reasonable).

Introduction to Design Floorplans
A floorplan represents the layout of the physical resources on the device. The
expressions “creating a design floorplan” and “floorplanning” describe the process of
mapping the logical design hierarchy onto physical regions in the device floorplan.

In the Quartus II software, LogicLock regions are used to constrain blocks of a design
to a particular region of the device. LogicLock regions represent a rectangular area of
the device with a user-defined or Fitter-defined size and location on the device layout.

f For more information about design floorplans and LogicLock regions, refer to the
Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook.

The Difference between Logical Partitions and Physical Regions
Design partitions are “logical” entities based on the design hierarchy. LogicLock
regions are “physical” placement assignments that constrain logic to a rectangular
region on the device.

It is a common misconception that logic from a design partition is always grouped
together on the device when you use incremental compilation. This is not true. Logic
from a partition can be placed anywhere in the device if it is not constrained to a
LogicLock region. A logical design partition does not refer to any physical area of the
device and does not directly control where instances are placed on the device.

If you want to control the placement of the logic from a design partition and isolate it
to a particular part of the device, you can assign the logical design partition to a
physical region in the device floorplan with a LogicLock region assignment. Creating
a design floorplan by assigning design partitions to LogicLock regions is
recommended to improve the quality of results and avoid placement conflicts in
many situations for incremental compilation. Refer to “Why Create a Floorplan?” on
page 8–36 for details.

Another misconception is that LogicLock assignments are used to preserve placement
results for incremental compilation. This is also not true. LogicLock regions only
constrain logic to a physical region of the device. Incremental compilation does not use
LogicLock assignments or any location assignments to preserve the placement results;
it simply reuses the results stored in the database netlist from the previous
compilation.
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

8–36 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Introduction to Design Floorplans
Why Create a Floorplan?
Floorplan location planning can be important for a design that uses full incremental
compilation, for the following two reasons:

■ To avoid resource conflicts between partitions, predominantly when importing
partitions from another Quartus II project

■ To ensure a good quality of results when recompiling individual partitions in
top-down flows

Why Create a Floorplan in Bottom-Up Flows?
Creating a design floorplan is required if you want to preserve placement for
lower-level partitions in a bottom-up flow to avoid resource conflicts between
partitions.

Location assignments for each partition ensure that there are no placement conflicts
between different partitions. If there are no LogicLock region assignments, or if
LogicLock regions are set to auto-size or floating, no device resources are specifically
allocated for the logic associated with the region. If you do not clearly define this
resource budget, logic placement can conflict when you import the partitions in a
bottom-up flow.

Why Create a Floorplan in Top-Down Flows?
Creating a floorplan is highly recommended for timing-critical partitions to maintain
good quality of results when the design changes.

Floorplan assignments are not required for non-critical partitions in a top-down flow.
The logic for partitions that are not timing-critical (such as simple top-level glue logic)
can be placed anywhere in the device on each recompilation if that is best for your
design.

Design floorplan assignments prevent the situation in which the Fitter must place a
partition in an area of the device where most resources are already used by other
partitions. A LogicLock region provides a reasonable region to re-place logic after a
change, so the Fitter does not have to scatter logic throughout the available space in
the device.

Figure 8–25 illustrates the problems associated with refitting designs that do not have
floorplan location assignments. It shows the initial placement of a four-partition
design (P1-P4) without any floorplan location assignments. The second part of the
figure shows the device if a change occurs to P3. After removing the logic for the
changed partition, the Fitter must replace and reroute the new logic for P3 using the
scattered white space shown in Figure 8–25. The placement of the post-fit netlists for
other partitions forces the Fitter to implement P3 with the device resources that have
not already been used.
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–37
Introduction to Design Floorplans
The Fitter must work harder because of the more difficult physical constraints, and as
a result, compilation time often increases. The Fitter might not be able to find any
legal placement for the logic in partition P3, even if it could in the initial compilation.
In addition, if the Fitter can find a legal placement, the quality of results often
decreases in these cases, sometimes dramatically, because the new partition is now
scattered throughout the device.

Figure 8–26 shows the initial placement of a four-partition design with floorplan
location assignments. Each partition has been assigned to a LogicLock region. The
second part of the figure shows the device after partition P3 is removed. This
placement presents a much more reasonable task to the Fitter and yields better results.

Altera recommends that you create a LogicLock floorplan assignment for any
timing-critical blocks that will be recompiled as you make changes to the design.

When to Create a Floorplan
It is important that you plan early to incorporate partitions into the design, and
ensure that each design partition follows the partitioning guidelines. You can make
the floorplan assignments at different stages of the design flow, early or late in the
flow. These guidelines help ensure better results when you start creating floorplan
location assignments.

Figure 8–25. Representation of Device Floorplan without Location Assignments

P1

P3

P3

P4P1

P2

P2

P1

No floorplan assignments: Device has 4 partitions
and the logic is placed throughout

P3

P1

P4P1

P2

P2

P1

Device after removing changed partition P3:
New P3 must be placed in empty areas

Change in P3

Figure 8–26. Representation of Device Floorplan with Location Assignments

P2 P3

P1 P4

With floorplan location assignments: Device has 4
partitions placed in 4 LogicLock regions

Device after removing changed partition P3:
Much easier to place new P3 partition in empty area

P2

P1 P4

Change in P3
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–38 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating a Design Floorplan: Placement Guidelines
Early Floorplan
An early floorplan is created before the design stage. You can plan an early floorplan
at the top level of a team-based design to give each designer a portion of the device
resources. Doing so allows each designer to create the logic for their design partition
without conflicting with other logic. Each design partition can be implemented
independently and integrated later in the top-level project.

You can use an early floorplan as a rough draft of a floorplan for top-down flows as
well, to roughly divide up the design partitions into LogicLock regions while iterating
through the design cycle.

In a top-down flow, or after you have integrated the first version of all design
partitions in a bottom-up flow, you can use the design information and Quartus II
features to tune and improve the floorplan, as described in the following section.

Late Floorplan
A late floorplan is created or modified after the design has been created, when the
code is close to complete and the design structure is likely to remain stable. When the
design is complete, you can take advantage of the Quartus II analysis features to
check the floorplan quality. To tune the floorplan, you can perform iterative
compilations as required and assess the results of different assignments.

1 It may not be possible to create a good-quality late floorplan if you do not create
partitions in the early stages of the design.

Creating a Design Floorplan: Placement Guidelines
The following guidelines are key to creating a good design floorplan:

■ Capture correct resources in each region

■ Use good region placement to maintain design performance compared to flat
compilation

It is a common misconception that creating a floorplan enhances timing performance,
as compared to a flat compilation with no location assignments. The Quartus II Fitter
does not usually require guidance to get optimal results for a full design.

Floorplan assignments can help maintain good performance when designs change
incrementally, as described in “Why Create a Floorplan in Top-Down Flows?” on
page 8–36. However, bad placement assignments can often hurt performance results,
as compared to a flat compilation, because the assignments limit the options for the
Fitter. Investing some time to find good region placement is required to match the
performance of a full flat compilation.

Use the following general strategy to create a floorplan:

1. Divide the design into partitions.

2. Assign the partitions to LogicLock Regions.

3. Compile the design.

4. Analyze the results.

5. Modify the placement and size of regions as required.
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–39
Creating a Design Floorplan: Placement Guidelines
You may have to iterate through these steps several times to find the best combination
of design partitions and LogicLock regions that meet the design’s resource and timing
goals.

f For details about performing these steps, refer to the Quartus II Incremental Compilation
for Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II Handbook.

Assigning Partitions to LogicLock Regions
To create a full floorplan: Create a LogicLock region for each partition (including the
top-level) to assign all logic to a place in the device.

To create a partial floorplan: Create a LogicLock region for any critical or
often-changing partitions.

Before compiling the design with new LogicLock assignments, ensure the affected
partitions’ Netlist Type is set so that the Fitter does not reuse previous placement
results.

In most cases, each LogicLock region should contain logic from only one partition.
This organization helps prevent resource conflicts in a bottom-up design and can lead
to better performance preservation when locking down parts of a project in a
top-down design.

The software is flexible and does allow exceptions to this rule. For example, you can
place more than one partition in the same LogicLock region if the partitions are tightly
connected. For best results, ensure that you recompile all such partitions every time
the logic in one partition changes. In addition, if a partition contains multiple
lower-level entities, you can place those entities in different areas of the device with
multiple LogicLock regions (even though they are defined in the same partition).

You can use the Reserved LogicLock option to ensure that you avoid any conflicts
with other logic which is not locked into any LogicLock region. This option prevents
other logic from being placed in the region, and is useful if you have empty partitions
at any point during your design flow, so that you can reserve space in the floorplan.
Do not make reserved regions too large, to prevent unused area, because no other
logic can be placed in a region with the Reserved LogicLock option.

How to Size and Place Regions
In an early floorplan, assign physical locations based on design specifications. Use
information about the connections between partitions, the partition size, and the type
of device resources required.

In a late floorplan when the design is complete, you can use Fitter-chosen regions as a
guideline. Start with the default Auto size and Floating origin location. After
compilation, lock the size and origin location. Instead of a full compilation, you can
use the Start Early Timing Estimate command to perform a fast placement.
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

8–40 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating a Design Floorplan: Placement Guidelines
Alternatively, in a late floorplan, you can specify the size based on the synthesis
results and use Fitter-chosen locations. Right-click on a region in the LogicLock
Regions dialog box, and choose Set to Estimated Size. Like the previous option, start
with Floating origin location. After compilation, lock the origin location. Again,
instead of a full compilation, you can use the Start Early Timing Estimate command
to perform a fast placement. You can also enable the Fast Synthesis Effort setting to
reduce synthesis time.

After a compilation or early timing estimate, you should save the Fitter’s size and/or
origin location. Click on each LogicLock region in the LogicLock Regions Window
while holding the Ctrl key to select all regions (including the top-level region).
Right-click on the last selected LogicLock region and click Set Size and Origin to
Previous Fitter Results.

1 It is important that you use the Fitter-chosen locations only as a starting point to give
the regions a good fixed size and location. Ensure that all LogicLock regions in the
design have a fixed size and have their origin locked to a specific location on the chip.
On average, regions with fixed size and location yield better timing performance than
auto-sized regions.

Modifying Region Size and Origin
After you have saved the Fitter ’s results from an initial compilation for a late
floorplan, modify the regions using your knowledge of the design to set a specific size
and location. If you have a good understanding of how the design fits together, you
can often improve upon the regions placed in the initial compilation. In an early
floorplan, you can use the guidelines in this section to set the size and origin, even
though there is no initial Fitter placement for a basis.

The easiest way to move and resize regions is to drag the region location and borders
in the Chip Planner. Ensure you select the User-Defined region in the floorplan (as
opposed to the Fitter-Placed region from the last compilation) so that you can change
the region.

Generally, you can keep the Fitter-determined relative placement of the regions, but
make adjustments if required to meet timing performance. If you find that the Early
Timing Estimate did not result in good relative placements, try performing a full
compilation so that the Fitter can optimize for a full placement and routing.

If two LogicLock regions have several connections between them, ensure they are
placed near each other to improve timing performance. By placing connected regions
near each other, the Fitter has more opportunity to optimize inter-region paths when
both partitions are recompiled. Reducing the criticality of inter-region paths also
allows the Fitter more flexibility when placing the other logic in each region.

If resource utilization is low in the overall device, enlarge the regions. Doing so
usually improves the final results because it gives the Fitter more freedom to place
additional or modified logic added to the partition during future incremental
compilations. It also allows room for optimizations such as pipelining and physical
synthesis logic duplication.

Try to have each region evenly full, with the same ”fullness” that the complete design
would have without LogicLock regions. As a very rough suggestion, try to have each
region approximately 75% full.
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–41
Creating a Design Floorplan: Placement Guidelines
Allow more area for regions that are densely populated, because overly congested
regions can lead to poor results. Allow more empty space for timing-critical partitions
to improve results. However, do not make regions too large for their logic. Regions
that are too large can result in wasted resources and also lead to suboptimal results.

Ideally, almost the entire device should be covered by LogicLock regions if all
partitions are assigned to regions.

Regions should not overlap in the device floorplan. This is a requirement in
bottom-up flows and a recommendation in top-down flows. In a bottom-up flow, if
two partitions are allocated an overlapping portion of the chip, each may
independently claim some common resources in this region. This leads to resource
conflicts when importing bottom-up results into a final top-level design. In a
top-down flow, overlapping regions give more difficult constraints to the Fitter and
can lead to reduced quality of results.

You can create hierarchical LogicLock regions to ensure that the logic in a child
partition is physically placed inside the LogicLock region for its parent partition. This
can be useful when the parent partition does not contain registers at the boundary
with the lower-level child partition and has a lot of signal connectivity. To create a
hierarchical relationship between regions in the LogicLock Regions Window, drag
and drop the child region to the parent region.

I/O Connections
Consider I/O timing when placing regions. Using I/O registers can minimize I/O
timing problems, and using boundary registers on partitions can minimize problems
connecting regions or partitions. However, I/O timing might still be a concern. It is
most important for bottom-up flows where each partition is compiled independently,
because the Fitter can optimize the placement for paths between partitions if the
partitions are compiled at the same time.

Place regions close to the appropriate I/O, if necessary. For example, DDR memory
interfaces have very strict placement rules to meet timing requirements. Incorporate
any specific placement requirements into your floorplan as required. It is best to
create LogicLock regions for internal logic only, and provide pin location assignments
for external device I/O pins (instead of including the I/O cells in a LogicLock region
to control placement).

LogicLock Resource Exclusions
You can exclude certain resource types from a LogicLock region to manage the ratio of
logic to dedicated DSP and RAM resources in the region.

If your design contains memory or digital signal processing (DSP) elements, you may
want to exclude these elements from the LogicLock region. LogicLock resource
exceptions prevent elements of certain types from being assigned to a region.
Therefore, those elements are not required to be placed inside the region boundaries.
The option does not prevent them from being placed inside the region boundaries
unless the region’s Reserved property is turned on.

Resource exceptions are useful in cases where it is difficult to place rectangular
regions for design blocks that contain memory and DSP elements, because of their
placement in columns throughout the device floorplan. Exclude RAMs, DSPs, or logic
cells to give the Fitter more flexibility with region sizing and placement. Excluding
RAM or DSP elements can help to resolve no-fit errors that are caused by regions
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–42 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Creating a Design Floorplan: Placement Guidelines
spanning too many resources, especially for designs that are memory-intensive,
DSP-intensive, or both. Figure 8–27 shows an example of a design with an
odd-shaped region to accommodate DSP blocks for a region that does not contain
very much logic. The right side of the figure shows the result after excluding DSP
blocks from the region. The region can be placed more easily without wasting logic
resources. The DSP blocks are placed outside the region.

To view any resource exceptions, right-click in the LogicLock Regions Window and
click Properties. In the LogicLock Region Properties dialog box, highlight the design
element (module/entity) in the Members box and click Edit. To set up a resource
exception, click the browse button under Excluded element types, then turn on the
design element types to be excluded from the region. You can choose to exclude
combinational logic or registers from logic cells, or any of the sizes of TriMatrix
memory blocks, or DSP blocks.

If the excluded logic is in its own lower-level design entity (even if it is within the
same design partition), you can assign the entity to a separate LogicLock region to
constrain its placement in the device.

You can also use this feature with the LogicLock Reserved property to reserve specific
resources for logic that will be added to the design.

Creating Non-Rectangular Regions
To constrain placement to non-rectangular areas of the device, you can limit entity
placement to a sub-area of a LogicLock region. To do so, construct a LogicLock
hierarchy by creating child regions inside of parent regions, and then use the
Reserved option to control which logic can be placed inside these child regions.

Setting a region’s Reserved option to On prevents the Fitter from placing nodes that
are not assigned to the region inside the boundary of the region. Setting a region’s
Reserved option to Limited prevents the Fitter from placing nodes that are assigned
to the immediate parent LogicLock region’s hierarchy inside the boundary of the
region. Any other logic can be placed inside the region. To create non-rectangular

Figure 8–27. LogicLock Resource Exclusion Example

DSP blocks force
odd-shaped region

D
S
P

M
4
K
 R
A
M

M
5
1
2
 R
A
M

M
R
A
M

Allows better shape, easier
placement, and less unused

logic resources

D
S
P

M
4
K
 R
A
M

M
5
1
2
 R
A
M

M
R
A
M

D
S
P

M
4
K
 R
A
M

M
5
1
2
 R
A
M

M
R
A
M

Exclude DSP
blocks from
LogicLock region
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–43
Checking Floorplan Quality
regions for a specific entity, you can place child LogicLock regions inside a parent
region and set the Reserved setting of the child regions to Limited. The child region
prevents the parent region hierarchy from using that area of the device floorplan, but
leaves it open for the rest of the design. You can assign other LogicLock regions to
cover that area of the device if required.

f For more information and examples of creating non-rectangular regions with the
Reserved property, refer to Examples of Using Limited Reserved Status to Constrain
LogicLock Location Assignments in the Quartus II Help.

Checking Floorplan Quality
This section provides an overview of tools that you can use as you create a floorplan
in the Quartus II software. Take advantage of these tools to assess your floorplan
quality and use the information to improve your design or assignments as required to
achieve the best results.

Incremental Compilation Advisor
You can use the Incremental Compilation Advisor to check that your design follows
the recommendations for creating floorplan location assignments that are presented
in this document. Refer to “Incremental Compilation Advisor” on page 8–29 for more
information.

LogicLock Region Resource Estimates
You can view resource estimates included in a LogicLock region to determine the
region’s resource coverage. You can use this estimate before compilation to check
region size. Using this estimate helps ensure adequate resources when you are sizing
or moving regions.

Right-click in the LogicLock Regions Window, choose Properties, and select the Size
& Origin tab. Specify a size and an origin to see the Available resources estimate in
the dialog box.

LogicLock Region Properties Statistics Report
The LogicLock Region Properties Statistics are similar to the Design Partition
Properties described in “Partition Statistics Report” on page 8–33, but include
resource usage details after compilation.

The statistics report the number of resources used and the total resources covered by
the region. The statistics also list the number of I/O connections and how many I/Os
are registered (good), as well as the number of internal connections and the number of
inter-region connections (bad).

Right-click in the LogicLock Regions Window, choose Properties and select the
Statistics tab. Click Show All Regions to see all regions displayed in the same report.
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

8–44 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Checking Floorplan Quality
Critical Path Settings for Chip Planner
The Critical Path Settings dialog box allows you to display the most critical paths
from the Timing Analyzer report in the Chip Planner floorplan view. You can specify a
threshold for which paths to highlight in the Chip Planner. Use this information to
identify inter-region critical paths and improve your partition or floorplan
assignments.

Locate the Quartus II TimeQuest Timing Analyzer Path in the Chip Planner
In the TimeQuest user interface, you can locate a specific path in the Chip Planner to
view its placement. Perform a report timing operation (for example, report timing for
all paths with less than 0 ns slack). Right-click in the detailed path report (Data Path
tab) for a specific path and choose Locate Path. Click OK to choose the Chip Planner.

Inter-Region Connection Bundles
The Chip Planner can display bundles of connections between LogicLock regions,
with filtering options that allow you to choose the relevant data for display. These
bundles can help you visualize how many connections there are between each
LogicLock region, to improve floorplan assignments, or to change partition
assignments if required.

With the Chip Planner open, on the View menu, click Generate Inter-region Bundles.

Routing Utilization
The Chip Planner includes a mode to display a color map of routing congestion. This
display helps identify areas of the chip that are too tightly packed.

In the Chip Planner, click the Layer Settings icon next to the Task list. Change the
Background Color Map to Routing Utilization (the default is Block Utilization).

The darker-colored LAB blocks indicate higher routing congestion. Move your mouse
pointer over a LAB to see a tool tip that reports the logic and routing utilization
information.

Ensure Floorplan Assignments Do Not Impact Quality of Results
The end results of design partitioning and floorplan creation differ from design to
design. However, it is important to evaluate your results to ensure that your scheme is
successful. Compare the results before creating your floorplan location assignments to
the results after doing so. Consider using another scheme if any of the following
guidelines are not met:

■ You should see no degradation in fMAX after the design is partitioned and floorplan
location assignments are created. In many cases, a slight increase in fMAX is possible

■ The area increase should be no more than 5% after the design is partitioned and
floorplan location assignments are created

■ The time spent in the routing stage should not significantly increase
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–45
Recommended Design Flows and Application Examples
The amount of compilation time spent in the routing stage is reported in the Messages
window by an Info message that indicates the elapsed time for Fitter routing
operations. If you notice a dramatic increase in routing time, the floorplan location
assignments may be creating substantial routing congestion. In this case, decrease the
number of LogicLock regions. Doing so typically reduces the compilation time in
subsequent incremental compilations and may also improve design performance.

Recommended Design Flows and Application Examples
This section provides design flows for partitioning and creating a design floorplan
during common timing closure and team-based design scenarios. Each flow describes
the situation in which it should be used, and gives a step-by-step description of the
commands required to implement the flow.

Create a Floorplan for the Entire Design in a Top-Down Flow
Use this flow for top-down incremental compilation designs in which you would like
to assign a floorplan location for each design block that is assigned as a separate
partition. This is the standard floorplan procedure described in the Incremental
Compilation for Hierarchical and Team-Based Design chapter in volume 1 of the Quartus II
Handbook. A full floorplan ensures that partitions do not interact as they are changed
and recompiled—each partition has its own area of the device floorplan.

To create a LogicLock region for each design partition, use the following general
methodology:

1. On the Assignments menu, click Design Partitions Window and ensure that all
partitions have their Netlist Type set to Source File or Post-Synthesis. If the
Netlist Type is set to Post-Fit, floorplan location assignments are not used when
recompiling the design.

2. Create a LogicLock region for each partition (including the top-level entity, which
is automatically considered a partition).

3. On the Processing menu, point to Start and click Start Early Timing Estimate to
place auto-sized, floating-location LogicLock regions.

1 You must perform Analysis and Synthesis, and Partition Merge before
performing an Early Timing Estimate.

To run a full compilation instead of the Early Timing Estimate, on the
Processing menu, click Start Compilation.

4. On the Assignments menu, click LogicLock Regions Window, and click on each
LogicLock region while holding the Ctrl key to select all regions (including the
top-level region).

5. Right-click on the last selected LogicLock region, and click Set Size and Origin to
Previous Fitter Results.

6. If required, modify the size and location with the LogicLock Regions Window or
the Chip Planner. For example, make the regions bigger to fill up the device and
allow for future logic changes.
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

8–46 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Recommended Design Flows and Application Examples
7. On the Processing menu, point to Start and click Start Early Timing Estimate to
estimate the timing performance of your design with these LogicLock regions.

8. Repeat step 6 and 7 until you are satisfied with the quality of results for your
design floorplan. On the Processing menu, click Start Compilation to run a full
compilation.

Create a Floorplan as the Project Lead in a Bottom-Up Flow
Use this approach when you have several lower-level subdesigns that will be
implemented separately by different designers. The subdesign designers want to
optimize their designs independently and pass the results on to you, the project lead.

As the project lead in this scenario, perform the following steps to prepare the design
for a successful bottom-up design methodology with early floorplan planning:

1. Create a new Quartus II project that will ultimately contain the full
implementation of the entire design.

2. To prepare for the bottom-up methodology, create a “skeleton” of the design that
defines the hierarchy for the subdesigns that will be implemented by separate
designers. Consider the partitioning guidelines in this chapter while determining
the design hierarchy.

3. Make project-wide settings. Select the device, make global assignments for clocks
and device I/O ports, and make any global signal constraints to specify which
signals can use global routing resources.

4. Make design partition assignments for each major subdesign and set the Netlist
Type for each design partition that will be imported to Empty in the Design
Partitions window.

5. Create LogicLock regions for each of the lower-level partitions to create a design
floorplan. This floorplan should consider the connectivity between partitions and
estimates of the size of each partition based on any initial implementation
numbers and knowledge of the design specifications. Use the guidelines described
in this chapter to choose a size and location for each LogicLock region.

6. On the Project menu, click Generate Bottom-Up Design Partition Scripts, or run
the script generator from a Tcl prompt or the command prompt.

7. Make changes to the default script options as desired. Altera recommends that you
pass all the default constraints, including LogicLock regions, for all partitions and
virtual pin location assignments. Altera further recommends that you add a
maximum delay timing constraint for the virtual I/O connections in each partition
to help timing closure during integration at the top level. If lower-level projects
have not already been created by the other designers, use the partition script to set
up the projects so that you can easily take advantage of makefiles.

8. Provide each lower-level designer with the Tcl file to create their project with the
appropriate constraints. If you are using makefiles, provide the makefile for each
partition.
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–47
Potential Issues with Creating Partitions and Floorplan Assignments
Create a Floorplan Assignment for One Design Block with Difficult Timing
Use this flow when you have one timing-critical design block that requires more
optimization than the rest of your design. You can take advantage of incremental
compilation to reduce your compilation time without creating a full design floorplan.

In this scenario, you may not have to create floorplan assignments for the entire
design. You can create a region to constrain the location of your critical design block,
and allow the rest of the logic to be placed anywhere else in the device. Use the
following general methodology:

1. Divide up your design into partitions to reduce compilation time. Consider the
guidelines in this chapter while determining the partition boundaries. Ensure that
you isolate the timing-critical logic in a separate design partition.

2. Define a LogicLock region for the timing-critical design partition. Ensure that you
capture the correct amount of device resources in the region. Turn on the Reserved
property to prevent any other logic from being placed in the region.

■ If the design block is not complete, reserve space in the design floorplan based
on your knowledge of the design specifications, connectivity between design
blocks, and estimates of the size of the partition based on any initial
implementation numbers.

■ If the critical design block has initial source code ready, compile the design as
in the scenario “Create a Floorplan for the Entire Design in a Top-Down Flow”
on page 8–45 to place the LogicLock region. Save the Fitter-determined size
and origin, then enlarge the region to provide more flexibility and allow for
future design changes.

3. As the rest of the design is completed, and the device fills up, the timing-critical
region has a reserved area of the floorplan. When you make changes to the design
block, the logic can be re-placed in the same part of the device, which helps ensure
good quality of results.

Potential Issues with Creating Partitions and Floorplan Assignments
There are some limitations and restrictions on using incremental compilation and
using certain design flows with certain Altera features.

1 Refer to the Quartus II Incremental Compilation for Hierarchical and Team-Based Design
chapter in volume 1 of the Quartus II Handbook for complete details about restrictions
and limitations.

Consider documented limitations and restrictions as you plan your design flow and
select partitions. Most limitations and restrictions do not affect most users, but it is
helpful to know if you must modify your partitions or design flow to accommodate
certain restrictions.

There are also possible utilization effects due to partitioning and creating a floorplan.
These are described in the following subsections. Consider these effects if your design
is close to using all of the device resources before adding partition or floorplan
assignments.
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii51015.pdf

8–48 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Conclusion
Logic and Resource Utilization Effects
Partitions can increase resource utilization due to cross-partition optimization
limitations. Floorplan assignments can increase resource utilization because regions
sometimes lead to unused logic. Follow the recommendations in this document to
reduce these effects.

If your device is very full with the flat version of design, you might not be able to use
a complete incremental flow for the entire design. You can use a “partial” incremental
flow instead to get compilation time and performance preservation benefits for key
parts of the design. Focus on creating partitions and floorplan assignments for
timing-critical or often-changing blocks to get the most benefit out of the feature.

Routing Utilization Effects
Partitions and floorplan assignments typically increase routing utilization compared
to a flat design. Follow the recommendations in this document to reduce the effect.

If long compilation times are due to routing congestion, you might not be able to use
incremental flows to reduce compilation time. Focus on creating partitions and
floorplan assignments for parts of the design that are not routing-critical to get some
benefit.

You can also use incremental compilation to lock routing for routing-critical blocks
only (with other partitions empty), and then compile the rest of the design after the
critical block meets its requirements.

Review the Fitter Messages to check how much time is spent during routing
optimizations and to see the percentage of routing utilization. This information helps
highlight routing issues.

Conclusion
Incremental compilation provides a number of benefits, especially to large, complex
designs. To take advantage of the feature, it is worth spending some time to create
quality partition and floorplan assignments.

Follow the guidelines to set up your design hierarchy and source code for incremental
compilation. Keep partitions independent of each other and do not rely on any
cross-boundary logic optimizations.

Floorplan location assignments are required for bottom-up flows and are
recommended for timing-critical partitions in top-down flows. Follow the guidelines
to create and modify LogicLock regions to create good placement assignments for
your design partitions.

Take advantage of the numerous Quartus II software tools to assess partition quality
and analyze the floorplan to make good partition and LogicLock location
assignments. Remember that you do not have to follow all the guidelines exactly to
implement an incremental compilation design flow, but following the guidelines can
maximize your chances of success.
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments 8–49
Referenced Documents
Referenced Documents
This chapter references the following documents:

■ Analyzing and Optimizing the Design Floorplan chapter in volume 2 of the Quartus II
Handbook

■ Area and Timing Optimization chapter in volume 2 of the Quartus II Handbook

■ Quartus II Incremental Compilation for Hierarchical and Team-Based Design chapter in
volume 1 of the Quartus II Handbook

■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II Handbook

Revision History
Table 8–1 shows the revision history for this chapter.

f For previous versions of the Quartus II Handbook, refer to the Quartus II Handbook
Archive.

Table 8–1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

March 2009
v9.0.0

■ Added I/O register packing examples from
Incremental Compilation for Hierarchical and
Team-Based Designs chapter

■ Moved “Incremental Compilation Advisor”
section

■ Added “Viewing Design Partition Planner and
Floorplan Side-by-Side” section

■ Updated Figure 8–22

■ Chapter 8 was previously Chapter 7 in
software release 8.1.

Updated for the Quartus II software version 9.0
release.

November 2008
v8.1.0

Changed to 8-1/2 x 11 page size. No change to
content.

Updated for the Quartus II software version 8.1
release.

May 2007
v8.0.0

Initial release. This content of this chapter is based on
information that was contained in Application
Note 470.
© March 2009 Altera Corporation Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis

http://www.altera.com/literature/hb/qts/qts_qii52006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/lit-qts_archive.jsp
http://www.altera.com/literature/lit-qts_archive.jsp

8–50 Chapter 8: Best Practices for Incremental Compilation Partitions and Floorplan Assignments
Revision History
Quartus II Handbook Version 9.0 Volume 1: Design and Synthesis © March 2009 Altera Corporation

	8. Best Practices for Incremental Compilation Partitions and Floorplan Assignments
	Introduction
	Overview: Incremental Compilation
	Choosing the Netlist Type and Fitter Preservation Level
	Top-Down versus Bottom-Up Compilation Flows
	Generating Bottom-Up Design Partition Scripts for Project Management

	Why Plan Partitions and Floorplan Assignments for Incremental Compilation?
	Partition Boundaries and Optimization

	Creating Design Partitions: General Partitioning Guidelines
	Plan Design Hierarchy and Source Design Files
	Using Partitions with Third-Party Synthesis Tools

	Partition Design by Functionality and Block Size
	Partition Design by Clock Domain and Timing Criticality
	Consider What Is Changing

	Creating Design Partitions: Design Guidelines
	Register Partition Inputs and Outputs
	Minimize Cross-Partition-Boundary I/O
	Avoid the Need for Logic Optimization Across Partitions
	Keep Logic in the Same Partition for Optimization and Merging
	Keep Constants in the Same Partition as Logic
	Avoid Unconnected Partition I/O
	Avoid Signals That Drive Multiple Partition I/O or Connect I/O Together
	Invert Clocks in Destination Partitions
	Connect I/O Directly to I/O Register for Packing Across Partition Boundaries
	Do Not Use Internal Tri-States
	Include All Tri-State and Enable Logic in the Same Partition
	Include Bidirectional I/O Registers in the Same Partition
	Summary of Guidelines Related to Logic Optimization Across Partitions

	Creating Design Partitions: Consider Additional Design Suggestions
	Balance Logic Resources
	Balance Global Routing Signals and Clock Networks if Required
	Assign Virtual Pins in Bottom-Up Flows
	Perform Timing Budgeting if Required
	Consider a Cascaded Reset Structure
	Drive Clocks Directly in Bottom-Up Flows
	Recreate PLLs for Lower-Level Partitions if Required in Bottom-Up Flows

	Checking Partition Quality
	Incremental Compilation Advisor
	Design Partition Planner
	Floorplan Partition Coloring
	Viewing Design Partition Planner and Floorplan Side-by-Side
	Partition Statistics Report
	Report Partition Timing in the TimeQuest Timing Analyzer
	Ensure Partition Assignments Do Not Impact the Quality of Results

	Introduction to Design Floorplans
	The Difference between Logical Partitions and Physical Regions
	Why Create a Floorplan?
	Why Create a Floorplan in Bottom-Up Flows?
	Why Create a Floorplan in Top-Down Flows?

	When to Create a Floorplan
	Early Floorplan
	Late Floorplan

	Creating a Design Floorplan: Placement Guidelines
	Assigning Partitions to LogicLock Regions
	How to Size and Place Regions
	Modifying Region Size and Origin
	I/O Connections
	LogicLock Resource Exclusions

	Creating Non-Rectangular Regions

	Checking Floorplan Quality
	Incremental Compilation Advisor
	LogicLock Region Resource Estimates
	LogicLock Region Properties Statistics Report
	Critical Path Settings for Chip Planner
	Locate the Quartus II TimeQuest Timing Analyzer Path in the Chip Planner
	Inter-Region Connection Bundles
	Routing Utilization
	Ensure Floorplan Assignments Do Not Impact Quality of Results

	Recommended Design Flows and Application Examples
	Create a Floorplan for the Entire Design in a Top-Down Flow
	Create a Floorplan as the Project Lead in a Bottom-Up Flow
	Create a Floorplan Assignment for One Design Block with Difficult Timing

	Potential Issues with Creating Partitions and Floorplan Assignments
	Logic and Resource Utilization Effects
	Routing Utilization Effects

	Conclusion
	Referenced Documents
	Revision History

