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Abstract 
Part assembly and scene layout are basic tasks in 3D 
design in Desktop Virtual Environment (DVE) systems 
as well as Computer Aided Design (CAD) systems. 2D 
input devices such as a mouse or a stylus are still the 
most common input devices for such systems. With 
such devices, a notably difficult problem is to provide 
an efficient and predictable object motion in 3D based 
on their 2D motion. This paper presents a new tech-
nique to move objects in CAD/DVE using 2D input 
devices. 

The technique presented in this paper utilizes the 
fact that people easily recognize the depth-order of 
shapes based on occlusions. In the presented technique, 
the object position follows the mouse cursor position, 
while the object slides on various surfaces in the scene. 
In contrast to existing techniques, the movement sur-
face and the relative object position is determined using 
the whole area of overlap of the moving object with the 
static scene. The resulting object movement is visually 
smooth and predictable, while avoiding undesirable 
collisions. The proposed technique makes use of the 
framebuffer for efficiency and runs in real-time. Finally, 
the evaluation of the new technique with a user study 
shows that it compares very favorably to conventional 
techniques. 

 
Keywords: 3D object manipulation, Desktop Environ-
ment, Computer-Aided Design . 

1 Introduction 
Moving objects is one of the most basic tasks of scene 
construction. When people design a scene with multiple 
objects, they repeatedly realign or adjust different parts, 
to explore the design space. Our goal is to provide an 
efficient and smooth object motion technique aimed at 
facilitating this explorative process in Computer Aided 
Design (CAD) and Desktop Virtual Environment 
(DVE) systems. 

In the desktop environment, the mouse has proven 
to be an excellent input device for 2D user interface. It 
affords relatively precise input on a stable supporting 
surface. In today’s CAD/DVE systems, the mouse or 

stylus is also commonly used to move objects in 3D 
environments. However, this brings up the problem of 
how to map the 2D input to 3D motion. 

Providing a natural mapping from 2D input to 3D 
position is a difficult problem, usually faced by 
CAD/DVE interface developers. The simplest solution 
is to provide handles or widgets for explicit 3-axis ma-
nipulation. This solution has been adopted by many 
conventional CAD systems. While this solution allows 
no room for failure or unexpected results, the task of 
moving an object becomes tedious, as the user has to 
mentally separate the desired 3D movement into 1D or 
2D components. Moreover, if objects are touching, 
these objects may make it difficult or even impossible 
to manipulate an object, as the handles can be occluded. 

As documented by research into visual perception, 
people judge 3D position by many cues. Besides per-
spective, one of the most important cues for 3D position 
is occlusion [9], which helps humans to perceive the 
position of an object in relation to other objects. It is 
important to note here that (almost) all objects in the 
real world are attached or connected to other objects, 
which explains why the human visual system has 
adopted this strategy. Furthermore, humans frequently 
use the contact of an object against the surfaces of other 
objects to position it accurately. Another cue for 3D 
perception is stereo. However, from an end-users point 
of view, most stereo technologies are not very mature 
and are tiresome and/or problematic to use on a daily 
basis (e.g. [12, 13]). 

Most 3D systems rely only on the mouse pointer 
position (i.e. a point) to map 2D input to 3D movement. 
However, research into vision in primates has shown 
that the perceptive field for an object that is being held 
in the hand covers the whole object [5]. In other words, 
there is strong evidence that the whole visual area of an 
object is used to judge position. Another explanation is 
that humans perceive a manipulated object as an exten-
sion of their body. Hence, there is potentially a big gap 
between how people perceive object position and the 
way current CAD/DVE systems handle this problem. 

Based on these observations, we came up with a 
novel technique to move an object in a 3D virtual world. 
As the user moves an object, he/she utilizes his/her 



knowledge of the area of the surface(s) hidden by the 
moving object. We utilize this fact by always moving 
the object on one of the surfaces it occludes. In most 
current 3D systems, this is not guaranteed, as objects 
may float in the air and do not attach to other surfaces 
by default. In our informal observations on people ma-
nipulating objects in 3D, people seem to be fairly sur-
prised when they find the objects are floating. 

Hence, we designed our new technique so that de-
fault is that objects always stay attached to other objects. 
More precisely, we look for the closest visible surface 
behind the moving object and move the manipulated 
object onto it. Finding visible surfaces can be done very 
efficiently with graphics hardware. We can even exploit 
the capabilities of modern graphics hardware to avoid 
object interpenetration. 

2 Previous Work 
Strauss categorized possible solutions to the problem of 
mapping 2D input to 3D movement in the SIGGRAPH 
2002 course notes [8] as follows: 
1) Let a user select a movement axis by providing 

handles for all three axes. This necessitates (po-
tentially tiresome) extra steps for non-trivial 
movements, but is always guaranteed to work. 

2) Move an object on a plane parallel to the viewing 
plane. Although this is simple to implement, in 
general this technique does not work for users. 
The resulting movement is not intuitive and fre-
quently misleading. 

3) Use obvious structures in the scene to determine 
the plane of motion. This fails if there are no con-
venient structures or if they don’t align with the 
user’s intentions. 

4) Use heuristics to decide the movement direction 
based on the initial cursor movement. As with any 
heuristic, this can fail. 

 
The authors also say that there is no “perfect” solu-

tion, as there is no approach that is both easy-to-use and 
robust at the same time. Consequently, users need to 
frequently check if the object is the desired position, 
which can become tedious. 

One of the approaches that follows category 3) is to 
use the ray from the eye point through the pixel cur-
rently selected by the mouse pointer to find the first 
intersection point with the scene. This ray is often 
called mouse-ray. For instance, Bier [1] used this ap-
proach in his snap-dragging technique. His approach 
searches for the visual feature (a vertex or an edge of an 
object or a grid-line) closest to the mouse-ray, and 
snaps the 3D cursor to that feature. The user can choose 
to accept the snapped position or ignore it by moving 
away from the feature. The scene is presented in wire-

frame to avoid the occlusion of visual features. One 
limitation of this approach is that wire-frame display is 
not very user-friendly. Another limitation is that as the 
complexity of the scene increases, snap-dragging will 
snap to many features and usability will suffer. 

Some systems (e.g. [2, 7]) utilize pre-defined object 
behaviors to limit object motion. As an example, con-
sider a simple behavior, which constrains an object to 
move on a horizontal (or vertical) surface. With this 
behavior, the object will snap to the intersection point 
on any horizontal surface that the mouse-ray intersects. 
The concept of behaviors can be used to enable users to 
quickly populate a room with objects with predefined 
behavior, such as furniture, books, etc. One major 
drawback is that the behaviors have to be predefined, 
and that the definition of adequate behaviors requires a 
good understanding of the underlying geometrical con-
cepts. 

The Virtual Lego system [6] introduced a solution 
to this problem. This system uses “smart” Lego blocks, 
which snap automatically to any horizontal or vertical 
surface. Thus, constraints are implicitly defined within 
the system. In contrast to previous work, the virtual 
Lego system does not use the mouse-ray to find the 
snapping surface. Instead, it looks for the foremost sur-
face behind the moving object. User evaluations 
showed that novice users could quickly grasp how the 
system worked and were even able to complete chal-
lenging tasks with minimal training. However, the Vir-
tual Lego system can only deal with convex rectangular 
blocks and the techniques do not extend to more gen-
eral types of objects. 

Clearly, it is advantageous to employ collision de-
tection to prevent objects from interpenetrating. Solving 
this problem in real-time is non-trivial, but some solu-
tions have been presented (e.g. [3]). Interestingly 
enough, some of the most recent approaches use the 
framebuffer to speed computations (e.g. [4, 10, 11]). 

3 Moving Objects in 3D with a 2D Device 
For this paper, the main goal is to provide a visually 
smooth and predictable object motion, without limiting 
the user to axis-aligned motions or predefined object 
behaviors. The fundamental idea is to find a movement 
surface, and map the mouse movement onto movement 
on that surface. As a result, the selected object will ap-
pear to slide on that surface, while still following the 
mouse cursor. 

At first, we re-implemented a technique used in 
other CAD/DVE systems and used the surface that the 
mouse-ray hits as the movement surface. However, this 
approach leads to unpredictable results, since the user 
will generally select an object by clicking on an arbi-
trary point on the object to be moved. However, select-



ing an arbitrary point on the object results in different 
motions, depending on which part of the object is se-
lected. More precisely, the object motion depends on 
the relative position of the mouse cursor on top of the 
moving object. Figure 1 illustrates this problem. In Fig-
ure 1(a), object P is “held” on the center of the front 
face of the object and slides on face s of the background 
object. A pointer movement to the left will then drop 
the cube onto face t. In Figure 1(b), object P is “held” 
on the right face and the same amount of (pointer) 
movement to the left achieves a different result as the 
mouse-ray still intersects face s in this case. 

(a)  

(b)  
Figure 1. Techniques that use the surface directly behind 
the mouse pointer suffer from non-predictability, as the 

same mouse-motion may generate different results. 

The results of this naïve technique suffer from the 
fact that a single point determines the object motion. 
This leads to ambiguous and unpredictable mapping 
between user input and 3D motion. According to our 
observations, most users believe that both actions 
should result in the same result. 

Another problem is that the object appears to jump 
when it snaps to a different movement surface. In Fig-
ure 1(a) a relatively small mouse movement results in a 
significant motion in depth. This is especially notice-
able when the background object is relatively smaller 
than the moving object since the surface behind the 
object will be occluded. 

Lastly, this method does not automatically avoid 
collisions. E.g. in Figure 1(a), the moving cube actually 
collides with the geometry of the background object in 
the final position. This can only be avoided by adding a 
collision detection method to the implementation. 
However, it is unclear how the object should move 
when a collision is detected. 

4 A New Technique for 3D Movement 
As discussed in the introduction, the new technique 
uses the whole area behind the moving object to deter-

mine object motion. More precisely, we use the fore-
most hidden surfaces to determine object motion. 

Figure 2 shows an overview of our algorithm. In 
Figure 2(a) the object slides on surface s. As the mouse 
cursor moves further to the left, the algorithm moves 
the object on the same plane towards the position in 
Figure 2(b). In this position, s is still the foremost sur-
face behind the cube and consequently the cube contin-
ues to move in this plane and is positioned as depicted 
in Figure 2(c). In Figure 2(d), the cursor has moved 
even further to the left and the image of the cube does 
not overlap with surface s anymore. Hence, the algo-
rithm snaps the cube onto surface t and continues to 
slide it on this plane. 

(a)      (b)  

 (c)     (d)  
Figure 2. Objects slide on the surface that is both clos-

est to the viewer and occluded by the object. 

There are two alternatives to find the movement sur-
face in this scheme. The first is to take the foremost 
surface of the scene that overlaps with the image of the 
moving object. The second is to use the foremost sur-
face that is behind the moving object, regardless 
whether the entire moving object is visible or not. 

The attractiveness of the first alternative is its sim-
plicity, as we only need to determine the foremost sur-
face of the (static) scene, regardless of the current posi-
tion of the moving object. Furthermore, this method 
ensures that the moving object is always closer to the 
viewer than the rest of the scene. This implicitly guar-
antees that there are no collisions with other objects. 
This is an interesting feature, as it means that this is a 
manipulation technique that does not require a separate 
collision detection scheme, which means that even ex-
tremely complex parts can be handled efficiently. The 
downside of this method is that when a scene is clut-
tered with many objects, and there are consequently 
many surfaces, then the moving object will jump fre-
quently in depth, and positioning the object requires 
more attention from the user. A pilot study of an im-
plementation of this idea showed that this is indeed a 
problem that users encounter in practice. 



The second alternative again identifies the first sur-
face behind the moving object, but ignores any surface 
closer to the viewer than the moving object. In this 
method, the moving object does not immediately pop 
out to the surface in front of the user, unless the moving 
object becomes the one closest to the viewer. Usually, 
this conforms better to the intentions of the user. The 
limitation of this alternative is that when a small object 
moves forward, it may penetrate another object in front. 
To address this problem, we employ a collision detec-
tion method. Once a collision is found, the object jumps 
also in front of the colliding object, as with the first 
alternative. 

Figure 3 depicts several movement sequences with 
the original mouse-ray techniques and the two new 
techniques mentioned in this section. Here the goal is to 
slide the chair under the table. Figure 3(a) shows the 
movement based on the foremost surface behind the 
mouse position, determined via the mouse-ray. As soon 
as the mouse pointer overlaps with the surface of the 
table, the chair moves on top of it. However, when the 
mouse pointer moves off the table again, the chair drops 
immediately to the floor and ends up in a position, 
where it collides with the table, as shown in the fourth 
image. There are two ways to get the chair under the 
table with this technique. One is to change the view-
point, as depicted in Figure 3(c). The other alternative 
is to “grab” the chair by the top part of the backrest (an 
area that is visually quite small) and to move it towards 
the table while avoiding overlap with the table itself. 
However, this is very non-intuitive, and most users do 
not realize that this is possible – especially since the 
position that needs to be “grabbed” is not obvious at all. 

The image sequence depicted in Figure 3(b) illus-
trates the technique that utilizes the foremost surface 
inside the image of the moving object. As soon as the 
image of the chair overlaps with the table (second im-
age), the chair starts to slide on the table surface. Only 
when the image of the chair does not overlap with the 
table anymore, does the chair drop down to the floor. 
Note that no collision occurs with this technique, but 
the only way to drag the chair under the table is again to 
change the viewpoint as depicted in Figure 3(c). 

Finally, Figure 3(d) illustrates the new technique 
that utilizes the first surface behind the moving object. 
As the chair slides on the floor it continues to move 
underneath the table, because the first surface visible 
behind the chair is the floor. In the third image, the 
chair is clearly in the desired position and the user is 
finished. For illustration purposes, we continue this 
sequence with the fourth image from the left, where the 
chair collides with the table. When moving the object 
further the technique moves the chair onto the table 
(more precisely as soon as the backside of the backrest 
of the chair collides with the table). By incorporating a 
simple collision detection algorithm the situation is 
resolved by moving the chair onto the table as soon as 
the collision occurs and continuing as in the previous 
method. 

5 Implementation 
The second alternative presented above provides a more 
robust solution for object motion compared to the first 
one, hence we immediately present the implementation 
of the second alternative. Note that the first technique 

(a)  

(b) (c)  

(d)  
Figure 3.  Image sequences illustrating object movement based on (a) the mouse position technique, 

(b) & (c) a technique based on the foremost visible surface, and (d) our new technique based on the foremost 
surface behind the moving object. For a detailed explanation please refer to the text. 



can be implemented by simplifying some of the follow-
ing steps. 

5.1 Preprocessing: Store framebuffer for back-
ground 

When a user starts moving an object, the algorithm first 
renders the static scene without the selected object into 
a background framebuffer. Each face of each object is 
given a unique color to enable easy and fast identifica-
tion of surfaces. This idea is usually referred to as an 
item buffer. Then the color/item buffer and the depth 
buffer are read into main memory. With this informa-
tion the algorithm can quickly identify for each pixel 
the foremost visible object and foremost visible face by 
indexing these two buffers with the current pixel posi-
tion. 

5.2 Step 1: Generate framebuffer for moving 
object. 

On every frame, the system renders the back-faces of 
the moving object in its old 3D position into an empty 
framebuffer, by setting the depth comparison of the 
graphics card to render polygons further away and also 
using front-face culling. We also use an item buffer for 
quick identification of the back-faces of the moving 
object. 

5.3 Step 2: Identify movement surface 
The algorithm then identifies the movement surface by 
comparing the depth values of the front-faces of the 
static scene (computed in the preprocessing phase) and 
the back-faces of the moving object (computed in 
step 1). However, we shift the depth image generated in 
step 1 by the relative change of mouse position from the 
previous frame to account for the current mouse posi-
tion. This is similar to moving the object parallel to the 
viewing plane. 
 
// f[I]: Depth of front-face of static scene in pixel i 
// b[i]: Depth of back-face of moving object in pixel i 
 
mindiff = LARGE_POSITIVE_NUMBER 
For all pixels i covered by the moving object 
   diff = b[i] – f[i] 
    If diff < mindiff And diff >= 0 
       mindiff = diff 
       location = i 
   End If 
End For 
 
Return mindiff,location 

Figure 4.  Pseudo-code for identification of the pixel 
that determines the movement surface. 

Figure 4 presents the pseudo-code for this step. In 
essence, we locate the smallest positive depth differ-
ence. This biases the object to stay on the current sur-
face, until a major collision occurs. Using the pixel po-
sition of the minimum depth difference, we retrieve the 
corresponding face of the occluded object from the item 
buffer. Note that this computation is used only to iden-
tify the movement surface, but does not determine the 
actual object movement directly. 

5.4 Step 3: Compute movement offset 
Given that we now know which surface is the closest 
surface behind the object, we have to move the object 
on that surface. The depth difference computed from 
step 2 is not directly useable to snap the object onto the 
movement surface due to the non-linear nature of the 
depth buffer and depth discretization artifacts. We use 
two phases to slide the object to its new position. In the 
first phase, we move the object on a surface parallel to 
the movement surface. In the second phase, we re-
compute the depth difference as in step 2 to snap the 
object onto the movement surface. 

In the first phase, we compute the plane that is par-
allel to the movement surface identified in the step 2 
and that passes through the previous 3D position, which 
is determined by the intersection of the previous mouse 
ray and the moving object. Then we intersect this plane 
with the current mouse ray. Finally, we move the object 
by the vector between the computed intersection point 
and the previous 3D position. In the second phase, the 
object moves along the mouse-ray to snap onto the 
movement surface. To do this, we re-apply the algo-
rithm presented in step 2 to find the pair of closest faces 
and points on those faces. Then we move the object to 
align the two points in the scene. 

After the motion, we check for interpenetration. If 
the object penetrates the rest of the scene, then we sim-
ply allow the object to pop to the front by repeating the 
algorithm used in step 2, but this time we allow the 
variable mindiff (Figure 4) to be negative – i.e. allow 
the object to pop closer to the viewer. To find potential 
collisions we use the technique introduced in [11]. In 
this paper, the system detects intersection of an edge of 
an object with a face of the other object using the 
framebuffer. The presented method may fail to detect 
intersection if the moving object is much larger than the 
static objects. However, in our technique, collision only 
occurs when a larger static object is closer to the viewer, 
occluding whole area of the moving object. 

The logic behind the decision to compare depth val-
ues for the front surfaces of the static scene and the 
depth values of the back-face(s) of the moving object is 
illustrated in Figure 5. In this figure, object T is moving 
toward object S. Once object T touches object S, face t1 



in object T is closest to face s1. Then, as it moves fur-
ther towards the face t1 and before t2 collides with ob-
ject S, the object must move upwards, to place t3 on top 
of s1, so that object T can continue to move freely. This 
can be expressed as the problem of identifying the clos-
est points between the back-faces of the moving object 
and the front-faces of the static scene. Of course, the 
test will fail when there is no overlap between the im-
ages of the objects involved. In this case, we assume 
that the object is in free space, a case that is discussed 
in the next subsection. 
 

 
                        (a)                        (b)                       (c) 

Figure 5. . Object movement scenario (a) Object T ap-
proaches object S. (b) The face t1 slides on face s1 of 
object S. (c) As the object T move further, the face t3 

must pop up on top of face s1. 

5.5 Movement in free space 
In our technique, an object slides on the foremost sur-
faces of the scene. However, sometimes there is no sur-
face behind the moving object. In this case the algo-
rithm detects no minimum depth difference in step 2. 
For simplicity, we move the object in free space on an 
axis-aligned plane in this case. The choice of this plane 
is dictated by viewing direction. That is, the system 
chooses the axis-aligned plane that is most orthogonal 
to the view-direction, as this provides the most predict-
able mapping between 2D input and object motion for 
this case according to our observations. 

5.6 Discussion 
The presented technique works well for general shapes, 
even for objects that have large concavities or curved 
surfaces. For curved surfaces, the API’s of current 
graphics cards necessitates an approximation of the 
curved surface into many small planar surfaces, which 
allows our algorithm to work without a problem. 

To demonstrate the speed of our algorithm, we as-
sembled a lounge 
chair consisting of 
13,196 polygons (Fig-
ure 6) with our system. 
On a 1.2GHz com-
puter system with an 
NVIDIA GeForce2 
graphics card, we re-
corded an average 

frame rate of 32fps during manipulation of the parts. 
However, we found several limitations to our tech-

nique mainly because we use visible surfaces in the 
background scene to find the movement surface. The 
first limitation is due to the view dependency. The 
technique identifies a movement surface among the 
currently visible surfaces. When the surface where the 
user wants to place the object is not visible due to the 
viewing direction, then the user cannot place the object 
in the desired position. Therefore, our technique re-
quires that the user navigate to an appropriate viewpoint 
in the scene to place an object. 

The second limitation is that, if the object visually 
occupies a large part of the screen (e.g. more than half), 
object movement may become difficult. This is because 
the object itself occludes a large part of the scene, mak-
ing it hard for the user to judge where the object is cur-
rently relative to the rest of scene. The easiest way to 
address this problem is to move the camera further 
away, so that the desired position is more clearly visible 
in screen space. 

Another situation that is problematic is a bolt that 
slides into a tightly matched hole. The algorithm can 
deal with this situation only if the user looks more or 
less straight down into the hole. The reason behind this 
is that current graphics hardware renders polygons 
slightly larger to avoid cracks between adjacent sur-
faces. In other words, all pixels that are “on the edge” 
are set. For our techniques, this makes it impossible to 
put the bolt into the hole, as the polygons overlap in 
screen space by one pixel. One (simplistic) solution is 
to render the moving object slightly smaller than it 
really is. A better solution is to configure the graphics 
card to render only pixels that are inside of the poly-
gons, which ameliorates the situation. However, due to 
potential rasterization artifacts it is currently not always 
possible to guarantee that this will work perfectly in 
every situation. 

6 Evaluation with User Study 
We conducted a 2 (techniques) x 2 (display) factorial 
test, which compares the presented technique and the 
conventional axis-handle technique, each of them in 
two display conditions. The first display condition uses 
four views (3 orthogonal views along the 3 major axis 
and one perspective view, as shown in Figure 7a), and 
the second condition is a single perspective view. 

The axis-handle scheme (Figure 7b, c) and the four-
view window layout resemble the interface of MayaTM, 
a widely used CAD/animation package. In the axis-
handle scheme the user can drag the object by clicking 
on various parts of the handles. If a user selects the 
cube-part of the handle, the object moves on the (2-
dimensional) plane that is parallel to the corresponding 

Figure 6. Example lounge chair



axis. If the user selects the cone part of the handle, the 
object moves along the corresponding (1-dimensional) 
axis. Collision detection is not provided in this condi-
tion, since users may need to move objects into arbi-
trary positions and should not be blocked by other ob-
jects on the way. 
 

(a)  

(b)    (c)  
Figure 7. (a) Four-view display: top, perspective, front, 
and side view, in clockwise, (b) Axis handles (c) Once a 

handle is selected, the other irrelevant handles are 
eliminated from the display. 

In the beginning, we planned to compare three tech-
niques: the handles technique presented above, the 
mouse-ray technique and our technique. However, in a 
pilot test, we saw that naïve users could not readily dis-
tinguish between the mouse-ray technique and our tech-
nique after the short learning period (about 20 min to 
learn three techniques), as their a-priori appearance 
does not differ significantly. This led to significant con-
fusion and frustration. To eliminate this confounding 
factor, we remove one condition from our experiment 
and chose to compare only the handle technique with 
our new technique. 

Ten paid participants (Age: 20-35, 6 male, 4 female) 
were recruited from the local university. All of them 
had little or no previous experience with CAD systems. 
They were given the task of assembling a chair as 
shown in Figure 8. The initial configuration is depicted 
in Figure 8(a) and the assembled chair is shown in Fig-
ure 8(b).  

To eliminate another potentially confounding factor, 
namely varying “3D construction” skills, we informed 
the participants about the correct order of the parts to be 
moved. To simplify the task and to eliminate another 
potential problem, the five rollers of the chair moved as 
one (i.e. as if they were one object). Participants were 

explicitly instructed not to move the rollers and start 
moving shape #1 in Figure 8(a) onto the rollers.  

 

(a)  (b)  
Figure 8.  The experimental task, assembling a chair, 

(a) Start scene, (b) Target scene 

After a short introduction period, where users could 
practice movements on a scene with a few boxes, the 
participants conducted the chair construction task twice 
for each of the conditions of the 2x2 experiment. To 
eliminate potential learning effects we counterbalanced 
the order of the techniques. Consequently, users assem-
bled the chair eight times. In the analysis, we consid-
ered the first iteration of each condition as practice, and 
we present only the results from the second iteration of 
each trial. We identify our movement technique as OFS 
(Overlap with Foremost-Surface), and the conventional 
axis-handle technique as handle. The condition with 
four views is called four-view, and the single view con-
dition single-view. At the end of the experiment, users 
were given a questionnaire to rate preferences among 
the techniques. 

6.1 Results 
An ANOVA analysis of the results reveals that the dif-
ference between the handles and OFS conditions was 
significant (F9,1=47, p<0.001). In fact, participants took 
about twice as long to complete the task with handles. 

The difference between the four-view and single-
view conditions was also significant (F9,1= 18.74, 
p<0.05), and four-view was the faster alternative. We 
attribute this to the fact that users did not have to 
change the viewpoint as often in this condition. 

Table 1 and Figure 9 illustrate the overall results. 
 

 
Figure 9. Task completion time by user 



Table 1. Average task completion time 

 OFS Handle Average SD* 
Single-view 54.64 128.46 91.55 p<0.001 
Four-view 33.34 80.11 56.72 p<0.001 
Average 43.99 104.29 - - 
SD p<0.05 p<0.05 - - 

* SD: Significance of difference obtained from repeated 
ANOVA test 

 
Analyzing the data further, the average navigation 

time using handles in the single-view condition is 
25.46s (seconds) and the average navigation time using 
OFS in the single-view condition is 13.60s. These two 
data points are significantly different (F9,1=78.89, 
p<0.001). This is an interesting result in that even 
though OFS requires navigation in some cases (as men-
tioned in section 5.6), users spent less time on naviga-
tion using OFS. As an object moves freely in space 
with the handles technique, the users seemed to check 
the 3D position of the object after almost every object 
motion, while this was not necessary in OFS. Even 
more interesting is the difference between handles in 
the four-view condition and OFS in the single-view 
condition. Even though OFS is relatively speaking 
handicapped by the single-view display, the completion 
time was significantly less than that of the handles with 
the four-view display (F9,1=6.26, p<0.05)! 

We believe that these results demonstrate that users 
understood the 3D position of the object relative to the 
scene much more easily using OFS compared to han-
dles, as OFS does not allow an object to move freely in 
space by default. Moreover, our results suggest that our 
technique can work also efficiently in Virtual Environ-
ments where a four-view like display is not suitable. We 
plan to explore this in future work. 

Analysis of the results from the questionnaire 
yielded that six out of ten participants preferred OFS, 
two preferred handles, and two were neutral. The users 
who preferred OFS stated that the technique is efficient 
and intelligent in a sense that the system knows where 
an object should be moved based on the user’s action. 
On the other hand, the users who preferred handles 
stated that they could adjust the position of an object 
more precisely. Users who were neutral between the 
techniques mentioned a mix of all the reasons above. 

7 Conclusion 
This paper presents a new technique to move objects in 
3D using a 2D input device. Our technique does not 
utilize axis-handles or widgets, as generally provided 
by conventional CAD/DVE systems. The new tech-
nique enables natural 3D motion of objects while avoid-
ing collisions. The technique is works for arbitrary 

types of shapes and runs in real-time on current graph-
ics hardware 

The user evaluation showed that users could under-
stand the 3D position of an object more easily with our 
method compared to the most frequently used conven-
tional method. Finally, the evaluation suggests that the 
presented technique may significantly improve the effi-
ciency of object manipulation in CAD/DVE systems. 
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