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Abstract

Morin and Goldman [Computer Aided Geometric Opsil 7 (2000) 813] have recently presented a remarkable
new framework, based on employing Poisson series, for describing analytic functions in CAD. We compare this
Poisson formulation with s-power series, modified Newton series that can be regarded as the two-point analogue
of Taylor expansions. Such s-power series yield, over finite intervals, better approximations for CAD purposes, as
they are polynomial and hence expressible in the BemsBézier standard, can lpéeced together in a smooth
Hermitian spline and, in general, display better convergence.
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1. Introduction: the representation of analytic functions in CAGD

The parametric representation of curves and surfaces in CAGD employs polynomial or rational func-
tions (Farin, 2001; Piegl and Tiller, 1997). However, analytic functions (Davis, 1975) provide a richer
framework, needed for the exact representation of transcendental, i.e., nonalgebraic curves or surfaces
(Lawrence, 1972), not encompassed by the standard rational model. In addition, some geometry process-
ing operations, such as offsetting or computing arc lengths, involve non-polynomial functions, in particu-
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lar square roots; hence the interest of a general tool for representing and manipulating analytic functions
in an efficient way.

A first option is provided by the concept Bfbasis(Pefia, 1999), which carries over the customary
Bernstein basis to general functional spaces of finite dimension. Given a space with normalized totally
positive bases, among all them there exists a unique basis, called B-basis, with optimal shape-preserving
properties. Intuitively, if a space has a B-basis we can define curves through a control polygon in a
similar way to our familiar Bézier case. These curves display all the positive geometric properties of the
Bézier scheme (variation diminishing, containment in the convex-hull, affine invariance, tangency to the
control polygon at the endpoints) plus optimal stability and the existence of a de Casteljau-type algorithm.
However, each space of functions has a particular B-basis, and the number of basis functions required
equals the dimension of the space. In consequence, we cannot represent arbitrary analytic functions in a
unified manner.

The obvious alternative is using an infinite number of basis functions, that is, some kind of expansion.
Morin and Goldman (2000a, 2000b, 2001a, 2001b) investigated on Poisson series and derived a model
that can be regarded as the analogue of the polynomial Bézier scheme for representing analytic functions
on semi-infinite intervals. The coefficients of the series are endowed with a geometric meaning as control
points, defining a control polygon that enjoys the positive geometric properties of the Bézier formulation.
Moreover, the algorithms for Poisson curves admit an interpretation in terms of an analytic blossom.
Sanchez-Reyes (1997, 2000) explored the two-point analogue of Taylor expansions, skpaveer
series which also admit a representation in terms of a control polygon. Truncating athttterm the
s-power series furnishes the ordeHermite interpolant, i.e., the degré2k + 1) polynomial curve that
reproduces up to thieth derivative of the original function at the endpoints of a given interval. By piecing
these approximations we obtain & Bermitian spline (Grisoni et al., 1999).

Other polynomial expansions over finite intervals have been employed in a CAD context. For instance,
Legendre series are advocated for approximating offset curves (Li and Hsu, 1998), the inversion of poly-
nomial functions (Farouki, 2000), or degree-reduction (Lee et al., 2002).

In this article we compare Poisson and s-power series for approximating analytical functions over
finite intervals. In Sections 2 and 3, we revisit Poisson and s-power series, respectively, with special
emphasis on their converge and technigues to avoid singularities. Section 4 explains through several
comparative examples why s-power series display better convergence than Poisson series, which leads to
the conclusions drawn in Section 5.

2. Poisson functions: the analogue of Bézier functions on semi-infinite intervals
2.1. Poisson series as a limiting case of nonparametric Bézier curves

Given a functionf (¢), its Poisson expansion aroune- 0 is defined as:

etk
k!

FO =" pebe(t),  b(t) = (1)
k=0
The Poisson coefficientg, are easily computed (Morin and Goldman, 2000a) as those of the Taylor

expansion for the functiorf g(z) aroundr = 0.
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Fig. 1. Poisson basis functiobg (), k =0, ..., 4.

k
pk=g<‘>(0)=2(’l.‘)f“)(0), g(t) =€ f(0). &)
i=0
The Poisson basis functionk, (r) (1), plotted in Fig. 1, are nonnegative over the positive semi-axis
t € [0, 00) and form a partition of unity. Such functions can be regarded as the limitingncasexo
of degreen Bernstein polynomials, defined ovee [0, n]. Hence, the summation (1) admits an elegant
geometric interpretation, as the limit case> oo of a degree: nonparametric Bézier curve ovek
[0, n]. This nonparametric curve has control poipts= (k, py), i.e., integer Bézier abscissfis 1, 2, .. .}
regularly spaced along theaxis, defining an infinite control polygon that inherits the positive properties
of the Bézier scheme:

¢ It mimics the shape off (r), now in a right neighbourhood of the origin= 0. Pointsp, have a
push/pull effect, sincé, () enjoys unimodality, attaining its maximum precisely at k.

The polygon is tangent t@ (¢) at po.

If the series converges @A, oo), the convex hull and variation diminishing properties hold.
Linear precision: a linear functiofi(z) has control points with ordinatgs, = f (k).

A representation (2) of a function that enjoys convergence in a neighbourhood of the origin is called
Poisson functionThe definitions extend in a straightforward manner to the parametric case, where the
Poisson scheme enjoys affine invariance.

2.2. Subdivision

Suppose that we want a new representatiorf @, with control pointsq, = (kp, g,) over abscissas
{0, p, 2p, ...}. Clearly, this is tantamount to scaling the graph and polygofi(pt) a factorp along the
x-axis. In consequence, the new ordinateare those off (pt), and the new basis functions drgz/p),
so the Poisson series is rewritten as:

[} k
FO =" abe(t/p), Qk:Z<IE)PifU)(O). 3)

k=0 i=0
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Fig. 2. Successive Poisson control polygons fon = 2, ¢ € [0, 1].

In the polynomial setting, DeRose (1988) noted the equivalence between subdivision and this linear
reparameterization. Morin and Goldman (2001a) also observe that théthewdinateg, (3) derives
from the original onegp; }*_, (2) via a de Casteljau-type algorithm (left-sided subdivision) using a simple
summation. In the case p < 1 (refined representation), a repeated subdivision furnishes a sequence
of control polygons that converges #iz) over the convergence interval of the series. Therefore, such
polygons provide a piecewise linear approximatiornf{o). This property is illustrated in Fig. 2 by the
function f(r) = 2, where we have chosen successive powets2~, i = 1, 2, 3, 4. Hermann (2002)
showed that this converge of the refined polygon holds for a certain family of bases that includes the
Bernstein and Poisson bases.

If we seek a representation ¢f¢) over an arbitrary intervdlg, co), rather than ori0, co), with con-
trol points over abscissds, 1o+ 1, 1o+ 2, .. .} the new ordinates are clearly thosefaf — «). However,
if we try to calculate them by invoking the de Casteljau-type algorithm (right-sided subdivision), the
computation gets more complex, since it involves an infinite summation.

2.3. Convergence issues

In this section, we summarize the most remarkable results regarding the convergence of Poisson series,
which are basically those of Taylor series (Needham, 1997). Since these results are formulated in the
complex plane, henceforth we consider complex functif(s.

The Taylor or Poisson series (around the origig 0) of f(z) converges tof (z) within a certain
circle C, centred at = 0, whose radiusg is calledradius of convergenceand diverges outsid€,. In
principle, nothing can be said about the convergence on the rifi).ofhis circle of convergence, is
the largest circle centred at the origin we can draw so that its interior contains only points fxbere
analytic Those pointg* where f (z) is not analytical are callesingular pointgor singularitieg. Hence,
the circleC, is the largest circle whose interior does not contain singularitig&ig. 3(a)). Given a real
interval [0, d], we can guarantee convergence on this intervabifd, that is, the circleC; encloses no
singularity.
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b

Fig. 3. (a) CircleC, of convergence in the complex plane for a Taylor or Poisson series. (b) Avoiding a singgfaxiig
analytic extension.

To avoid a singularityz* not lying on the real axis, Morin and Goldman (2001a) employ analytical
continuation to generate a sequence of convergent Poisson series, whose circles of convergence cir-
cumventz* (Fig. 3(b)). Suppose we want a convergent approximation on an intgwd], » < d, so
that a Poisson series centredrat 0 cannot be employed beyond= r. Via right-sided subdivision,
we compute a new series centredrak r, hence enjoying convergence beyang r. This strategy
can be employed again to further extend the interval of convergence or to avoid additional singulari-
ties.

We must remark an advantage of Poisson series over Taylor series for the case of entire functions (i.e.,
with r = o0) and such that lim., , f(z) = 0. Then, the Poisson series converges uniformly §deso),
whereas the convergence of Taylor series is uniform only on finite intervals.

2.4. Truncated Poisson series and polygon

A first constraint in practical applications is that we cannot store an infinite series. Therefore, we must
truncate expansion (3) at a certditth term and get an approximation:

k
P(fit)=Y_ qibi(pt), 4
i=0
which varies for different valuegp. As for Taylor series, the approximatioB.(f;¢) has contact of
the kth order with f () at+ = 0. In contrast, a truncated Poisson series is not polynomial and hence
not expressible in the Bernstein—-Bézier standard. Therefore, it cannot be incorporated into commercial
CAD programs. In fact, a truncated series cannot represent exatpolynomial, except the null func-
tion.
Morin and Goldman (2000a) get around this drawback in a simple manner, by employing a truncated
Poisson control polygon of pointg, 0 < i <k, rather than a truncated series (4). To approximate
over an intervat € [0, d] with a polygon ofk + 1 points, simply choose a scale factoe d/ k. However,
new problems arise with a truncated polygon:

e Neither the diminishing variation, nor the convex hull hold any more. The fungtion= ¢? (Fig. 2)
provides a simple counterexample.
e It yields a piecewise linear approximation, hence onfy C
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e The approximation does not interpolaté:) at the right endpoint. Thus, the analytic continuation
described in Section 2.2 leads to gaps when connecting several expansions.

3. s-power series: the two-point analogue of Taylor series
3.1. Two-point Hermite approximation and Hermitian splines

A well-known technique in numerical analysis (Stoer and Burlirsch, 1993) is two-point Hermite ap-
proximation. Given a functiorf () over a domainz, t,], its orderk Hermite approximatiorH, (f;t) is
the unique degreézk + 1) polynomial that has contact of tli¢h order with £ (z) at the endpointg, 71,
in other words, the polynomial that interpolates all the derivatig4 (1), @ (t1)}*_,. Such ordete
Hermite approximations are very convenient for a piecewise representation. If we split the domain into
several segments and piece together their corresponding /oidermite approximations, we get & C
polynomial spline function, calledermitian spling(Grisoni et al., 1999). This piecewise function admits
a standard degre@k + 1) B-spline representation, where the internal knots have multiplicityl.

Once we have identified the Hermite approximation as an attractive option, we must take into account
that the customary ordércardinal Hermite polynomials are not a subset of those of higher order, thereby
not leading to Hermite series. Formally, the standard Hermite representation does nqtegnjapence
The permanence property is highly desirable: if the approximation error surpasses a determined thresh-
old, we simply add one more term in the series, without having to recompute the whole approximation.
A Newton form (Goldman, 2003) of nodds, t1, 79, t1, . ..} Solves the problem of the standard Her-
mite form, by furnishing two-point expansions ovey, #1], instead of a Taylor series around a point. In
addition, the expansion admits the efficientkPnested evaluation the Newton form enjoys. Note that
permanence could be also achieved through more complex multiresolution schemes, in particular the
HB-splines (Hermitian B-splines) developed by Grisoni et al. (1999).

3.2. s-power series definition

Given a functionf (¢) over a general domaine [z, #1], first we rewrite it asi(u) = f (¢ (u)) over a
unit domainu € [0, 1], via a change of variable:

t(u) =tg(l—u) +tiu, wuel0,1], t €ty t1]. (5)

Now we take the Newton representation of nofled, 0, 1, 0, . . .}, that is, where the points to interpolate
have abscissas coalescing to the endpoints, and rearrange it to resemble a power series:

o0
a(u) = Zak(u)sk, s=A—-wu, au)=1A- u)a,? + ua,}. (6)
k=0
The expansion ovet € [0, 1] is calleds-power seriegSanchez-Reyes, 2000), because it is simply a
power series of symmetric parameter (1 — u)u, whose coefficients, («) are linear functions of:,
rather than constants. Note that(u) is expressed in Bernstein form, i.e., the p@ﬁr at denotes its
Bézier ordinates (Fig. 4(a)). R
The functions* () (6) is the centralth) scaled Bernstein polynomi@ (u):
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ay(u) 22ksk(u)
k=1
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ay /25100
u j T \ u
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Fig. 4. Linear functionz («) and symmetric functios® («) in the kth term of a s-power series.

sk = §k2k(u) = (1—w)kut.

As shown in Fig. 4(b), this bell-shaped function displays the following properties:

Degeneration to a scaled impulsekas> oo.

Symmetry with respect to the midpoimt= 1/2.

Unimodality, attaining the maximunt2* at the midpoint.

Contact of ordek — 1 with the horizontal axis, since it hasé&old zero atu =0,u = 1.

Given a functionz (1), analytic in a certain region of the complex plane, it can be expressed uniquely
as a convergent s-power series (6). Moreover, the drddermite interpolantH, (a; u) results from
truncation at theth term:

k

Hi(a;u) = _ai(u)s'. (7

i=0

Recall that this is the unique polynomial of degree 2k + 1 that reproduces the derivatives” (u)}*_,
at the endpointg =0, u = 1.

The basis functions in expansion (6) are central pﬁj}%*l, Akzﬁl of scaled Bernstein polynomials
(without binomial coefficients):

§k2k+l = (1—uw) ™k, /B\kzﬁrl =1-wh"t, k=012....

Thus, the series admits a representation in terms of a certain control polygon (Sanchez-Reyes, 1997).
Just compute the Bézier form of successive ofdélegreen = 2k + 1) Hermite interpolants (7), and

take pairs of centrdl, (k + 1)th nonparametric Bézier points, over abscigsas (k +1)/n. This control

polygon satisfies the convex hull property. It also inherits the permanence property: dmism in

the expansion refines the polygon by adding a pair of new central points, preserving the previous ones.
However, for a convergent series the corresponding polygon converges to the funckion, a&s only

at the midpoint = 1/2.
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3.3. Representing and computing the coefficieflts:}

Each “coefficient”a,(«) in a s-power series (6) is a linear function expressed in Bernstein form,
thereby suggesting that a natural representatian @f) would be the pair of Bézier ordinates:

ap(u) — & = {ay, aj}. (8)

Therefore, representing a s-power series reduces, in essence, to representing a Taylor series where each
coefficient is the duple (8), or to representing two Taylor series. Note that s-power series inherit the
symmetry of the Bernstein representation, so that the series(#dr= a(1 — u), denoted with a tilde,
has coefficient$y generated by swapping, ay.

To obtain explicit expressions @ (8) in terms of derivatives at the endpoints, simply apply divided
differences (Goldman, 2003) in a triangular scheme. Given the Taylor series for the functions
a(u)=a(l—u):

oo ' 1 .
a(u) = Zciu’, ¢ = =a"(0),

a(u)—ch, G ~“)(0) ©)

thekth coefﬁmentak is expressed as the linear combination:

k

& = Zcihi,k +&hig,
i=0

hi,k={1s 0}5 i =k,

h,.,k={(Zk,:ji—l),_(ik:ii:ll)}, i <k. (10)

This formula is a simplified version of that derived by Lépez and Temme (2002), via complex contour
integration, or by Fine (1961).

Next, we show that the paits ;, of binomial numbers (10) multiplying the Taylor coefficierts(9)
convey a clear meaning. First, we rewrit@:) as a linear combination of cardinal functions:

a@) =Y cihi(u) +&hiw), hiw)=h;(1-u), (12)
i=0
where the cardinal functioh, (1) has derivatives that agree with those of the monomiiat« = 0, and
vanish atx = 1. Comparing (10), (11) the paibs ; are identified as théth s-power duple (8) of th&h
cardinal functioni; (1), assumingdh; , = {0, 0} for i > k. Fig. 5 plots these cardinal functiong(u), for
i =0, 1, and their the successive ordeHermite interpolants. Observe that(u) is expressed, over the
real axis, in terms of a Heaviside step functhﬂu) as:

1, u< 2,
hi@) =u'ho(w), o) =13, u=3,
0, u> %
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Fig. 5. Successive ordérHermite expansions for the cardinal functiongu), i =0, 1, u € [0, 1].

The paira, can also be computed without knowledge of the derivatives, by combining basic s-power
series (Sanchez-Reyes, 2000). The resulting algorithms are akin to those for Taylor series (Knuth, 1998),
as the basic idea in the definition (6) is to rearrange the Newton form, so that it can be manipulated like
a standard power series.

3.4. Lemniscates of convergence

In this section, we summarize the results regarding the convergence of s-power series (Sanchez-Reyes,
2000). Such results derive from applying the classical convergence theorems for interpolatory processes
to the particular case of symmetric two-point Hermite interpolation. Formal proofs can be found in the
treatise (Davis, 1975).

The convergence of complex s-power series is formulated in the complex plane, as for Taylor series.
Since a s-power series is a power series() = (1 — z)z, simply replace as areas of convergence the
circlesz = r with curves:

‘s(z){ =r%, s(2)=(1-2)z (12)

Such curves are known &assinian curvegNeedham, 1997). They are the locus of pointuch that

the product of their distances to the fagi= 0,z = 1) is a constant?. Thus, the s-power series of a
function a(z) converges uniformly ta:(z) within the largest Cassinian curve of fock= 0, z =1 we

can draw so that it does not contain any singularity, and diverges outside. Fig. 6 shows that awarying
generates confocal curves (12) belonging to 3 different families:

e 0<r <1/2:twoOvals of Cassinione surrounding = 0 and the othet = 1.
e + =1/2: Lemniscate L of Bernoujlanoco-shaped figure with a double pointat= 1/2.
e r > 1/2: a closed contour containing both foci.

In most applications, we are interested only in the convergence over the real unit ifiGeMabf
definition. To guarantee a convergent behaviour{@ri], this interval must be completely contained
in the complex area of convergence. As only Cassinian curvesrwitll/2 embraceO, 1], the lem-
niscateL of Bernoulli must not contain singularities. However Lifcontains a singularity*, we can
always circumvent it through subdivision. Fig. 7 illustrates this strategy for a singuléritpt lying
on the real segmen0, 1]. If we subdivide it, and compute the s-power series for each segment, their
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r=0.6

Fig. 6. Confocal areas of convergence in the complex plane for s-power series.

Fig. 7. Avoiding a singularity™ via subdivision in s-power series.

new limiting lemniscated. are smaller. Clearly, after successive subdivisions any singularity can be
avoided, and hence we achieve convergent s-power series for each segment. As already commented,
truncating these s-power series and piecing them together furnishes a smooth spline. In case of a real
singularityu* € (0, 1), we split[0, 1] so thatu* lies just in the midpoint of one of the resulting intervals.
As u* coincides with the double point of the corresponding lemniscate, convergence is guaranteed except
atu*.

We stress that, in this contexdubdivisionis tantamount to splitting the domain of the given func-
tion f(¢z) into several pieces, and for each piece computing a truncated #g&fiesu) (7). It does not
mean subdividing the polynomial approximation furnished by a truncated series, so no de Casteljau-like
algorithm is employed.

4. Comparative examples

In this section, we justify first why better convergence can be expected for s-power series than for
Poisson series. Second, we take several examples from Morin and Colgman (2000a, 2000b, 2001a) and
plot the approximations over a given intervat [0, d] furnished by s-power series and Poisson series
and polygons. For an unbiased comparison, we refer to the number of terms in both approximations,
namely the degree = 2k + 1 for s-series (7), and the indéx4) in the Poisson case.
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G
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Fig. 8. Comparing the limiting areas of convergence for Poisson and s-power series.

4.1. Why s-power series display better convergence than Poisson series

Suppose we want to construct a series over the real segmeid, 1]. Fig. 8 displays together the
limiting areas, a circle”; for Poisson and a lemniscate of Bernodllfor s-power series, that determine
the convergence over this segment. If the area contains no singularity, then the corresponding series
enjoys convergence. The lemniscé@tdugs this segment closer than the cir€lg so that the chance to
contain a singularity* is lower. A singularityz* in the wide regionC; — L implies a divergent Poisson
series, whereas the s-power series enjoys still convergence. Only a singularity falling in the small region
L — C; results in a convergent Poisson series and a divergent s-power series. We conclude that, in general,
s-power series enjoy better convergence than Poisson series.

4.2. Logarithmic functionf (¢) =log(2 — 2t + t?)

In a first example, we approximated og [0, 3] the function log2 — 2 4+ 2), which has two complex
singularitiess* = 1+ (Fig. 9(a)). The s-power series is convergent q@eB], since both singularities lie
outside the limiting lemniscate. This convergent behaviour is shown in Fig. 9(b) for successive s-power
approximations (degrees= 3, 5, 7). In contrast, as the Poisson series has a radius of convergence
V2, it is not convergent beyond= r, and hence the convergence of the control polygon is neither
guaranteed (Fig. 9(c)). Fig. 9(d) compares the es(oy for both approximations, showing the higher
accuracy of s-power series.

4.3. Rational functionf () =1/(1+1)

Another example is provided by the rational functidn+ 1)~ overt < [0, 2], which has a real singu-
larity r* = —1 (Fig. 10(a)). Such a singularity lies outside the limiting lemniscate, so the s-power series
(Fig. 10(b)) is convergent. In contrast, the Poisson series is divergent beyeddFig. 10(c)), and the
convergence of the Poisson polygons is not guaranteed beyond this point. Plotting thégfrboth
approximations (Fig. 10(d)) shows again that, to achieve similar accuracy, more terms are needed using
a Poisson polygon.
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Fig. 9. £(t) =log[2 — 2t + t2]. (a) Areas of convergence for Poisson and s-power series. (b) s-power approximation (degrees
n =3,5, 7). (c) Truncated Poisson polygon and series-@5). (d) Errorse(¢).

4.4. Archimedean spiral

We computed several approximations to the Archimedean sgited= (¢ cost, ¢ sint) ont € [0, 4x].
The component functions are entire, and hence convergence is guaranteed for both the s-power and
Poisson approximations. Fig. 11(a) plots the s-power series (degee@, 9), along with the Poisson
control polygon k¢ = 400,800). The quality of the approximations is measured using a Pythagorean
errore(t), i.e., distance between the exact cucfe and the approximation for a value For s-power
series, we subdivided the initial domain at the midpoiat2z to subdue the maximum error. As shown
in Fig. 11(b),e(r) vanishes at the endpoints and is bell-shaped. Notice that, to achieve an acceptable
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s-series

———— Poisson series
------------ Poisson polygon

0 1 2 \q 4
c -3t d k=16 32

Fig. 10. £ (t) = (1 + 1)~ L. (a) Singularityr* of f() and areas of convergence. (b) s-power approximation (degte®, 5, 7).
(c) Truncated Poisson serigs= 16, 32) and Poisson polygong & 4, 16, 32). (d) Errore(z).

maximum error, a degree-9 s-power series suffices, whereas both the truncated Poisson polygon and
series fork = 800 are still visually distinguishable from the exact curve.

4.5. Unit semicircle

In Fig. 12 we consider a trigonometrically parameterized semi-co@le= (cost, sint), ¢ € [0, ].
As for the spiral, the components are entire functions, and hence convergence is guaranteed for both
approximations. However, s-power series furnish a result of higher quality, with a more evenly distributed
error. This example illustrates another advantage of Hermite interpolation (Sanchez-Reyes and Chacén,
2003), namely that it tries to preserve the original arc-length parameterization, as shown by the parametric
speedy (1) = |dc(r) /dt].

4.6. Bivariate surfaces

Finally, in Fig. 13 we approximated the bivariate functigiix, y) = sinxsiny over the domain
(x,y) € [0,27] x [0, 27]. Clearly, both s-power and Poisson series enjoy convergence, but a trun-
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Fig. 11. (a) Approximations: s-power (degrees: 7, 9) and Poissonk(= 400, 800). (b) Errore(t).
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Fig. 12. Semicircle. (a) Approximations: s-power (degree 3,5) and Poissonk(= 25, 50). (b) Errorse(t). (c) Parametric
speed () for the s-power approximations.
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original
surface

(Meny)=(9,9)

a b c

(keoky)=(52,52)

Fig. 13. f(x, y) = sinx siny. Approximations and corresponding errefs, y): s-power (a), degre@:y, ny) = (9, 9); Poisson
series (b) and mesh (akx, ky) = (52,52).

cated s-power series displays better accuracy. The same applies for the approximations of a catenoid,
the surface of revolution obtained by revolving a catenafy) = coshz around the vertical axis.

Fig. 14 compares the approximations for one half of the catenoid, corresponding to the dorain

[—2,2] x [0, ].

5. Conclusions

Poisson and s-power series provide different options for describing arbitrary analytic functions in
CAGD. Poisson functions are the elegant generalization of nonparametric Bézier curves over a semi-
infinite domain, endowed with an infinite control polygon that displays the advantageous properties of
the Bézier scheme. However, in practical CAD applications geometric entities are usually defined over
finite intervals, and we cannot deal with infinite control polygons or infinite series. Thus, we must perform
some kind of truncation, which leads to the following problems in the Poisson case:

e Atruncated Poisson series results in a non-polynomial approximation, which cannot be incorporated
into existing CAD systems, based on the Bernstein—Bézier standard.

e If we employ as approximation a truncated Poisson polygon, it is oflly C

e Concatenating several approximations to avoid a singularity yields discontinuities at the junctures.
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original
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a
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Fig. 14. Semi-catenoid. Approximations and corresponding eti@t®): s-power (a), degreeif, ng) = (9, 9); Poisson series
(b) and mesh (c) k¢, ko) = (32,52).

e Truncations do not enjoy permanence: to increase the precision of an approximation over a given
interval, a new polygon replacing the old one must be computed.

Two-point Hermite expansions (s-power series) lack the blossoming and Bézier-like tools of Poisson
functions, including the representation in terms of a converging control polygon. Nevertheless, for ap-
proximating analytic functions over finite intervals, they seem a practical alternative to Poisson or Taylor
series:

e They are polynomial, and hence expressible in the Bernstein—Bézier standard.
e By piecing approximations of ordér(degree 2 + 1) we obtain a Hermitian spline, whose segments

join smoothly with G continuity.
e They display better convergence and accuracy than Poisson series, and any singularity is easily

avoided via subdivision.
e They enjoy permanence: to increase precision, just add more terms.

These Hermite expansions are called s-power series, because over ada@id], they are nothing
else than a power series of paramater (1 — u)u, and coefficients that are linear functionssoiHence,
they can be handled much like standard power series.
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