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Abstract

The reconstruction of a surface model from a point cloud is an important task in the reverse engineering of industrial parts. We aim at
constructing a curve network on the point cloud that will define the border of the various surface patches. In this paper, we present an algorithm to
extract closed sharp feature lines, which is necessary to create such a closed curve network. We use a first order segmentation to extract candidate
feature points and process them as a graph to recover the sharp feature lines. To this end, a minimum spanning tree is constructed and afterwards
a reconnection procedure closes the lines. The algorithm is fast and gives good results for real-world point sets from industrial applications.
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1. Introduction

Feature lines on a surface model can be mathematically
defined via local extrema of principal curvatures along
corresponding principal directions. These feature lines can
be used in a variety of applications, e.g. visualization,
improvement of the mesh quality, shape recognition, quality
control and reverse engineering.

Most feature line extraction algorithms rely on a triangular
mesh as input, e.g. [1-5]. Few algorithms only use a point
cloud, e.g. [6,7]. These existing methods usually result in pieces
of unconnected feature lines, making it hard to segment a point
cloud or mesh into surface patches, based on these lines.

A method to find the different surface patches with
corresponding boundaries is presented in [8]. This method
relies on a triangular mesh as input, but sometimes a mesh is
not given or it can be hard to generate one. A segmentation
algorithm that operates on point clouds is explained in [9]. This
method uses curvature information that is difficult to estimate
in a noisy environment.

In this paper, we aim at constructing a curve network on a
point cloud that will define the border of the various surface
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patches. Therefore, we focus on finding closed sharp feature
lines. Our method can be sketched as follows. First, a region
growing method is applied with normal estimation, which is a
modification of the method of Vanco et al. [10-12], to cluster
the points in order to reduce the point cloud size. We build and
manipulate a graph of these clusters, resulting in closed sharp
feature lines that fit the clusters such that the algorithm can be
used as a pre-process step to find the areas where a surface patch
can be defined. We are interested in point clouds from industrial
applications, where closed sharp feature lines can be detected.
It is not our goal to apply the algorithm to point clouds with free
form surfaces or fillets with a large radius.

The algorithm differs from existing feature line algorithms
by the fact that it reconstructs closed sharp feature lines. The
advantages of the algorithm are that (a) it is meshless, i.e. only
the coordinates of the points are used, (b) it intelligently
clusters the points to create a graph that is much smaller than
the original cloud, thus making it practical for large point
clouds and, (c) it constitutes a pre-process step for surface
reconstruction.

An introduction to the algorithm, together with some results,
is published in [13]. In this paper, the algorithm is explained
in detail (see Section 2). In Section 3 we illustrate results
of the algorithm applied to realistic point clouds, i.e. point
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Fig. 1. First order segmentation of two intersecting cylinders.

Fig. 2. The graph Gyj;; the area bounded by the rectangle is used to illustrate
the following steps of the algorithm in detail.

clouds obtained from scanning industrial parts. We formulate
the conclusions in Section 4.

2. Sharp feature line extraction algorithm
2.1. Algorithm overview

Given a point cloud, we extract closed polygonal lines
indicating the sharp edges. Algorithm 1 gives the different steps
of the algorithm that will be explained in this section. Each step
of the algorithm is illustrated in Figs. 1-3 for a point cloud
representing two intersecting cylinders.

2.2. First order segmentation of point cloud

Normal estimation and neighborhood selection. The first step
of the algorithm divides a point cloud in different clusters
of points using a region growing method. For that purpose,
we need for every point the neighboring points as well as an
estimation for the normal vector. In order to accurately detect
the transition from a smooth area to a sharp edge, the normal
vector is estimated as locally as possible. As we will see later
on, to detect the sharp edges, the neighbors of a point p need to
be distributed around p.

With uniform sampling density, we could use a few nearest
neighbors to represent the neighborhood of p, but in most
realistic point clouds this results in a neighborhood located on

Algorithm 1 High level description of the algorithm.

1. Segment point cloud using the normals = point clusters
(clusters) (Fig. 1)

2. Build graph Gy connecting neighboring clusters (Figs. 2
and 3(a))

3. Add edges, indicating a piece of a sharp feature line, to
Gall = Gextended (Flg 3(b))

4. Build the pruned minimum spanning tree of Gextended =
Gpruned,mst (Fig. 3(c))

5. Prune short branches in Gpruned_mst = Gpruned_branches (Fig.
3(d))

6. Close the sharp feature lines in Gpruned_branches = Gclosed
(Fig. 3(¢))

7. Smooth the sharp feature lines in G¢josed = Gsmooth (Fig.
3(6)

one side, which is undesirable in our algorithm. If a triangular
mesh is available, the 1-ring neighborhood of p can be used to
represent a good local neighborhood of p, with the neighbors
distributed around p. In the absence of a mesh, we approximate
this neighborhood by building a local mesh. We determine the
k nearest neighbors of p, with k large enough, by generating a
sphere with p as midpoint and a radius such that the k nearest
neighbors are inside this sphere. Then the least squares plane
through these points is constructed and the points are projected
on this plane. Next, we compute the Delaunay triangulation
of these projected points and only the points that share an
edge with p in this triangulation, constitute the Delaunay
neighborhood [14] of p, which is used as an approximation of
the 1-ring neighborhood.

The normal in p is estimated as the normal of the least

squares plane through the 1-ring neighborhood of p, as
explained in [15]. Since we only use a few points from the k
nearest neighbors (the 1-ring neighborhood), the value of k has
not much influence on the normal estimation when k is chosen
large enough. Consequently, setting the value of this parameter
to 20 was suitable for all the tested point clouds.
Region growing. We want to use a standard region growing
method to cluster the points based on the sharp edges using
only normal estimation. Hence, we use a modification of the
first order segmentation described by Vanco et al. [10-12]: only
one threshold angle oy, is used which specifies the maximum
acceptable angle between the normals of two adjacent points
in one cluster. At a sharp edge, the normal estimation depends
heavily on the computed 1-ring neighborhood, since this
neighborhood is very local and these neighbors are located on
both sides of the sharp edge. This means that the variation of the
normals along a sharp edge is high, resulting in large clusters
with low variation of the normals bounded by small clusters
with high normal variation. These small clusters indicate the
sharp edges. Fig. 1 illustrates the result of the first order
segmentation, applied to the point cloud of the two intersecting
cylinders, with each point colored corresponding to the cluster
it belongs to. Contrary to the method of Vanco et al. [10-12],
each cylindrical piece, bounded by sharp edges, consists of
only one large cluster with many small clusters defining the
boundary.
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Fig. 3. Result of each step of the algorithm illustrated with the detail of Gy indicated by the rectangle in Fig. 2. (a) Gy: graph of the clusters; (b) Gextended:
Gy with extra edges; (¢) Gpruned_mst: graph after building the pruned minimum spanning tree of Gextended; (d) Gpruned_branches: graph after pruning short branches
in Gpruned_mst; (€) Gelosed: graph after closing the sharp feature lines in Gpruned_branches: (f) Gsmooth: graph after smoothing Gejosed-

Perfectly aligned points. Since high normal variation is caused
by differences in the 1-ring neighborhood, we can wonder how
the segmentation behaves on point clouds where the points are
perfectly aligned. Even in such an unrealistic case, there are
many small clusters at the sharp edges.

2.3. Building graph G 4y of all clusters

Gumbhold et al. [6] and Pauly et al. [7] introduced a graph
approach to extract feature lines at the level of individual points.
Since we are interested in sharp edges and the segmentation
gives a strong indication of the location of these sharp edges, we
base the algorithm on a graph structure at the level of clusters,
which yields a reduction in complexity. Contrary to [6,7], our
prime focus is to detect closed sharp feature lines. A connected
graph Gy is constructed, where each vertex represents a cluster
and each edge connects two clusters that contain at least one
point with overlapping 1-ring neighborhood. Note that in this
paper, an edge is a connection between two vertices in a graph
and a sharp edge is a feature of the point cloud with very
high normal variation. For every vertex of the graph we keep
a representative point of the cluster, i.e. its center of mass, and
its size in terms of points. In Figs. 2 and 3(a) only the edges
between two small clusters are plotted. It can be observed that
it is these edges that give us a first idea of the location of the
sharp feature lines. From now on, we only process the graph
and the point cloud is not needed anymore.

Since we have to distinguish between small and large
clusters, we could use a user-defined threshold. However, in
practice, there are many small clusters and less large clusters
with the large clusters much larger than the small clusters and
thus taking the average of all sizes of clusters is a good heuristic
value to separate the small clusters from the larger ones.

2.4. Adding edges to the graph G gy yielding G oxtended

As already mentioned, our goal is to extract closed sharp
feature lines, but the graph Gy has already many unwanted
‘gaps’ between small clusters. These gaps are caused by points
on a sharp edge with a normal aligned with the normal of a
neighboring large cluster. The edges that close these gaps are

Fig. 4. The graph Gy plotted on the segmentation of two perpendicular planes.

part of the border between two large clusters, i.e. these edges
are located on a sharp edge and have to be included in the graph.
Therefore, we add edges to Ggj connecting two small clusters
that share two large neighboring clusters.

This is illustrated in Fig. 4: due to the segmentation a small
cluster s; may exist that has only one small neighboring cluster,
namely s, and vice versa, which results in two unwanted gaps.
We add the edge (s3,s1) to Gy since s3 and s; have two
common large neighboring clusters, namely /; and /5. Similarly,
we add the edge (s2, s4) resulting in a graph Gexgended With
no unwanted gaps. We can now understand why it was useful
to keep the edges involving a large cluster in the graph Gy:
the large neighboring clusters are easily found. To avoid the
addition of too many edges, e.g. in Fig. 4 we do not want s
to get connected with s5, we only add edges with a euclidean
distance between the two representative points which is less
than the maximum euclidean distance between two small
neighboring clusters in Ggy. A detail of the graph Gextended Of
the two intersecting cylinders is illustrated in Fig. 3(b). As with
Gay1, only the edges involving two small clusters are drawn.

2.5. Building Gpruned_mst» the pruned minimum spanning tree
Of Gextended

The edges of Gexgended involving two small clusters give us
an idea of the location of the sharp feature lines. There are many
cycles and therefore, we construct the minimum spanning tree
(MST) of Gextended to remove them. For this purpose, weights
of edges between small clusters are calculated as the distance
between the representative points of the clusters. Additionally,
we attach large weights (larger than the weights between small
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clusters) to edges involving a large cluster. Building the MST
of Gextended With these weights results in a graph with a reduced
number of edges of which only a limited number of edges
involve a large cluster. We can now remove these latter edges
which results in Gpruned_mst, as illustrated in Fig. 3(c).

2.6. Construction of Gpruned_branches by pruning short branches
in Gprunedmxt

Although constructing the pruned minimum spanning tree
gives an initial reconstruction of the feature lines, the graph
Gpruned_mst contains many short branches, as can be seen in
Fig. 3(c). It is desirable to remove such branches since they do
not correspond to actual features.

We use Algorithm 2 to prune using a maximum branch
length dpmax. This is a similar method as in [6]. If all the
branches starting in a point are shorter or longer than the
parameter dmax then nothing is pruned in this point. In most
realistic cases, the noisy branches are shorter than the other
ones and, consequently, a good value for dp,x can be found
such that the noisy branches are pruned. For the tested point
clouds in this paper, no input of the user was needed to fine-
tune dpygax. Setting the value of this parameter to 5 gave good
results for all the tested models. A detail of the resulting graph
Gpruned_branches for the two intersecting cylinders can be seen in
Fig. 3(d).

Algorithm 2 Pruning algorithm.
dmax =5
for all points p in the graph Gpruned.mst With more than 2
incident edges do
if minimum 2 incident branches have depth > d,« then
remove all incident branches with depth < dax
end if
if (exactly 1 incident branch has depth > dpax) and
(minimum 2 incident branches have depth < dn,x) then
from the short branches, keep only the one with the
largest depth
end if
end for

2.7. Building Gipsea by closing the sharp feature lines in
Gprunedj)ranches

At this point, we have a graph Gpruned_branches With a reduced
number of endpoints, i.e. vertices in the graph with exactly one
incident edge. Since our aim is to reconstruct closed lines, we
introduce a ‘connect’ algorithm to link each endpoint with a
suited point in the graph as follows: for each endpoint p; we
compute the set N of the n nearest neighbors:

e Case 1: there exists at least one other endpoint in N:

The endpoint p; is connected to the closest endpoint g;
in N which has no path with p; that is too short, i.e. the
number of edges of each path is above a certain threshold d.
In this way, we avoid generating small cycles, e.g. in Fig. 5
there exists a path between p; and ¢» which is too short

p3

® D4

Iy

Fig. 5. Tllustration of the connect algorithm. The circles with p; as midpoint
for i € {1,2, 3,4} indicate the spheres containing the n nearest neighbors of

pi-

and, consequently, we do not connect them. A good endpoint
to link p; with is gp: they have only paths which are long
enough. If no suitable endpoint is found in N, we do not link
pi to anything, i.e. it stays an endpoint, like endpoint p, in
Fig. 5.

Since we have to search all the paths between p; and g;
and because there can be many (long) paths, we optimize the
algorithm by performing a depth first search with a restricted
depth d, i.e. if at depth d there is still no path found between
pi and g;, there are two possibilities: there is a path which
is long enough (longer than d) or there is no path. In both
cases, it is unnecessary to go deeper in the search tree, since
no small cycles will be generated following the current path
and we continue searching the other paths.

e Case 2: there exists no other endpoint in N:

This case is similar to the previous case, but now we link
pi with a point in N which has more than one incident edge.
For example p4 is linked to g4, but p3 stays an endpoint,
since all points in N would generate a small cycle when
connected with p3.

If, after the connect algorithm, there still exist endpoints,
we prune all remaining branches, e.g. in Fig. 5 the four short
branches ending in respectively p», g3, q> and p3 will be
pruned. The connect algorithm can be seen as a last clean
up step: ‘noisy’ branches, which are restricted to a minimum
because of the previous steps of the algorithm, are pruned and
all sharp feature lines are closed.

The value of n must be chosen carefully to ensure that the
needed points to link with are in N and to avoid connections
with points that are located too far away. The value of d must
be chosen such that all the sharp feature lines are extracted and
all noisy branches are removed. The graph Gpruned_branches gives
an indication of the length of the closed loops we want to
reconstruct, which can aid in a first estimate for d. By studying
the neighboring points of the endpoints, the user gets an initial
estimate for n. Both parameters can be adjusted by the user until
the desired result is obtained.

The two endpoints that still existed in Fig. 3(d) are now
connected, as illustrated in Fig. 3(e).
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Fig. 6. Results for the two intersecting cylinders. (a) G¢losed: (b) Gsmooth-

2.8. Generating G gmoomn by smoothing G cjpsed

The method we use to get a smooth graph Ggmeoth, S€€
Fig. 3(f), is explained in [16].

3. Results

A detail of the two intersecting cylinders was used to
illustrate the different steps of the algorithm. The whole graphs
Gelosed and Ggmooth are shown in Fig. 6(a) and (b). The results
for a cube can be seen in Fig. 7: we see how the connect
algorithm results in perfectly closed sharp feature lines. Fig. 8
shows the results for a detail of a mobile phone, a typical
example of a point cloud used in industrial applications. This
point cloud has been generated by a Metris LC15 scanner.!
We note that the algorithm does not guarantee good results
when two sharp feature lines are located too close to each other
depending on neighborhood selection and point density: there
is an unwanted gap at the right caused by the pruning, and there
exist some edges connecting two sharp feature lines. One way
to partially solve the latter problem would be to generate an
ellipsoid in the direction of the sharp feature line instead of a
sphere to find the neighboring points to connect to in the close
step.

The results for a larger part of the mobile phone are
illustrated in Fig. 9. Contrary to the previous point clouds, this
point cloud does not represent a solid, i.e. it has a boundary
which we extract and include in the graph. By comparing the
final graph with the segmentation, we see how well the detected
lines fit the segmentation, but we also see that a few sharp
feature lines are not detected because they consist of cycles
which are too short. Additionally, where two lines are located
too close to each other, they are extracted as one line.

A final point cloud is illustrated in Fig. 10. Five cylinders
are pointing out from a plane, with the small one pointing in
the opposite direction to the four other cylinders. This plane
is bounded by sharp edges caused by four neighboring planes
orthogonal to this plane. At the other side, these neighboring
planes constitute the boundary of the point cloud. This cloud

1 www.metris.com.

Table 1
Information about the segmentation for the different point clouds

#Points Avg #Small clusters #Large clusters

Phone small 11034 1.24 1610 37
Cube 15206 1.17 851 6
Cylinders 26 846 1.11 1696 10
Brick 41432 1.43 3133 36
Phone large 110053 1.62 5247 69

The column Avg shows the average number of points of the small clusters for
each data set.

has an average distance between a point and the corresponding
I-ring neighbors of 1/2 mm and the noise is estimated as
30 um (single sigma of local least squares plane). The noisy
parts of the point cloud produce many noisy branches in
Gpruned_branches, €specially in the neighborhood of the four
cylinders (see Fig. 10(c)). These branches are removed in the
final graph Ggmoeoth, illustrating the importance of the connect
algorithm in the presence of noise. The small cylinder is entirely
reconstructed, since it is closed at the top. Only the bottom
circles of the other four cylinders are reconstructed, since these
cylinders are open on the other side, i.e. they constitute four
holes in the point cloud. Since the boundary is not extracted for
this cloud, connecting edges between the sharp edges and the
boundary are missing in the final graph, i.e. they are removed
from Gpruned_branches by the connect algorithm.

This latter point cloud, the brick example, illustrates how the
algorithm is influenced by noise: small clusters are created at
the noisy parts. When we apply the algorithm to point clouds
with very high noise, the segmentation step results in small
clusters without any large ones. In such cases, a smoothing
method should be applied first and a larger neighborhood for
normal estimation can be used. In this paper, it is not our
intention to give a deep analysis of the algorithm in the presence
of high noise.

Table 1 presents information about the segmentation.
Because of the high normal variation at the sharp edges, the
average size of a small cluster is close to unity. In the case
of the cube and the cylinders, we see that the segmentation
results in the correct number of large clusters: the large clusters
fit the extracted sharp feature lines perfectly. Table 2 gives for
every step of the algorithm the number of vertices and edges
of the corresponding graph. In the case of the two intersecting
cylinders, we start with a point cloud of 26 846 points and then
we build a graph G,y of 1706 vertices and 6086 edges. After
adding edges to Gy, every following step reduces the memory
consumption of the graph: a huge reduction in the number of
edges happens when building Gpruned_mst and Gpruned_branches- In
general, in the close step, more edges are removed than added,
since noisy branches are pruned. Note that for the large mobile
phone point cloud the boundary is included just before the close
step.

The table also illustrates the time consumption of the
algorithm. The segmentation step (77 + RG) requires more
time compared to the other steps of the algorithm, because
this step has to grow through all the points of the point cloud
and the normal for each point needs to be estimated. We
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Fig. 7. Result of each step of the algorithm applied to the cube. (a) Gay1; (b) Gextended; (¢) Gpruned_mst; (d) Gpruned_branches; (€) Gelosed’ (f) Gsmooth-
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Fig. 8. Result of each step of the algorithm applied to the mobile phone point cloud. (a) Gyyi; (b) Gextended: (¢) Gpruned_mst; (d) Gpruned_branches; (€) Geloseds

() Gsmooth-

Fig. 9. Results for a larger detail of the mobile phone. (a) and (b) illustrate two different views of the segmentation; (¢) Gsmooth-

@

Fig. 10. Results for the brick point cloud. (a) Point cloud with flat shading; (b) segmentation; (¢) Gpruned_branches; (d) Gsmooth-
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Table 2

Complexity and time consumption of the different steps

Edges Gall Gextended Gpruned_mst Gpruned_branches Gelosed
Phone small 5206 8776 1604 1225 1170
Cube 2835 5251 850 685 690
Cylinders 6086 8984 1690 1123 1076
Brick 8210 9716 2543 1992 1456
Phone large 16 198 27 538 5199 4040 4579
Vertices

Phone small 1647 1647 1607 1228 1162
Cube 857 857 851 686 686
Cylinders 1706 1706 1696 1129 1076
Brick 3169 3169 2720 2169 1449
Phone large 5316 5316 5215 4056 4527
Time (s) ks RG Gall Gextended Gpruned_mst Gpruned_branches Gelosed Total
Phone small 1.69 0.11 0.18 0.39 0.05 0.04 0.09 2.55
Cube 2.02 0.11 0.08 0.25 0.03 0.01 0.02 2.52
Cylinders 3.71 0.20 0.23 0.49 0.06 0.04 0.08 4.81
Brick 6.06 0.58 0.33 1.43 0.08 0.08 0.71 9.27
Phone large 16.01 1.06 0.66 2.32 0.17 0.12 0.96 21.30

The segmentation is decomposed in two steps: The normal estimation (77) and the region growing (RG). The timings are in seconds and generated on an Intel Pen-

tium 4, 3.20 GHz.

could make the segmentation much faster by estimating the
normal as the normal of the least squares plane through the
k nearest neighbors instead of using the 1-ring neighborhood
(see Section 2.2). But for realistic point clouds, a small k
might generate neighbors only on one side of the sharp edge
causing no small clusters, and a large k makes it impossible to
accurately detect the transition from a smooth surface to a sharp
edge.

The following parameters are used by the algorithm: omax
(angle in the segmentation), k (to estimate the normal), dmax
(needed in the pruning algorithm), and n and d (used in the
connect algorithm). Most of these parameters have the same
value for all tested models: amax = 8°, k = 20 and dpax = 5.
Only a few parameters need to be specified by the user, namely
n and d in the connect algorithm (see Section 2.7).

4. Conclusion and future work

We presented an algorithm to extract sharp edges from
a point cloud without estimating the curvature and without
triangulating the point cloud. Additionally, all extracted lines
are closed at the end of the algorithm. We start with a very
simple region growing method with well chosen normals,
resulting in an initial clustering based on the sharp edges.
Afterwards, we build and manipulate a graph of the clusters.
Using a graph structure at the level of clusters yields faster
execution times and less memory consumption, making the
algorithm suitable for large point clouds. Once we build the
graph of the clusters, the point cloud is no longer needed and
we only process the graph in the following steps: adding extra
edges, construction of the minimum spanning tree, pruning,
closing and smoothing the sharp feature lines.

The segmentation step and the creation of the closed lines
constitute a pre-process step in finding a curve network. In the

future, we plan to construct this network, which consists of a
set of loops, where each loop defines the boundary of an area
where a patch can be fitted. When all these segments are known,
we can continue with each segment individually to detect also
tangent continuous but curvature discontinuous features like
fillets.
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