
Collaboration Support for Novice Team Programming

Davor Čubranić Margaret-Anne D. Storey
Computer-Human Interaction and Software Engineering Laboratory (CHISEL)

University of Victoria, Canada

{cubranic, mstorey}@uvic.ca

ABSTRACT
Learning computer programming in a modern university course is
rarely an individual activity; however, IDEs used in introductory
programming classes do not support collaboration at a level appro-
priate for novices. The goal of our research is to make it easier
for first-year students to experience working in a team in their pro-
gramming assignments. Based on our previous work developing
and evaluating IDEs for novice programmers, we have identified
two main areas of required functionality: 1) features for code shar-
ing and coordination; and 2) features to support communication.
We have extended an existing teaching-oriented integrated develop-
ment environment (called Gild) with features to support code shar-
ing and coordination. We report on a preliminary study in which
pairs of students used a prototype of our collaborative IDE to work
on a programming assignment. The goals of this study were to
evaluate the effectiveness and usability of the new features and to
determine requirements for future communication support.

Categories and Subject Descriptors:D.2.6. [Software Engineer-
ing]: Programming Environments—Integrated environments;
H.5.3 [Information Interfaces and Presentation]: Group and Or-
ganization Interfaces—Computer-supported cooperative work;

General Terms: Human factors, Design

Keywords: teaching programming, Gild

1. INTRODUCTION
Learning computer programming in a modern university course

is rarely an individual activity. In addition to traditional labs, where
students can interact with their teaching assistants and labmates,
students now have round-the-clock contact with potentially every-
one in the class through on-line course forums. Previous research
has shown the benefits of collaborative learning in introductory
computer science classes through pair programming assignments [5],
with significant improvements to students’ experience and perfor-
mance in the course. However, pair programming is not the only
way for students to collaborate on their assignments, and its value
as a pedagogical tool has not yet been unequivocally established.
Furthermore, it is a technique that has to be taught to students for
them to benefit from it fully, and given its relative lack of wide-
spread adoption in industry, many instructors may themselves have
had little practical experience with it. Lastly, pair programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GROUP’05,November 6-9, 2005, Sanibel Island, Florida, USA.
Copyright 2005 ACM 1-59593-223-2/05/0011 ...$5.00.

has a drawback that both students in a team have to work on their
assignment at the same time. This may not always be feasible for
larger assignments that can take a significant effort over a week
or more, and where students tend to switch between synchronous,
side-by-side work, and asynchronous, at-home sessions.

In the software development industry, the dominant model of
working in a team is for each developer to work mostly individ-
ually, coordinating work with their colleagues as necessary and us-
ing tools such as source code versioning systems to integrate the
individual contributions. However, computer science students usu-
ally are not exposed to such a development model until their third
or even fourth year. The goal of our research is to make it easier for
first-year students to experience working in a team.

So far, we have focused on determining requirements based on
our previous work developing and evaluating IDEs for novice pro-
grammers. Our requirements incorporate 1) features to support
code sharing and coordination; and 2) features to support com-
munication. We have extended an existing teaching-oriented in-
tegrated development environment (called Gild) with features to
support code sharing and coordination.

Gild is an integrated development environment for teaching and
learning programming that has been developed by our group at
the University of Victoria [6]. Gild was designed to simplify and
add pedagogical support to an existing “industrial-strength” IDE
(Eclipse1) to make it more appropriate for novice programmers and
their instructors. Since Gild’s release in January 2004, it has been
used in introductory classes at the University of Victoria, as well
as at several universities outside of Canada. We collected feedback
on its usefulness, ease of use, and desired new features through
focus groups and course experience questionnaires. The initial ex-
periences at the University of Victoria are very positive. One of the
most requested features has been support for collaborative learning.

In the remainder of this paper, we first discuss the requirements
for an IDE for team programming in a first-year computer science
course and describe a current working prototype. We then present
an exploratory study in which pairs of first-year students used our
system to collaborate on a programming assignment in a range of
conditions in which we explored the kinds of communication fea-
tures necessary to support collaboration. We conclude with a dis-
cussion of further improvements that could be made to a develop-
ment environment for supporting teams of novice programmers.

2. DEVELOPING REQUIREMENTS FOR A
COLLABORATIVE IDE

In this section we summarize the requirements for code sharing,
activity awareness, and communication that should be present in a
teaching-oriented IDE that supports team programming. We base
the requirements on the existing research and on our experiences

1Eclipse is developed largely by IBM but released as open-source
software:www.eclipse.org

136

and feedback we have collected from computer science instructors
and students. Some of these requirements are similar to those for
an IDE used in industry. However, some of the standard solutions
used in the software industry are not entirely appropriate in the ed-
ucational setting.

2.1 Code sharing and coordination
Source versioning and configuration management systems are

the main mechanism for code sharing and coordination in software
development today [4]. There is a wide variety of systems avail-
able, but Concurrent Version System (CVS) is arguably the de-facto
standard, especially for open-source software. It is typically sup-
ported in most IDEs out-of-the-box, including Eclipse, so it is a
natural candidate to use in any team project.

However, CVS emphasizes the wrong set of features from those
needed for group software development in an introductory pro-
gramming class. CVS targets software development that takes place
over extended periods of time and in which programmers work in
relative isolation from each other. In the CVS model, developers
only periodically merge their work into a common code repository,
usually when a major development step has been completed. Con-
sequently, CVS provides features for managing sequences of revi-
sions of files, multiple development branches, and different release
versions of the code. These features are unnecessarily complex for
small programs and teams that consist of only two or three students.
A model that versions the entire project as a single unit is appropri-
ate for this task and would make it easier to understand and manage
the project’s version history.

Another significant issue is that a large part of the collaborative
aspect of a programming exercise is lost in CVS because there is
no indication of what the other teammate(s) are doing. It would be
far better to have a more closely-coupled collaboration. For exam-
ple, the IDE should indicate—in real-time, if possible—the parts
of files that are currently being worked on by other team members
and warn of possible conflicts as soon as they arise (e.g., [8]).

2.2 Communication for collaboration
As Churchill and Bly observed in their study of distance collab-

oration using virtual environments like MUDs, communication in
collaborative tasks is usuallyaboutthe artifacts that are the object
of collaboration [2]. This causes great difficulties when, for exam-
ple, collaborators discuss changes to a Word document in a chat
window (or in a phone conference), while at the same time trying
to view the actual document in a separate application so the discus-
sion can be placed in its proper context.

This is an issue that should also be carefully considered for a
collaborative IDE. In our case, we need to support both synchro-
nous and asynchronous communication. We see text messages as
the primary communication medium (both as real-time chats and
as persistent messages, like email or online discussion forums). It
should be possible to anchor these messages in code (e.g., as in
Jazz [1]), but to make communication about artifacts even more
expressive, we also want to allow marking up of the artifact, for ex-
ample, highlighting parts of it and attaching a text comment to this
mark-up. Finally, because a comment can relate to disjoint sections
of an artifact (or multiple artifacts), the links from communication
to artifacts (and vice-versa) should allow multiple end points. Such
support could be extended to communication between instructors
and students, such as feedback on students’ assignments.

3. IMPLEMENTATION
We have extended Gild with a working implementation of the

code-sharing feature described above. This prototype does not yet

implement communication support because we wanted to explore
the benefits and drawbacks of communication modalities as offered
in common third-party tools, such as MSN IM.

The prototype is written as an Eclipse plug-in that extends the
existing user interface in Gild with a conceptually simple front end
to a source code versioning system. Students working in Gild can
share their work with their teammates through two operations: by
uploading the code changes contained in their workspace into a
shared repository, and bydownloadingthe most recent changes
from the repository into their local workspace.

In effect, the “upload” command takes a snapshot of one’s local
changes in one’s IDE workspace, and puts it into a shared reposi-
tory from which other team members can “download” the changes
to bring their workspaces in sync across the team. This conceptu-
ally simple model is actually more robust behind the scenes: our
implementation of code sharing in Gild still uses CVS to version
the individual files as they are uploaded to and downloaded from
the repository. This means that, for instance, we can identify simul-
taneous changes to the same file and avoid two students’ overwrit-
ing each other’s work. Such conflicts are indicated with a warning,
and the student can manually merge the two versions into his or her
workspace and then upload the new version of the project back to
the repository. Finally, our user interface includes a “diff” facil-
ity to allow the user to preview the effect of a download or upload
operation on the local workspace and the repository, respectively.
Fig. 1 shows a screenshot of Gild with the preview dialog during
the upload operation.

4. EVALUATION
As we elaborated in Section 2, we believe that for an IDE to sup-

port collaboration effectively, in addition to code sharing it must
also include communication and activity awareness features. To
determine the type and the extent of needed features, we conducted
an exploratory study in which pairs of students worked on a pro-
gramming task using our prototype for writing and sharing code,
and a set of common third-party communication tools. Our goal
in this study was to test the effectiveness and usability of the code-
sharing features, as well as investigate the type of communication
support that would be most appropriate for integration into an IDE.

4.1 Design
Participants in the study were recruited from students enrolled

in the second part of a two-course introductory computer science
sequence usually taken in the first year. A total of ten students
signed up, eight of them as pairs (P1–P4) and two individually (P5).

The participants in each pair were asked to collaborate on a pro-
gramming assignment in which they were given a skeleton code
for a computer game (Pong, see Figure 2) and had to implement
the missing methods in four classes.2 Three of the classes that
had to be modified represented game objects—paddle, ball, and
score—and the code that had to be written was either a “getter” re-
turning the value of an object’s internal state, such as position or
current score, or simply had to update the object’s state in response
to game events. The fourth class was a subclass of Java canvas, and
its paint method had to be completed by drawing the paddles and
the ball in the right locations.

The pairs were randomly assigned to one of three conditions:
face-to-face (two pairs: P1-F2F and P3-F2F), text-based instant
messaging using MSN IM (also two pairs: P4-IM and P5-IM),

2The code for the task was based on Grant Braught’s model
assignment presented at CSE’03 [7] and available atnifty.
stanford.edu/2003/pong/ .

137

Figure 1: A screenshot of Gild showing the preview dialog for the upload operation.

Figure 2: A screenshot of the Pong game used as the study task.

or audio- conferencing using Skype (one pair, P3-S). All groups
started the session with both participants in a single room for the
first 15 minutes, during which they could discuss the assigned task
but not write any code. In non-F2F groups, one member was then
moved to a different room, restricting the team to the respective
computer-mediated communication (CMC) tool for the rest of the
session. Pairs in all conditions had 45 minutes to work on their task,
at which point we asked them to stop working and collected the
code in their workspaces and the repository. The participants then
responded to a multiple choice questionnaire on their experience
in the assignment and took part individually in a brief interview
in which they could describe their experience in their own words.
During the study, we also videotaped the participants and recorded
the contents of their screens using a screen capture program.

4.2 Results
As expected, there was a large variation in the students’ program-

ming ability and performance on the assignment. Only one of the
pairs (P4-IM) finished the assignment in the time available, while
others made varying degrees of progress. (The least progress, only
one class completed and another started, was made by the other
pair in the IM condition, P5-IM.)

The difficulties that the participants encountered, however, en-

couraged them to communicate extensively using the available tools,
which was more important given that one of the purposes of this
study was to determine the requirements for communication sup-
port. The participants reported that the support for code sharing
that we added to Gild worked very well for their task. They liked
the download preview capability, because it allowed them to view
the changes their partner made to the repository prior to incorporat-
ing them into their own workspace. One participant, however, com-
mented that he would prefer to be able to “backup” his workspace
prior to downloading a change from the repository when the change
was the wrong one to make. We note that an equivalent action
would be toback-outof an uploaded change and restore the repos-
itory to an earlier version. This is a functionality that is already
available in our back end, but is not currently accessible from the
user interface. Based on this comment, it is something that we plan
to address in future development.

A more difficult challenge to address in our current code-sharing
infrastructure is the lack of activity awareness, which is the result of
using CVS internally for repository storage. This is not something
that any participants noted as a problem, but the amount of explicit
communication that took place about the status of uploads, such
as “Have you uploaded your changes yet?” or “You can download
now”, is remarkable.

As we expected, communication between teammates was task-
and artifact-centred. Participants in all conditions communicated
when they needed help on the code or to monitor each other’s ac-
tivity. As one of the participants described it, the communication
was limited to the immediate details of the code:

[The communication was] just helping out with the de-
tails more, not—because it’s difficult to describe ex-
actly what the algorithm is, unless you upload it and
everything, but mostly just for the details ‘oh, how do
I get this data where I need it, when I need it?’. (P2-S)

Although the participants had the first 15 minutes to discuss the
organization of the skeleton code and their plan for implementing
the assignment solution, they still occasionally needed to talk about
how the game was supposed to work. This was especially the case
for pairs that were unclear on the relationship of the game canvas
class with the game model.

Furthermore, the communication usually referred to specific lo-
cations in the code, e.g., “you need to draw in the ‘paint’ method”.
When they needed to, the participants in the face-to-face condition

138

Figure 3: A screenshot taken during the study showing part of
a conversation in a text chat (P5-IM).

would simply come over to their partner’s computer to point at the
screen when they needed to refer to a particular place in the code or
its relationship with another. As previously observed by Churchill
and Bly, participants in CMC conditions had to verbally describe
the location about which they were communicating. Especially in
the IM condition, this could be cumbersome, as can be seen in the
conversation fragment shown in Figure 3.

In terms of satisfaction with the computer-mediated communica-
tion, the pair using Skype was happy with their experience, which
was the first time they were exposed to Skype. Of the two pairs
using IM, the P2-IM maintained frequent communication, almost
every minute. As these students were regular IM users in their
everyday life, they found this method of communication extremely
easy. Both participants in the other IM pair, however, stated in
their post-study questionnaire that they did not find using IM easy.
We believe there are two reasons for this. First, one of the mem-
bers of P5-IM pair was an infrequent user of IM-type applications.
This was visible in this pair’s communication patterns during the
study, where all communication was initiated by the other partic-
ipant. Second, the work in this pair was very asymmetrical: the
participant who was always initiating the conversation had a lot of
trouble with the code and needed his partner’s help on every step.
This help was difficult to provide effectively using only the text
channel and the other participant found himself spending a lot of
time away from his own work, which he somewhat resented.

4.3 Implications for future research
Based on our experiences and observations from this study, we

plan to improve our code sharing feature with activity awareness in-
dicators and a simple interface for reverting the repository to an ear-
lier snapshot, for those situations when an uploaded change turns
out to be the wrong approach.

Secondly, the study gave us somewhat mixed results on com-
munication requirements for a collaborative IDE. While text mes-
saging seems to be less effective than audio communication when
one of the partner needs a lot of help with the assignment, it has
two advantages. One is that snippets of example code can easily
be typed in the chat window. The other is that non-native speakers
may prefer it to speaking:

It’s more clearer to other people. It’s better for me, I’m
not first language, I speak second language, so I think
it’s harder for people to hear me. It’s easy to just see
what I write. (P1-F2F)

We are planning to investigate this issue further in a follow-up study
later this summer, but expect that while both mediums should be
supported, the solution we will likely adopt is incorporating instant

messaging directly into the IDE (especially for reasons noted be-
low) and continuing to use third-party tools for audio conferencing.

Also, with text chat, the transition from asynchronous to syn-
chronous work can be done almost seamlessly if chats remain a
permanent part of the workspace and team members can (re)join
them as they come online and see the full contents of conversation
so far (e.g., see[1]). In this study we have, for practical reasons, in-
vestigated essentially synchronous team work. Studying asynchro-
nous collaboration over an assignment is part of our future plans,
probably as an observational case study following a small number
of students over a period of a full week.

Lastly, better support for linking the communication with the ar-
tifacts in the workspace is clearly necessary. There are multiple
ways in which this could be realized. Text messages (or persistent
chats) could be attached directly to the piece of code to which they
refer, like in Anchored Conversations [3]. However, for synchro-
nous collaboration, especially when using the audio channel, sup-
port for gestures becomes important, which will likely also require
some form of screen sharing, such as that offered in VNC.3

5. CONCLUSION
We report on a preliminary study in which pairs of first-year

computer science students used a prototype of our collaborative
IDE to work on a programming assignment. The goals of this study
were to evaluate the effectiveness and usability of the new code-
sharing features we added as well as to determine requirements for
future communication support. We found that code sharing through
upload/download into and from a versioned repository was easy to
use even for novice programmers. However, the lack of repository
activity indicator meant that the participants had to compensate by
verbally monitoring each other’s progress.

Unlike more experienced programmers, our participants often
turned to each other for help. Frequent references to specific loca-
tions in the code suggest that computer-mediated communication
should be integrated into the IDE for easy remote gesturing and
annotation of task artifact. Lastly, while it may be difficult to pro-
vide extensive explanation of code and programming concepts in
text-based chat, non-native English speakers may prefer it for com-
munication with native speakers.

6. REFERENCES
[1] L.-T. Cheng et al. Building collaboration into IDEs.ACM

Queue, 1(9):40–50, 2004.
[2] E. F. Churchill and S. Bly. It’s all in the words: Supporting

work activities with lightweight tools. InProc. of GROUP’99,
pages 40–49, 1999.

[3] E. F. Churchill et al. Anchored Conversations: chatting in the
context of a document. InProc. of CHI 2000, pages 454–461.

[4] R. E. Grinter. Using a configuration management tool to
coordinate software development. InConference on
Organizational Computing Systems, pages 168–177, 1995.

[5] C. McDowel et al. The impact of pair programming on student
performance, perception, and persistence. InProc. of
ICSE’03, pages 602–607, 2003.

[6] D. Myers et al. Developing marking support within Eclipse. In
OOPSLA Eclipse Technology Exchange, 2004.

[7] N. Parlante et al. Nifty assignments. InProc. of SIGCSE’03,
pages 353–354, 2003.

[8] A. Sarma et al. Palantı́r: Raising awareness among
configuration management workspaces. InProc. of ICSE’03,
pages 444–454, 2003.

3www.realvnc.com

139

