
Moving Objects with 2D Input Devices
in CAD Systems and Desktop Virtual Environments

Ji-Young Oh, Wolfgang Stuerzlinger

Computer Science, York University

Toronto, Ontario, Canada
http://www.cs.yorku.ca/~{jyoh,wolfgang}

Abstract
Part assembly and scene layout are basic tasks in 3D
design in Desktop Virtual Environment (DVE) systems
as well as Computer Aided Design (CAD) systems. 2D
input devices such as a mouse or a stylus are still the
most common input devices for such systems. With
such devices, a notably difficult problem is to provide
an efficient and predictable object motion in 3D based
on their 2D motion. This paper presents a new tech-
nique to move objects in CAD/DVE using 2D input
devices.

The technique presented in this paper utilizes the
fact that people easily recognize the depth-order of
shapes based on occlusions. In the presented technique,
the object position follows the mouse cursor position,
while the object slides on various surfaces in the scene.
In contrast to existing techniques, the movement sur-
face and the relative object position is determined using
the whole area of overlap of the moving object with the
static scene. The resulting object movement is visually
smooth and predictable, while avoiding undesirable
collisions. The proposed technique makes use of the
framebuffer for efficiency and runs in real-time. Finally,
the evaluation of the new technique with a user study
shows that it compares very favorably to conventional
techniques.

Keywords: 3D object manipulation, Desktop Environ-
ment, Computer-Aided Design .

1 Introduction
Moving objects is one of the most basic tasks of scene
construction. When people design a scene with multiple
objects, they repeatedly realign or adjust different parts,
to explore the design space. Our goal is to provide an
efficient and smooth object motion technique aimed at
facilitating this explorative process in Computer Aided
Design (CAD) and Desktop Virtual Environment
(DVE) systems.

In the desktop environment, the mouse has proven
to be an excellent input device for 2D user interface. It
affords relatively precise input on a stable supporting
surface. In today’s CAD/DVE systems, the mouse or

stylus is also commonly used to move objects in 3D
environments. However, this brings up the problem of
how to map the 2D input to 3D motion.

Providing a natural mapping from 2D input to 3D
position is a difficult problem, usually faced by
CAD/DVE interface developers. The simplest solution
is to provide handles or widgets for explicit 3-axis ma-
nipulation. This solution has been adopted by many
conventional CAD systems. While this solution allows
no room for failure or unexpected results, the task of
moving an object becomes tedious, as the user has to
mentally separate the desired 3D movement into 1D or
2D components. Moreover, if objects are touching,
these objects may make it difficult or even impossible
to manipulate an object, as the handles can be occluded.

As documented by research into visual perception,
people judge 3D position by many cues. Besides per-
spective, one of the most important cues for 3D position
is occlusion [9], which helps humans to perceive the
position of an object in relation to other objects. It is
important to note here that (almost) all objects in the
real world are attached or connected to other objects,
which explains why the human visual system has
adopted this strategy. Furthermore, humans frequently
use the contact of an object against the surfaces of other
objects to position it accurately. Another cue for 3D
perception is stereo. However, from an end-users point
of view, most stereo technologies are not very mature
and are tiresome and/or problematic to use on a daily
basis (e.g. [12, 13]).

Most 3D systems rely only on the mouse pointer
position (i.e. a point) to map 2D input to 3D movement.
However, research into vision in primates has shown
that the perceptive field for an object that is being held
in the hand covers the whole object [5]. In other words,
there is strong evidence that the whole visual area of an
object is used to judge position. Another explanation is
that humans perceive a manipulated object as an exten-
sion of their body. Hence, there is potentially a big gap
between how people perceive object position and the
way current CAD/DVE systems handle this problem.

Based on these observations, we came up with a
novel technique to move an object in a 3D virtual world.
As the user moves an object, he/she utilizes his/her

knowledge of the area of the surface(s) hidden by the
moving object. We utilize this fact by always moving
the object on one of the surfaces it occludes. In most
current 3D systems, this is not guaranteed, as objects
may float in the air and do not attach to other surfaces
by default. In our informal observations on people ma-
nipulating objects in 3D, people seem to be fairly sur-
prised when they find the objects are floating.

Hence, we designed our new technique so that de-
fault is that objects always stay attached to other objects.
More precisely, we look for the closest visible surface
behind the moving object and move the manipulated
object onto it. Finding visible surfaces can be done very
efficiently with graphics hardware. We can even exploit
the capabilities of modern graphics hardware to avoid
object interpenetration.

2 Previous Work
Strauss categorized possible solutions to the problem of
mapping 2D input to 3D movement in the SIGGRAPH
2002 course notes [8] as follows:
1) Let a user select a movement axis by providing

handles for all three axes. This necessitates (po-
tentially tiresome) extra steps for non-trivial
movements, but is always guaranteed to work.

2) Move an object on a plane parallel to the viewing
plane. Although this is simple to implement, in
general this technique does not work for users.
The resulting movement is not intuitive and fre-
quently misleading.

3) Use obvious structures in the scene to determine
the plane of motion. This fails if there are no con-
venient structures or if they don’t align with the
user’s intentions.

4) Use heuristics to decide the movement direction
based on the initial cursor movement. As with any
heuristic, this can fail.

The authors also say that there is no “perfect” solu-

tion, as there is no approach that is both easy-to-use and
robust at the same time. Consequently, users need to
frequently check if the object is the desired position,
which can become tedious.

One of the approaches that follows category 3) is to
use the ray from the eye point through the pixel cur-
rently selected by the mouse pointer to find the first
intersection point with the scene. This ray is often
called mouse-ray. For instance, Bier [1] used this ap-
proach in his snap-dragging technique. His approach
searches for the visual feature (a vertex or an edge of an
object or a grid-line) closest to the mouse-ray, and
snaps the 3D cursor to that feature. The user can choose
to accept the snapped position or ignore it by moving
away from the feature. The scene is presented in wire-

frame to avoid the occlusion of visual features. One
limitation of this approach is that wire-frame display is
not very user-friendly. Another limitation is that as the
complexity of the scene increases, snap-dragging will
snap to many features and usability will suffer.

Some systems (e.g. [2, 7]) utilize pre-defined object
behaviors to limit object motion. As an example, con-
sider a simple behavior, which constrains an object to
move on a horizontal (or vertical) surface. With this
behavior, the object will snap to the intersection point
on any horizontal surface that the mouse-ray intersects.
The concept of behaviors can be used to enable users to
quickly populate a room with objects with predefined
behavior, such as furniture, books, etc. One major
drawback is that the behaviors have to be predefined,
and that the definition of adequate behaviors requires a
good understanding of the underlying geometrical con-
cepts.

The Virtual Lego system [6] introduced a solution
to this problem. This system uses “smart” Lego blocks,
which snap automatically to any horizontal or vertical
surface. Thus, constraints are implicitly defined within
the system. In contrast to previous work, the virtual
Lego system does not use the mouse-ray to find the
snapping surface. Instead, it looks for the foremost sur-
face behind the moving object. User evaluations
showed that novice users could quickly grasp how the
system worked and were even able to complete chal-
lenging tasks with minimal training. However, the Vir-
tual Lego system can only deal with convex rectangular
blocks and the techniques do not extend to more gen-
eral types of objects.

Clearly, it is advantageous to employ collision de-
tection to prevent objects from interpenetrating. Solving
this problem in real-time is non-trivial, but some solu-
tions have been presented (e.g. [3]). Interestingly
enough, some of the most recent approaches use the
framebuffer to speed computations (e.g. [4, 10, 11]).

3 Moving Objects in 3D with a 2D Device
For this paper, the main goal is to provide a visually
smooth and predictable object motion, without limiting
the user to axis-aligned motions or predefined object
behaviors. The fundamental idea is to find a movement
surface, and map the mouse movement onto movement
on that surface. As a result, the selected object will ap-
pear to slide on that surface, while still following the
mouse cursor.

At first, we re-implemented a technique used in
other CAD/DVE systems and used the surface that the
mouse-ray hits as the movement surface. However, this
approach leads to unpredictable results, since the user
will generally select an object by clicking on an arbi-
trary point on the object to be moved. However, select-

ing an arbitrary point on the object results in different
motions, depending on which part of the object is se-
lected. More precisely, the object motion depends on
the relative position of the mouse cursor on top of the
moving object. Figure 1 illustrates this problem. In Fig-
ure 1(a), object P is “held” on the center of the front
face of the object and slides on face s of the background
object. A pointer movement to the left will then drop
the cube onto face t. In Figure 1(b), object P is “held”
on the right face and the same amount of (pointer)
movement to the left achieves a different result as the
mouse-ray still intersects face s in this case.

(a)

(b)
Figure 1. Techniques that use the surface directly behind
the mouse pointer suffer from non-predictability, as the

same mouse-motion may generate different results.

The results of this naïve technique suffer from the
fact that a single point determines the object motion.
This leads to ambiguous and unpredictable mapping
between user input and 3D motion. According to our
observations, most users believe that both actions
should result in the same result.

Another problem is that the object appears to jump
when it snaps to a different movement surface. In Fig-
ure 1(a) a relatively small mouse movement results in a
significant motion in depth. This is especially notice-
able when the background object is relatively smaller
than the moving object since the surface behind the
object will be occluded.

Lastly, this method does not automatically avoid
collisions. E.g. in Figure 1(a), the moving cube actually
collides with the geometry of the background object in
the final position. This can only be avoided by adding a
collision detection method to the implementation.
However, it is unclear how the object should move
when a collision is detected.

4 A New Technique for 3D Movement
As discussed in the introduction, the new technique
uses the whole area behind the moving object to deter-

mine object motion. More precisely, we use the fore-
most hidden surfaces to determine object motion.

Figure 2 shows an overview of our algorithm. In
Figure 2(a) the object slides on surface s. As the mouse
cursor moves further to the left, the algorithm moves
the object on the same plane towards the position in
Figure 2(b). In this position, s is still the foremost sur-
face behind the cube and consequently the cube contin-
ues to move in this plane and is positioned as depicted
in Figure 2(c). In Figure 2(d), the cursor has moved
even further to the left and the image of the cube does
not overlap with surface s anymore. Hence, the algo-
rithm snaps the cube onto surface t and continues to
slide it on this plane.

(a) (b)

 (c) (d)
Figure 2. Objects slide on the surface that is both clos-

est to the viewer and occluded by the object.

There are two alternatives to find the movement sur-
face in this scheme. The first is to take the foremost
surface of the scene that overlaps with the image of the
moving object. The second is to use the foremost sur-
face that is behind the moving object, regardless
whether the entire moving object is visible or not.

The attractiveness of the first alternative is its sim-
plicity, as we only need to determine the foremost sur-
face of the (static) scene, regardless of the current posi-
tion of the moving object. Furthermore, this method
ensures that the moving object is always closer to the
viewer than the rest of the scene. This implicitly guar-
antees that there are no collisions with other objects.
This is an interesting feature, as it means that this is a
manipulation technique that does not require a separate
collision detection scheme, which means that even ex-
tremely complex parts can be handled efficiently. The
downside of this method is that when a scene is clut-
tered with many objects, and there are consequently
many surfaces, then the moving object will jump fre-
quently in depth, and positioning the object requires
more attention from the user. A pilot study of an im-
plementation of this idea showed that this is indeed a
problem that users encounter in practice.

The second alternative again identifies the first sur-
face behind the moving object, but ignores any surface
closer to the viewer than the moving object. In this
method, the moving object does not immediately pop
out to the surface in front of the user, unless the moving
object becomes the one closest to the viewer. Usually,
this conforms better to the intentions of the user. The
limitation of this alternative is that when a small object
moves forward, it may penetrate another object in front.
To address this problem, we employ a collision detec-
tion method. Once a collision is found, the object jumps
also in front of the colliding object, as with the first
alternative.

Figure 3 depicts several movement sequences with
the original mouse-ray techniques and the two new
techniques mentioned in this section. Here the goal is to
slide the chair under the table. Figure 3(a) shows the
movement based on the foremost surface behind the
mouse position, determined via the mouse-ray. As soon
as the mouse pointer overlaps with the surface of the
table, the chair moves on top of it. However, when the
mouse pointer moves off the table again, the chair drops
immediately to the floor and ends up in a position,
where it collides with the table, as shown in the fourth
image. There are two ways to get the chair under the
table with this technique. One is to change the view-
point, as depicted in Figure 3(c). The other alternative
is to “grab” the chair by the top part of the backrest (an
area that is visually quite small) and to move it towards
the table while avoiding overlap with the table itself.
However, this is very non-intuitive, and most users do
not realize that this is possible – especially since the
position that needs to be “grabbed” is not obvious at all.

The image sequence depicted in Figure 3(b) illus-
trates the technique that utilizes the foremost surface
inside the image of the moving object. As soon as the
image of the chair overlaps with the table (second im-
age), the chair starts to slide on the table surface. Only
when the image of the chair does not overlap with the
table anymore, does the chair drop down to the floor.
Note that no collision occurs with this technique, but
the only way to drag the chair under the table is again to
change the viewpoint as depicted in Figure 3(c).

Finally, Figure 3(d) illustrates the new technique
that utilizes the first surface behind the moving object.
As the chair slides on the floor it continues to move
underneath the table, because the first surface visible
behind the chair is the floor. In the third image, the
chair is clearly in the desired position and the user is
finished. For illustration purposes, we continue this
sequence with the fourth image from the left, where the
chair collides with the table. When moving the object
further the technique moves the chair onto the table
(more precisely as soon as the backside of the backrest
of the chair collides with the table). By incorporating a
simple collision detection algorithm the situation is
resolved by moving the chair onto the table as soon as
the collision occurs and continuing as in the previous
method.

5 Implementation
The second alternative presented above provides a more
robust solution for object motion compared to the first
one, hence we immediately present the implementation
of the second alternative. Note that the first technique

(a)

(b) (c)

(d)
Figure 3. Image sequences illustrating object movement based on (a) the mouse position technique,

(b) & (c) a technique based on the foremost visible surface, and (d) our new technique based on the foremost
surface behind the moving object. For a detailed explanation please refer to the text.

can be implemented by simplifying some of the follow-
ing steps.

5.1 Preprocessing: Store framebuffer for back-
ground

When a user starts moving an object, the algorithm first
renders the static scene without the selected object into
a background framebuffer. Each face of each object is
given a unique color to enable easy and fast identifica-
tion of surfaces. This idea is usually referred to as an
item buffer. Then the color/item buffer and the depth
buffer are read into main memory. With this informa-
tion the algorithm can quickly identify for each pixel
the foremost visible object and foremost visible face by
indexing these two buffers with the current pixel posi-
tion.

5.2 Step 1: Generate framebuffer for moving
object.

On every frame, the system renders the back-faces of
the moving object in its old 3D position into an empty
framebuffer, by setting the depth comparison of the
graphics card to render polygons further away and also
using front-face culling. We also use an item buffer for
quick identification of the back-faces of the moving
object.

5.3 Step 2: Identify movement surface
The algorithm then identifies the movement surface by
comparing the depth values of the front-faces of the
static scene (computed in the preprocessing phase) and
the back-faces of the moving object (computed in
step 1). However, we shift the depth image generated in
step 1 by the relative change of mouse position from the
previous frame to account for the current mouse posi-
tion. This is similar to moving the object parallel to the
viewing plane.

// f[I]: Depth of front-face of static scene in pixel i
// b[i]: Depth of back-face of moving object in pixel i

mindiff = LARGE_POSITIVE_NUMBER
For all pixels i covered by the moving object
 diff = b[i] – f[i]
 If diff < mindiff And diff >= 0
 mindiff = diff
 location = i
 End If
End For

Return mindiff,location

Figure 4. Pseudo-code for identification of the pixel
that determines the movement surface.

Figure 4 presents the pseudo-code for this step. In
essence, we locate the smallest positive depth differ-
ence. This biases the object to stay on the current sur-
face, until a major collision occurs. Using the pixel po-
sition of the minimum depth difference, we retrieve the
corresponding face of the occluded object from the item
buffer. Note that this computation is used only to iden-
tify the movement surface, but does not determine the
actual object movement directly.

5.4 Step 3: Compute movement offset
Given that we now know which surface is the closest
surface behind the object, we have to move the object
on that surface. The depth difference computed from
step 2 is not directly useable to snap the object onto the
movement surface due to the non-linear nature of the
depth buffer and depth discretization artifacts. We use
two phases to slide the object to its new position. In the
first phase, we move the object on a surface parallel to
the movement surface. In the second phase, we re-
compute the depth difference as in step 2 to snap the
object onto the movement surface.

In the first phase, we compute the plane that is par-
allel to the movement surface identified in the step 2
and that passes through the previous 3D position, which
is determined by the intersection of the previous mouse
ray and the moving object. Then we intersect this plane
with the current mouse ray. Finally, we move the object
by the vector between the computed intersection point
and the previous 3D position. In the second phase, the
object moves along the mouse-ray to snap onto the
movement surface. To do this, we re-apply the algo-
rithm presented in step 2 to find the pair of closest faces
and points on those faces. Then we move the object to
align the two points in the scene.

After the motion, we check for interpenetration. If
the object penetrates the rest of the scene, then we sim-
ply allow the object to pop to the front by repeating the
algorithm used in step 2, but this time we allow the
variable mindiff (Figure 4) to be negative – i.e. allow
the object to pop closer to the viewer. To find potential
collisions we use the technique introduced in [11]. In
this paper, the system detects intersection of an edge of
an object with a face of the other object using the
framebuffer. The presented method may fail to detect
intersection if the moving object is much larger than the
static objects. However, in our technique, collision only
occurs when a larger static object is closer to the viewer,
occluding whole area of the moving object.

The logic behind the decision to compare depth val-
ues for the front surfaces of the static scene and the
depth values of the back-face(s) of the moving object is
illustrated in Figure 5. In this figure, object T is moving
toward object S. Once object T touches object S, face t1

in object T is closest to face s1. Then, as it moves fur-
ther towards the face t1 and before t2 collides with ob-
ject S, the object must move upwards, to place t3 on top
of s1, so that object T can continue to move freely. This
can be expressed as the problem of identifying the clos-
est points between the back-faces of the moving object
and the front-faces of the static scene. Of course, the
test will fail when there is no overlap between the im-
ages of the objects involved. In this case, we assume
that the object is in free space, a case that is discussed
in the next subsection.

 (a) (b) (c)

Figure 5. . Object movement scenario (a) Object T ap-
proaches object S. (b) The face t1 slides on face s1 of
object S. (c) As the object T move further, the face t3

must pop up on top of face s1.

5.5 Movement in free space
In our technique, an object slides on the foremost sur-
faces of the scene. However, sometimes there is no sur-
face behind the moving object. In this case the algo-
rithm detects no minimum depth difference in step 2.
For simplicity, we move the object in free space on an
axis-aligned plane in this case. The choice of this plane
is dictated by viewing direction. That is, the system
chooses the axis-aligned plane that is most orthogonal
to the view-direction, as this provides the most predict-
able mapping between 2D input and object motion for
this case according to our observations.

5.6 Discussion
The presented technique works well for general shapes,
even for objects that have large concavities or curved
surfaces. For curved surfaces, the API’s of current
graphics cards necessitates an approximation of the
curved surface into many small planar surfaces, which
allows our algorithm to work without a problem.

To demonstrate the speed of our algorithm, we as-
sembled a lounge
chair consisting of
13,196 polygons (Fig-
ure 6) with our system.
On a 1.2GHz com-
puter system with an
NVIDIA GeForce2
graphics card, we re-
corded an average

frame rate of 32fps during manipulation of the parts.
However, we found several limitations to our tech-

nique mainly because we use visible surfaces in the
background scene to find the movement surface. The
first limitation is due to the view dependency. The
technique identifies a movement surface among the
currently visible surfaces. When the surface where the
user wants to place the object is not visible due to the
viewing direction, then the user cannot place the object
in the desired position. Therefore, our technique re-
quires that the user navigate to an appropriate viewpoint
in the scene to place an object.

The second limitation is that, if the object visually
occupies a large part of the screen (e.g. more than half),
object movement may become difficult. This is because
the object itself occludes a large part of the scene, mak-
ing it hard for the user to judge where the object is cur-
rently relative to the rest of scene. The easiest way to
address this problem is to move the camera further
away, so that the desired position is more clearly visible
in screen space.

Another situation that is problematic is a bolt that
slides into a tightly matched hole. The algorithm can
deal with this situation only if the user looks more or
less straight down into the hole. The reason behind this
is that current graphics hardware renders polygons
slightly larger to avoid cracks between adjacent sur-
faces. In other words, all pixels that are “on the edge”
are set. For our techniques, this makes it impossible to
put the bolt into the hole, as the polygons overlap in
screen space by one pixel. One (simplistic) solution is
to render the moving object slightly smaller than it
really is. A better solution is to configure the graphics
card to render only pixels that are inside of the poly-
gons, which ameliorates the situation. However, due to
potential rasterization artifacts it is currently not always
possible to guarantee that this will work perfectly in
every situation.

6 Evaluation with User Study
We conducted a 2 (techniques) x 2 (display) factorial
test, which compares the presented technique and the
conventional axis-handle technique, each of them in
two display conditions. The first display condition uses
four views (3 orthogonal views along the 3 major axis
and one perspective view, as shown in Figure 7a), and
the second condition is a single perspective view.

The axis-handle scheme (Figure 7b, c) and the four-
view window layout resemble the interface of MayaTM,
a widely used CAD/animation package. In the axis-
handle scheme the user can drag the object by clicking
on various parts of the handles. If a user selects the
cube-part of the handle, the object moves on the (2-
dimensional) plane that is parallel to the corresponding

Figure 6. Example lounge chair

axis. If the user selects the cone part of the handle, the
object moves along the corresponding (1-dimensional)
axis. Collision detection is not provided in this condi-
tion, since users may need to move objects into arbi-
trary positions and should not be blocked by other ob-
jects on the way.

(a)

(b) (c)
Figure 7. (a) Four-view display: top, perspective, front,
and side view, in clockwise, (b) Axis handles (c) Once a

handle is selected, the other irrelevant handles are
eliminated from the display.

In the beginning, we planned to compare three tech-
niques: the handles technique presented above, the
mouse-ray technique and our technique. However, in a
pilot test, we saw that naïve users could not readily dis-
tinguish between the mouse-ray technique and our tech-
nique after the short learning period (about 20 min to
learn three techniques), as their a-priori appearance
does not differ significantly. This led to significant con-
fusion and frustration. To eliminate this confounding
factor, we remove one condition from our experiment
and chose to compare only the handle technique with
our new technique.

Ten paid participants (Age: 20-35, 6 male, 4 female)
were recruited from the local university. All of them
had little or no previous experience with CAD systems.
They were given the task of assembling a chair as
shown in Figure 8. The initial configuration is depicted
in Figure 8(a) and the assembled chair is shown in Fig-
ure 8(b).

To eliminate another potentially confounding factor,
namely varying “3D construction” skills, we informed
the participants about the correct order of the parts to be
moved. To simplify the task and to eliminate another
potential problem, the five rollers of the chair moved as
one (i.e. as if they were one object). Participants were

explicitly instructed not to move the rollers and start
moving shape #1 in Figure 8(a) onto the rollers.

(a) (b)
Figure 8. The experimental task, assembling a chair,

(a) Start scene, (b) Target scene

After a short introduction period, where users could
practice movements on a scene with a few boxes, the
participants conducted the chair construction task twice
for each of the conditions of the 2x2 experiment. To
eliminate potential learning effects we counterbalanced
the order of the techniques. Consequently, users assem-
bled the chair eight times. In the analysis, we consid-
ered the first iteration of each condition as practice, and
we present only the results from the second iteration of
each trial. We identify our movement technique as OFS
(Overlap with Foremost-Surface), and the conventional
axis-handle technique as handle. The condition with
four views is called four-view, and the single view con-
dition single-view. At the end of the experiment, users
were given a questionnaire to rate preferences among
the techniques.

6.1 Results
An ANOVA analysis of the results reveals that the dif-
ference between the handles and OFS conditions was
significant (F9,1=47, p<0.001). In fact, participants took
about twice as long to complete the task with handles.

The difference between the four-view and single-
view conditions was also significant (F9,1= 18.74,
p<0.05), and four-view was the faster alternative. We
attribute this to the fact that users did not have to
change the viewpoint as often in this condition.

Table 1 and Figure 9 illustrate the overall results.

Figure 9. Task completion time by user

Table 1. Average task completion time

 OFS Handle Average SD*
Single-view 54.64 128.46 91.55 p<0.001
Four-view 33.34 80.11 56.72 p<0.001
Average 43.99 104.29 - -
SD p<0.05 p<0.05 - -

* SD: Significance of difference obtained from repeated
ANOVA test

Analyzing the data further, the average navigation

time using handles in the single-view condition is
25.46s (seconds) and the average navigation time using
OFS in the single-view condition is 13.60s. These two
data points are significantly different (F9,1=78.89,
p<0.001). This is an interesting result in that even
though OFS requires navigation in some cases (as men-
tioned in section 5.6), users spent less time on naviga-
tion using OFS. As an object moves freely in space
with the handles technique, the users seemed to check
the 3D position of the object after almost every object
motion, while this was not necessary in OFS. Even
more interesting is the difference between handles in
the four-view condition and OFS in the single-view
condition. Even though OFS is relatively speaking
handicapped by the single-view display, the completion
time was significantly less than that of the handles with
the four-view display (F9,1=6.26, p<0.05)!

We believe that these results demonstrate that users
understood the 3D position of the object relative to the
scene much more easily using OFS compared to han-
dles, as OFS does not allow an object to move freely in
space by default. Moreover, our results suggest that our
technique can work also efficiently in Virtual Environ-
ments where a four-view like display is not suitable. We
plan to explore this in future work.

Analysis of the results from the questionnaire
yielded that six out of ten participants preferred OFS,
two preferred handles, and two were neutral. The users
who preferred OFS stated that the technique is efficient
and intelligent in a sense that the system knows where
an object should be moved based on the user’s action.
On the other hand, the users who preferred handles
stated that they could adjust the position of an object
more precisely. Users who were neutral between the
techniques mentioned a mix of all the reasons above.

7 Conclusion
This paper presents a new technique to move objects in
3D using a 2D input device. Our technique does not
utilize axis-handles or widgets, as generally provided
by conventional CAD/DVE systems. The new tech-
nique enables natural 3D motion of objects while avoid-
ing collisions. The technique is works for arbitrary

types of shapes and runs in real-time on current graph-
ics hardware

The user evaluation showed that users could under-
stand the 3D position of an object more easily with our
method compared to the most frequently used conven-
tional method. Finally, the evaluation suggests that the
presented technique may significantly improve the effi-
ciency of object manipulation in CAD/DVE systems.

References
[1] E. Bier, Snap-dragging in three dimensions. ACM

Computer Graphics, 24(2): 193-204, 1990.
[2] R. Bukowski and C. Sequin, Object associations: a

simple and practical approach to virtual 3D ma-
nipulation. SI3D’95, 131-138, 1995.

[3] S. Gottschalk, M. C. Lin, and D. Manocha.
OBBTree: a hierarchical structure for rapid inter-
ference detection. SIGGRAPH '96, 171-80, 1996.

[4] N. K. Govindaraju, S. Redon, M. C. Lin, and
Dinesh Manocha, CULLIDE: interactive collision
detection between complex models in large envi-
ronments using graphics hardware. SIG-
GRAPH/EUROGRAPHICS Workshop on Graph-
ics Hardware, 25-32, 2003.

[5] S. Obayashi, T. Suhara, K. Kawabe, T. Okauchi,
and J. Maeda, Functional brain mapping of monkey
tool use, NeuroImage 14: 853-861, 2001.

[6] J.-Y. Oh and W. Stuerzlinger, Intelligent Manipu-
lation Techniques for Conceptual 3D Design, IFIP
Interact 2003.

[7] G. Smith, and W. Stuerzlinger, Integration of Con-
straints into a VR Environment, VRIC 2001, 103-
110, 2001.

[8] P. S. Strauss, P. Issacs, and J. Shrag, The design
and implementation of direct manipulation in 3D.
SIGGRAPH 2002 Course Notes, 2002.

[9] C.D. Wickins, and J.G. Hollands,. Chapter 4. Spa-
tial displays, in Engineering psychology and hu-
man performance, Prentice-Hall, 3rd Ed. 1999.

[10] B. Heidelberger, M. Teschner, and M. Gross, De-
tection of collisions and self-collisions using im-
age-space techniques, WSCG 2004.

[11] K. Dave, K. P. Dinesh, CInDeR: Collision and
Interference Detection in Real-time using graphics
hardware, Graphics Interface, 2003.

[12] Z. Wartell, L. F. Hodges, W. Ribarsky, A geomet-
ric comparison of algorithms for fusion control in
stereoscopic HTDs, IEEE Transactions on Visuali-
zation and Computer Graphics, 8, 129-143, 2002.

[13] D. B. Diner, Fender, D.H., Human Engineering in
Stereoscopic Viewing Devices. Plenum Press, New
York and London, 1993.

