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Abstract

Morin and Goldman [Computer Aided Geometric Design 17 (2000) 813] have recently presented a remark
new framework, based on employing Poisson series, for describing analytic functions in CAD. We comp
Poisson formulation with s-power series, modified Newton series that can be regarded as the two-point a
of Taylor expansions. Such s-power series yield, over finite intervals, better approximations for CAD purp
they are polynomial and hence expressible in the Bernstein–Bézier standard, can bepieced together in a smoo
Hermitian spline and, in general, display better convergence.
 2004 Elsevier B.V. All rights reserved.
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expansion

1. Introduction: the representation of analytic functions in CAGD

The parametric representation of curves and surfaces in CAGD employs polynomial or rationa
tions (Farin, 2001; Piegl and Tiller, 1997). However, analytic functions (Davis, 1975) provide a
framework, needed for the exact representation of transcendental, i.e., nonalgebraic curves or
(Lawrence, 1972), not encompassed by the standard rational model. In addition, some geometry
ing operations, such as offsetting or computing arc lengths, involve non-polynomial functions, in p
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A first option is provided by the concept ofB-basis(Peña, 1999), which carries over the custom
Bernstein basis to general functional spaces of finite dimension. Given a space with normalized
positive bases, among all them there exists a unique basis, called B-basis, with optimal shape-pr
properties. Intuitively, if a space has a B-basis we can define curves through a control polyg
similar way to our familiar Bézier case. These curves display all the positive geometric properties
Bézier scheme (variation diminishing, containment in the convex-hull, affine invariance, tangency
control polygon at the endpoints) plus optimal stability and the existence of a de Casteljau-type alg
However, each space of functions has a particular B-basis, and the number of basis functions
equals the dimension of the space. In consequence, we cannot represent arbitrary analytic func
unified manner.

The obvious alternative is using an infinite number of basis functions, that is, some kind of expa
Morin and Goldman (2000a, 2000b, 2001a, 2001b) investigated on Poisson series and derived
that can be regarded as the analogue of the polynomial Bézier scheme for representing analytic f
on semi-infinite intervals. The coefficients of the series are endowed with a geometric meaning as
points, defining a control polygon that enjoys the positive geometric properties of the Bézier formu
Moreover, the algorithms for Poisson curves admit an interpretation in terms of an analytic blo
Sánchez-Reyes (1997, 2000) explored the two-point analogue of Taylor expansions, dubbeds-power
series, which also admit a representation in terms of a control polygon. Truncating at thekth term the
s-power series furnishes the order-k Hermite interpolant, i.e., the degree-(2k + 1) polynomial curve tha
reproduces up to thekth derivative of the original function at the endpoints of a given interval. By pie
these approximations we obtain a Ck Hermitian spline (Grisoni et al., 1999).

Other polynomial expansions over finite intervals have been employed in a CAD context. For in
Legendre series are advocated for approximating offset curves (Li and Hsu, 1998), the inversion
nomial functions (Farouki, 2000), or degree-reduction (Lee et al., 2002).

In this article we compare Poisson and s-power series for approximating analytical function
finite intervals. In Sections 2 and 3, we revisit Poisson and s-power series, respectively, with
emphasis on their converge and techniques to avoid singularities. Section 4 explains through
comparative examples why s-power series display better convergence than Poisson series, which
the conclusions drawn in Section 5.

2. Poisson functions: the analogue of Bézier functions on semi-infinite intervals

2.1. Poisson series as a limiting case of nonparametric Bézier curves

Given a functionf (t), its Poisson expansion aroundt = 0 is defined as:

f (t) =
∞∑

k=0

pkbk(t), bk(t) = e−t t k

k! . (1)

The Poisson coefficientspk are easily computed (Morin and Goldman, 2000a) as those of the T
expansion for the function etf (t) aroundt = 0.
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Fig. 1. Poisson basis functionsbk(t), k = 0, . . . ,4.

pk = g(i)(0) =
k∑

i=0

(
k

i

)
f (i)(0), g(t) = et f (t). (2)

The Poisson basis functionsbk(t) (1), plotted in Fig. 1, are nonnegative over the positive semi-
t ∈ [0,∞) and form a partition of unity. Such functions can be regarded as the limiting casen → ∞
of degree-n Bernstein polynomials, defined overt ∈ [0, n]. Hence, the summation (1) admits an eleg
geometric interpretation, as the limit casen → ∞ of a degree-n nonparametric Bézier curve overt ∈
[0, n]. This nonparametric curve has control pointspk = (k,pk), i.e., integer Bézier abscissas{0,1,2, . . .}
regularly spaced along thex-axis, defining an infinite control polygon that inherits the positive prope
of the Bézier scheme:

• It mimics the shape off (t), now in a right neighbourhood of the origint = 0. Pointspk have a
push/pull effect, sincebk(t) enjoys unimodality, attaining its maximum precisely att = k.

• The polygon is tangent tof (t) at p0.
• If the series converges on[0,∞), the convex hull and variation diminishing properties hold.
• Linear precision: a linear functionf (t) has control points with ordinatespk = f (k).

A representation (2) of a function that enjoys convergence in a neighbourhood of the origin is
Poisson function. The definitions extend in a straightforward manner to the parametric case, whe
Poisson scheme enjoys affine invariance.

2.2. Subdivision

Suppose that we want a new representation off (t), with control pointsqk = (kρ, qk) over abscissa
{0, ρ,2ρ, . . .}. Clearly, this is tantamount to scaling the graph and polygon off (ρt) a factorρ along the
x-axis. In consequence, the new ordinatesqi are those off (ρt), and the new basis functions arebk(t/ρ),
so the Poisson series is rewritten as:

f (t) =
∞∑

k=0

qkbk(t/ρ), qk =
k∑

i=0

(
k

i

)
ρif (i)(0). (3)
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Fig. 2. Successive Poisson control polygons forf (t) = t2, t ∈ [0,1].

In the polynomial setting, DeRose (1988) noted the equivalence between subdivision and thi
reparameterization. Morin and Goldman (2001a) also observe that the newkth ordinateqk (3) derives
from the original ones{pi}k

i=0 (2) via a de Casteljau-type algorithm (left-sided subdivision) using a sim
summation. In the case 0< ρ < 1 (refined representation), a repeated subdivision furnishes a seq
of control polygons that converges tof (t) over the convergence interval of the series. Therefore,
polygons provide a piecewise linear approximation tof (t). This property is illustrated in Fig. 2 by th
function f (t) = t2, where we have chosen successive powersρ = 2−i , i = 1,2,3,4. Hermann (2002
showed that this converge of the refined polygon holds for a certain family of bases that includ
Bernstein and Poisson bases.

If we seek a representation off (t) over an arbitrary interval[t0,∞), rather than on[0,∞), with con-
trol points over abscissas{t0, t0 + 1, t0 + 2, . . .} the new ordinates are clearly those off (t − a). However,
if we try to calculate them by invoking the de Casteljau-type algorithm (right-sided subdivision
computation gets more complex, since it involves an infinite summation.

2.3. Convergence issues

In this section, we summarize the most remarkable results regarding the convergence of Poisso
which are basically those of Taylor series (Needham, 1997). Since these results are formulate
complex plane, henceforth we consider complex functionsf (z).

The Taylor or Poisson series (around the originz = 0) of f (z) converges tof (z) within a certain
circle Cr centred atz = 0, whose radiusr is calledradius of convergence, and diverges outsideCr . In
principle, nothing can be said about the convergence on the rim ofCr . This circle of convergenceCr is
the largest circle centred at the origin we can draw so that its interior contains only points wheref (z) is
analytic. Those pointsz∗ wheref (z) is not analytical are calledsingular points(or singularities). Hence,
the circleCr is the largest circle whose interior does not contain singularitiesz∗ (Fig. 3(a)). Given a rea
interval [0, d], we can guarantee convergence on this interval ifr > d, that is, the circleCd encloses no
singularity.
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Fig. 3. (a) CircleCr of convergence in the complex plane for a Taylor or Poisson series. (b) Avoiding a singularityz∗ via
analytic extension.

To avoid a singularityz∗ not lying on the real axis, Morin and Goldman (2001a) employ analy
continuation to generate a sequence of convergent Poisson series, whose circles of converg
cumventz∗ (Fig. 3(b)). Suppose we want a convergent approximation on an interval[0, d], r < d, so
that a Poisson series centred att = 0 cannot be employed beyondt = r . Via right-sided subdivision
we compute a new series centred att1 < r , hence enjoying convergence beyondt = r . This strategy
can be employed again to further extend the interval of convergence or to avoid additional sin
ties.

We must remark an advantage of Poisson series over Taylor series for the case of entire functi
with r = ∞) and such that limt→∞ f (t) = 0. Then, the Poisson series converges uniformly over[0,∞),
whereas the convergence of Taylor series is uniform only on finite intervals.

2.4. Truncated Poisson series and polygon

A first constraint in practical applications is that we cannot store an infinite series. Therefore, w
truncate expansion (3) at a certainkth term and get an approximation:

Pk(f ; t) =
k∑

i=0

qibi(ρt), (4)

which varies for different valuesρ. As for Taylor series, the approximationPk(f ; t) has contact o
the kth order withf (t) at t = 0. In contrast, a truncated Poisson series is not polynomial and h
not expressible in the Bernstein–Bézier standard. Therefore, it cannot be incorporated into com
CAD programs. In fact, a truncated series cannot represent exactlyanypolynomial, except the null func
tion.

Morin and Goldman (2000a) get around this drawback in a simple manner, by employing a tru
Poisson control polygon of pointsqi, 0� i � k, rather than a truncated series (4). To approximatef (t)

over an intervalt ∈ [0, d] with a polygon ofk+1 points, simply choose a scale factorρ = d/k. However,
new problems arise with a truncated polygon:

• Neither the diminishing variation, nor the convex hull hold any more. The functionf (t) = t2 (Fig. 2)
provides a simple counterexample.

• It yields a piecewise linear approximation, hence only C0.



108 J. Sánchez-Reyes, J.M. Chacón / Computer Aided Geometric Design 22 (2005) 103–119

ion

e ap-

in into

its

ccount
ereby

thresh-
ation.

er-
In
hat
ular the

te

ly a
• The approximation does not interpolatef (t) at the right endpoint. Thus, the analytic continuat
described in Section 2.2 leads to gaps when connecting several expansions.

3. s-power series: the two-point analogue of Taylor series

3.1. Two-point Hermite approximation and Hermitian splines

A well-known technique in numerical analysis (Stoer and Burlirsch, 1993) is two-point Hermit
proximation. Given a functionf (t) over a domain[t0, t1], its order-k Hermite approximationHk(f ; t) is
the unique degree-(2k + 1) polynomial that has contact of thekth order withf (t) at the endpointst0, t1,
in other words, the polynomial that interpolates all the derivatives{f (i)(t0), f

(i)(t1)}k
i=0. Such order-k

Hermite approximations are very convenient for a piecewise representation. If we split the doma
several segments and piece together their corresponding order-k Hermite approximations, we get a Ck

polynomial spline function, calledHermitian spline(Grisoni et al., 1999). This piecewise function adm
a standard degree-(2k + 1) B-spline representation, where the internal knots have multiplicityk + 1.

Once we have identified the Hermite approximation as an attractive option, we must take into a
that the customary order-k cardinal Hermite polynomials are not a subset of those of higher order, th
not leading to Hermite series. Formally, the standard Hermite representation does not enjoypermanence.
The permanence property is highly desirable: if the approximation error surpasses a determined
old, we simply add one more term in the series, without having to recompute the whole approxim
A Newton form (Goldman, 2003) of nodes{t0, t1, t0, t1, . . .} solves the problem of the standard H
mite form, by furnishing two-point expansions over[t0, t1], instead of a Taylor series around a point.
addition, the expansion admits the efficient O(k) nested evaluation the Newton form enjoys. Note t
permanence could be also achieved through more complex multiresolution schemes, in partic
HB-splines (Hermitian B-splines) developed by Grisoni et al. (1999).

3.2. s-power series definition

Given a functionf (t) over a general domaint ∈ [t0, t1], first we rewrite it asa(u) = f (t (u)) over a
unit domainu ∈ [0,1], via a change of variable:

t (u) = t0(1− u) + t1u, u ∈ [0,1], t ∈ [t0, t1]. (5)

Now we take the Newton representation of nodes{0,1,0,1,0, . . .}, that is, where the points to interpola
have abscissas coalescing to the endpoints, and rearrange it to resemble a power series:

a(u) =
∞∑

k=0

ak(u)sk, s = (1− u)u, ak(u) = (1− u)a0
k + ua1

k . (6)

The expansion overu ∈ [0,1] is calleds-power series(Sánchez-Reyes, 2000), because it is simp
power series of symmetric parameters = (1 − u)u, whose coefficientsak(u) are linear functions ofu,
rather than constants. Note thatak(u) is expressed in Bernstein form, i.e., the paira0

k , a
1
k denotes its

Bézier ordinates (Fig. 4(a)).
The functionsk(u) (6) is the central (kth) scaled Bernstein polynomial̂B 2k

k (u):
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Fig. 4. Linear functionak(u) and symmetric functionsk(u) in thekth term of a s-power series.

sk = B̂ 2k
k (u) = (1− u)kuk.

As shown in Fig. 4(b), this bell-shaped function displays the following properties:

• Degeneration to a scaled impulse ask → ∞.
• Symmetry with respect to the midpointu = 1/2.
• Unimodality, attaining the maximum 2−2k at the midpoint.
• Contact of orderk − 1 with the horizontal axis, since it has ak-fold zero atu = 0, u = 1.

Given a functiona(u), analytic in a certain region of the complex plane, it can be expressed uni
as a convergent s-power series (6). Moreover, the order-k Hermite interpolantHk(a;u) results from
truncation at thekth term:

Hk(a;u) =
k∑

i=0

ai(u)si . (7)

Recall that this is the unique polynomial of degreen = 2k +1 that reproduces the derivatives{a(i)(u)}k
i=0

at the endpointsu = 0, u = 1.
The basis functions in expansion (6) are central pairsB̂ 2k+1

k , B̂ 2k+1
k+1 of scaled Bernstein polynomia

(without binomial coefficients):

B̂ 2k+1
k = (1− u)k+1uk, B̂ 2k+1

k+1 = (1− u)kuk+1, k = 0,1,2, . . . .

Thus, the series admits a representation in terms of a certain control polygon (Sánchez-Reyes
Just compute the Bézier form of successive order-k (degreen = 2k + 1) Hermite interpolants (7), an
take pairs of centralk, (k+1)th nonparametric Bézier points, over abscissask/n, (k +1)/n. This control
polygon satisfies the convex hull property. It also inherits the permanence property: a newkth term in
the expansion refines the polygon by adding a pair of new central points, preserving the previou
However, for a convergent series the corresponding polygon converges to the function, ask → ∞, only
at the midpointu = 1/2.
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3.3. Representing and computing the coefficientsa0
k , a1

k

Each “coefficient”ak(u) in a s-power series (6) is a linear function expressed in Bernstein f
thereby suggesting that a natural representation ofak(u) would be the pair of Bézier ordinates:

ak(u) → ak = {a0
k , a

1
k }. (8)

Therefore, representing a s-power series reduces, in essence, to representing a Taylor series w
coefficient is the duple (8), or to representing two Taylor series. Note that s-power series inh
symmetry of the Bernstein representation, so that the series forã(u) = a(1 − u), denoted with a tilde
has coefficients̃ak generated by swappinga0

k , a1
k .

To obtain explicit expressions ofak (8) in terms of derivatives at the endpoints, simply apply divid
differences (Goldman, 2003) in a triangular scheme. Given the Taylor series for the functionsa(u),
ã(u) = a(1− u):

a(u) =
∞∑
i=0

ciu
i, ci = 1

i!a
(i)(0),

ã(u) =
∞∑
i=0

c̃iu
i, c̃i = 1

i! ã
(i)(0), (9)

thekth coefficientak is expressed as the linear combination:

ak =
k∑

i=0

cihi,k + c̃i h̃i,k,

hi,k = {1,0}, i = k,

hi,k =
{(

2k − i − 1
k − i

)
,−

(
2k − i − 1
k − i − 1

)}
, i < k. (10)

This formula is a simplified version of that derived by López and Temme (2002), via complex co
integration, or by Fine (1961).

Next, we show that the pairshi,k of binomial numbers (10) multiplying the Taylor coefficientsci (9)
convey a clear meaning. First, we rewritea(u) as a linear combination of cardinal functions:

a(u) =
∞∑
i=0

cihi(u) + c̃i h̃i(u), h̃i(u) = hi(1− u), (11)

where the cardinal functionhi(u) has derivatives that agree with those of the monomialui at u = 0, and
vanish atu = 1. Comparing (10), (11) the pairshi,k are identified as thekth s-power duple (8) of theith
cardinal functionhi(u), assuminghi,k = {0,0} for i > k. Fig. 5 plots these cardinal functionshi(u), for
i = 0,1, and their the successive order-k Hermite interpolants. Observe thathi(u) is expressed, over th
real axis, in terms of a Heaviside step functionh0(u) as:

hi(u) = uih0(u), h0(u) =




1, u < 1
2,

1
2, u = 1

2,

0, u > 1
2.
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Fig. 5. Successive order-k Hermite expansions for the cardinal functionshi(u), i = 0,1, u ∈ [0,1].

The pairak can also be computed without knowledge of the derivatives, by combining basic s-
series (Sánchez-Reyes, 2000). The resulting algorithms are akin to those for Taylor series (Knuth
as the basic idea in the definition (6) is to rearrange the Newton form, so that it can be manipula
a standard power series.

3.4. Lemniscates of convergence

In this section, we summarize the results regarding the convergence of s-power series (Sánche
2000). Such results derive from applying the classical convergence theorems for interpolatory pr
to the particular case of symmetric two-point Hermite interpolation. Formal proofs can be found
treatise (Davis, 1975).

The convergence of complex s-power series is formulated in the complex plane, as for Taylor
Since a s-power series is a power series ins(z) = (1 − z)z, simply replace as areas of convergence
circlesz = r with curves:∣∣s(z)∣∣ = r2, s(z) = (1− z)z. (12)

Such curves are known asCassinian curves(Needham, 1997). They are the locus of pointsz such that
the product of their distances to the foci(z = 0, z = 1) is a constantr2. Thus, the s-power series of
function a(z) converges uniformly toa(z) within the largest Cassinian curve of fociz = 0, z = 1 we
can draw so that it does not contain any singularity, and diverges outside. Fig. 6 shows that a var

generates confocal curves (12) belonging to 3 different families:

• 0 < r < 1/2: two Ovals of Cassini, one surroundingz = 0 and the otherz = 1.
• r = 1/2: Lemniscate L of Bernoulli, an∞-shaped figure with a double point atu = 1/2.
• r > 1/2: a closed contour containing both foci.

In most applications, we are interested only in the convergence over the real unit interval[0,1] of
definition. To guarantee a convergent behaviour on[0,1], this interval must be completely contain
in the complex area of convergence. As only Cassinian curves withr > 1/2 embrace[0,1], the lem-
niscateL of Bernoulli must not contain singularities. However, ifL contains a singularityz∗, we can
always circumvent it through subdivision. Fig. 7 illustrates this strategy for a singularityz∗ not lying
on the real segment[0,1]. If we subdivide it, and compute the s-power series for each segment,
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Fig. 7. Avoiding a singularityz∗ via subdivision in s-power series.

new limiting lemniscatesL are smaller. Clearly, after successive subdivisions any singularity ca
avoided, and hence we achieve convergent s-power series for each segment. As already com
truncating these s-power series and piecing them together furnishes a smooth spline. In case
singularityu∗ ∈ (0,1), we split[0,1] so thatu∗ lies just in the midpoint of one of the resulting interva
As u∗ coincides with the double point of the corresponding lemniscate, convergence is guaranteed
at u∗.

We stress that, in this context,subdivisionis tantamount to splitting the domain of the given fun
tion f (t) into several pieces, and for each piece computing a truncated seriesHk(a;u) (7). It does not
mean subdividing the polynomial approximation furnished by a truncated series, so no de Caste
algorithm is employed.

4. Comparative examples

In this section, we justify first why better convergence can be expected for s-power series t
Poisson series. Second, we take several examples from Morin and Colgman (2000a, 2000b, 20
plot the approximations over a given intervalt ∈ [0, d] furnished by s-power series and Poisson se
and polygons. For an unbiased comparison, we refer to the number of terms in both approxim
namely the degreen = 2k + 1 for s-series (7), and the indexk (4) in the Poisson case.
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Fig. 8. Comparing the limiting areas of convergence for Poisson and s-power series.

4.1. Why s-power series display better convergence than Poisson series

Suppose we want to construct a series over the real segmentu ∈ [0,1]. Fig. 8 displays together th
limiting areas, a circleC1 for Poisson and a lemniscate of BernoulliL for s-power series, that determin
the convergence over this segment. If the area contains no singularity, then the correspondin
enjoys convergence. The lemniscateL hugs this segment closer than the circleC1, so that the chance t
contain a singularityz∗ is lower. A singularityz∗ in the wide regionC1 − L implies a divergent Poisso
series, whereas the s-power series enjoys still convergence. Only a singularity falling in the smal
L−C1 results in a convergent Poisson series and a divergent s-power series. We conclude that, in
s-power series enjoy better convergence than Poisson series.

4.2. Logarithmic functionf (t) = log(2− 2t + t2)

In a first example, we approximated ont ∈ [0,3] the function log(2−2t + t2), which has two complex
singularitiesz∗ = 1± i (Fig. 9(a)). The s-power series is convergent over[0,3], since both singularities li
outside the limiting lemniscate. This convergent behaviour is shown in Fig. 9(b) for successive s
approximations (degreesn = 3,5,7). In contrast, as the Poisson series has a radius of convergencr =√

2, it is not convergent beyondt = r , and hence the convergence of the control polygon is ne
guaranteed (Fig. 9(c)). Fig. 9(d) compares the errorε(t) for both approximations, showing the high
accuracy of s-power series.

4.3. Rational functionf (t) = 1/(1+ t)

Another example is provided by the rational function(1+ t)−1 over t ∈ [0,2], which has a real singu
larity t∗ = −1 (Fig. 10(a)). Such a singularity lies outside the limiting lemniscate, so the s-power
(Fig. 10(b)) is convergent. In contrast, the Poisson series is divergent beyondr = 1 (Fig. 10(c)), and the
convergence of the Poisson polygons is not guaranteed beyond this point. Plotting the errorε(t) for both
approximations (Fig. 10(d)) shows again that, to achieve similar accuracy, more terms are need
a Poisson polygon.
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4.4. Archimedean spiral

We computed several approximations to the Archimedean spiralc(t) = (t cost, t sint) on t ∈ [0,4π ].
The component functions are entire, and hence convergence is guaranteed for both the s-po
Poisson approximations. Fig. 11(a) plots the s-power series (degreen = 7,9), along with the Poisson
control polygon (k = 400,800). The quality of the approximations is measured using a Pythago
error ε(t), i.e., distance between the exact curvec(t) and the approximation for a valuet . For s-power
series, we subdivided the initial domain at the midpointt = 2π to subdue the maximum error. As show
in Fig. 11(b),ε(t) vanishes at the endpoints and is bell-shaped. Notice that, to achieve an acc
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Chacón,
rametric

trun-
Fig. 10.f (t) = (1+ t)−1. (a) Singularityt∗ of f (t) and areas of convergence. (b) s-power approximation (degreen = 3,5,7).
(c) Truncated Poisson series (k = 16,32) and Poisson polygons (k = 4,16,32). (d) Errorε(t).

maximum error, a degree-9 s-power series suffices, whereas both the truncated Poisson poly
series fork = 800 are still visually distinguishable from the exact curve.

4.5. Unit semicircle

In Fig. 12 we consider a trigonometrically parameterized semi-circlec(t) = (cost,sint), t ∈ [0, π ].
As for the spiral, the components are entire functions, and hence convergence is guaranteed
approximations. However, s-power series furnish a result of higher quality, with a more evenly dist
error. This example illustrates another advantage of Hermite interpolation (Sánchez-Reyes and
2003), namely that it tries to preserve the original arc-length parameterization, as shown by the pa
speedσ (t) = |dc(t)/dt|.

4.6. Bivariate surfaces

Finally, in Fig. 13 we approximated the bivariate functionf (x, y) = sinx siny over the domain
(x, y) ∈ [0,2π ] × [0,2π ]. Clearly, both s-power and Poisson series enjoy convergence, but a
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Fig. 11. (a) Approximations: s-power (degreesn = 7,9) and Poisson (k = 400,800). (b) Errorε(t).

Fig. 12. Semicircle. (a) Approximations: s-power (degreen = 3,5) and Poisson (k = 25,50). (b) Errorsε(t). (c) Parametric
speedσ(t) for the s-power approximations.
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Fig. 13.f (x, y) = sinx siny. Approximations and corresponding errorsε(x, y): s-power (a), degree(nx,ny) = (9,9); Poisson
series (b) and mesh (c),(kx, ky) = (52,52).

cated s-power series displays better accuracy. The same applies for the approximations of a c
the surface of revolution obtained by revolving a catenaryr(z) = coshz around the vertical axis
Fig. 14 compares the approximations for one half of the catenoid, corresponding to the domain(z, θ) ∈
[−2,2] × [0, π ].

5. Conclusions

Poisson and s-power series provide different options for describing arbitrary analytic functi
CAGD. Poisson functions are the elegant generalization of nonparametric Bézier curves over
infinite domain, endowed with an infinite control polygon that displays the advantageous prope
the Bézier scheme. However, in practical CAD applications geometric entities are usually define
finite intervals, and we cannot deal with infinite control polygons or infinite series. Thus, we must pe
some kind of truncation, which leads to the following problems in the Poisson case:

• A truncated Poisson series results in a non-polynomial approximation, which cannot be incorp
into existing CAD systems, based on the Bernstein–Bézier standard.

• If we employ as approximation a truncated Poisson polygon, it is only C0.
• Concatenating several approximations to avoid a singularity yields discontinuities at the junct
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is easily
Fig. 14. Semi-catenoid. Approximations and corresponding errorsε(z, θ): s-power (a), degree (nz,nθ ) = (9,9); Poisson series
(b) and mesh (c), (kz, kθ ) = (32,52).

• Truncations do not enjoy permanence: to increase the precision of an approximation over
interval, a new polygon replacing the old one must be computed.

Two-point Hermite expansions (s-power series) lack the blossoming and Bézier-like tools of P
functions, including the representation in terms of a converging control polygon. Nevertheless,
proximating analytic functions over finite intervals, they seem a practical alternative to Poisson or
series:

• They are polynomial, and hence expressible in the Bernstein–Bézier standard.
• By piecing approximations of orderk (degree 2k + 1) we obtain a Hermitian spline, whose segme

join smoothly with Ck continuity.
• They display better convergence and accuracy than Poisson series, and any singularity

avoided via subdivision.
• They enjoy permanence: to increase precision, just add more terms.

These Hermite expansions are called s-power series, because over a domainu ∈ [0,1], they are nothing
else than a power series of parameters = (1− u)u, and coefficients that are linear functions ofu. Hence,
they can be handled much like standard power series.
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