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Language Recognition Based on
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Abstract—The major challenges that sign language recognition
(SLR) now faces are developing methods that solve large-
vocabulary continuous sign problems. In this paper, transition-
movement models (TMMs) are proposed to handle transition
parts between two adjacent signs in large-vocabulary continuous
SLR. For tackling mass transition movements arisen from a large
vocabulary size, a temporal clustering algorithm improved from
k-means by using dynamic time warping as its distance measure is
proposed to dynamically cluster them; then, an iterative segmen-
tation algorithm for automatically segmenting transition parts
from continuous sentences and training these TMMs through a
bootstrap process is presented. The clustered TMMs due to their
excellent generalization are very suitable for large-vocabulary
continuous SLR. Lastly, TMMs together with sign models are
viewed as candidates of the Viterbi search algorithm for recog-
nizing continuous sign language. Experiments demonstrate that
continuous SLR based on TMMs has good performance over a
large vocabulary of 5113 Chinese signs and obtains an average
accuracy of 91.9%.

Index Terms—Chinese sign language (CSL), dynamic time
warping (DTW), hidden Markov model (HMM), sign language
recognition (SLR), temporal clustering algorithm.

I. INTRODUCTION

W ITH the widespread use of computers in modern so-
ciety, traditional human–computer interaction (HCI)

technologies based on mouse and keyboard show their increas-
ing limitations. Thus, research on multimodal HCI is becoming
more and more important in real life. Sign language recognition
(SLR), as one of the important research areas of HCI, has
spawned more and more interest in HCI society. The goal
of SLR is to provide an efficient and accurate mechanism to
transcribe sign language into text or speech so that “dialog
communication” between the deaf and hearing society can
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come true. From a user’s point of view, the most natural
way to interact with a computer would be through a speech
and gesture interface. Thus, research on sign language and
gesture recognition is likely to provide a shift paradigm from
point-and-click user interface to a natural language dialog-and-
spoken command-based interface. In addition, it has many other
applications such as providing a “speaking aid” for deaf-mute
people by integrating SLR and speech synthesis modules into
a digital glove, controlling the motion of a human avatar in a
virtual environment via hand gesture recognition, and having a
learning demonstration for the robot.

SLR is used to deal with the recognition problem of the
temporal pattern of multiple data streams. From the point of
view of handling a time-series signal, SLR is very similar to
speech recognition. However, some differences between them
make SLR more difficult. Compared with traditional speech
recognition, which only deals with one stream of speech signal
data, SLR has to handle multiple data streams including hand
shape, position, orientation, and movement. In speech recog-
nition, the basic unit of recognition is phoneme, which has
been defined in the speech lexicon. However, sign language has
no basic unit of recognition yet, and how to find and define
basic units is an open issue. If we extract basic units from each
stream, the number of combinative units is too large: about
75 × 75 × 12 × 12 × 15 × 15 (denoting the number of left-
hand shapes, right-hand shapes, left positions, right positions,
left orientations, and right orientations, respectively). Thus, we
must propose the corresponding algorithm according to the
characteristic of SLR rather than the simple use of speech
recognition methods.

The major challenges that SLR now faces are develop-
ing methods that will solve large-vocabulary continuous sign
problems. Research on large-vocabulary continuous SLR has
a profound influence on the naturalness of human–computer
interfaces and is clearly an essential requirement for the wide-
spread use of an SLR system. For continuous SLR, the main
issue is how to handle the movement epenthesis. The movement
epentheses, i.e., transition movements between two adjacent
signs, begin at end of the preceding sign and finish at the
start of the following sign, which vary with the sign contexts.
The presence of movement epenthesis greatly complicates the
recognition problem since it inserts a great variety of extra
movements that are not present in the signs’ lexical forms,
instead of merely affecting the performance of adjacent signs.

In continuous speech recognition, context-dependent mod-
els such as biphone or triphone are generally employed for
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modeling the coarticulation. However, in continuous SLR, no
basic unit such as the phoneme of speech is defined in the
sign lexicon yet. The number of subunits for the whole sign
language extracted manually or automatically is so large that
the training data becomes very sparse [1]. This leads to the
impossibility to train context-dependent models such as those
in the literature [2] for large-vocabulary SLR. Direct models
of the movement epenthesis between signs also have the same
problem as context-dependent models.

However, transition movements are only related with the end
of the preceding sign and the start of the following sign, so
transition-movement models (TMMs) in terms of signs have
many identical and very similar clusters. Thus, we can cluster
transition movements so as to reduce their number and avoid the
sparseness of training data. This also improves the generaliza-
tion of transition movements, which is very suitable for large-
vocabulary continuous SLR, with certain training samples of
typical sentences. Nevertheless, transition movements are time-
series vectors. The k-means clustering algorithm cannot handle
temporal data because its distance measure builds between two
spatial vectors. Volger and Metaxas [2] employed k-means to
cluster the data frames of the start and end points of signs to
produce less possible (end–start) combinative transition mod-
els. However, in a large vocabulary size, it is very difficult to
obtain these data frames of start and end points. If we manually
segment continuous signs into isolated signs, the huge workload
and the introduction of man-made errors will make the task
infeasible. Furthermore, it is also complicated to model the start
and end points of movement epenthesis through isolated signs
because there are distinct performance deviations between the
isolated sign and the sign in a continuous sentence.

In this paper, TMMs are proposed to deal with transition
parts between two adjacent signs. For tackling mass transition
movements arisen from a large vocabulary size, a temporal
clustering algorithm improved from k-means by using dynamic
time warping (DTW) as its distance measure is proposed to
dynamically cluster them; then, an iterative segmentation algo-
rithm is presented for automatically segmenting transition parts
from continuous sentences and training these TMMs through
a bootstrap process. The estimated TMMs, together with sign
models, are used for continuous SLR. Experiments demonstrate
that continuous SLR based on TMMs has good performance on
a large vocabulary.

The remainder of this paper is organized as follows.
Section II reviews the related work. In Section III, we give the
SLR system overview. In Section IV, the temporal clustering
algorithm is proposed to dynamically cluster transition move-
ments. Section V gives large-vocabulary SLR based on TMMs.
Section VI shows the experimental results. The conclusions are
drawn in the last section.

II. RELATED WORK

Attempts to automatically recognize sign language began to
appear in the literature in the 1990s. Following the similar path
to early speech recognition, many previous attempts at SLR
focused on finger spelling or isolated signs. Because finger
spelling is a static gesture, the recognition algorithms are not

very similar to isolated signs and continuous signs (belong
to dynamic gestures). In this overview, we focus on previous
related work on isolated and continuous SLR. The recognition
methods of isolated SLR usually include rule-based matching
[3], [4], fuzzy decision trees [5], artificial neural networks
[6]–[9], and hidden Markov models (HMMs) [10], [11].
However, because there is no clear pause between the signs
for continuous SLR, explicit segmentation of a continuous
input stream into individual signs becomes intractable. For
this reason, together with the effect of movement epenthesis,
the research on isolated sign recognition often does not easily
generalize to continuous SLR. For recognizing continuous sign
language, several typical works here are performed.

Starner et al. [12] proposed a view-based approach for
continuous American SLR. They used a single camera to
extract two-dimensional features as input of the HMM. Word
accuracies of 92% and 98% were obtained when the camera
was mounted on the desk and in a user’s cap, respectively,
while recognizing the sentences over a vocabulary of 40 signs.
An HMM was also employed by Bauer and Hienz [13] to
recognize continuous German sign language with a single color
video camera as input. An accuracy of 91.7% can be achieved
during recognition of sign language sentences with 97 signs.
Furthermore, they developed the k-means clustering algorithm
to obtain the subunits for continuous SLR [14]. An accuracy of
80.8% was achieved in the corpus of 12 different signs with ten
subunits. In large-vocabulary SLR, a direct HMM is difficult
to use in modeling a variety of movement epentheses between
signs arisen from a large vocabulary size.

Liang and Ouhyoung [15] employed the time-varying para-
meter threshold of hand postures to determine the end points in
a stream of gesture input for continuous Taiwan SLR. An aver-
age recognition rate of 80.4% was obtained over a vocabulary
of 250 signs. In their system, an HMM was employed, and a
Dataglove was taken as input device. Sagawa and Takeuchi [16]
used the changes of hand shape, orientation, and position to
detect the borders of Japanese sign language words. They
experimented ten sentences and obtained 83.0% accuracy with
the top five choices. However, the fixed segmentation will
result in a higher false recognition rate. Fang and Gao [17]
proposed simple recurrent networks/HMMs (SRNs/HMMs) for
signer-independent continuous SLR, where SRN is used as soft
segmentation of continuous sign language. The system obtained
85% accuracy in recognizing 100 sentences from seven signers
on a vocabulary of 208 signs. A critical issue in employing the
segmentation strategy for continuous SLR in a large vocabulary
size lies in finding an effective soft segmentation method and a
whole framework to incorporate this method.

Vogler and Metaxas [2] used computer vision methods to
extract the three-dimensional (3-D) parameters of a signer’s
arm’s motions as input to the HMM and recognized contin-
uous American sign language sentences over a vocabulary of
53 signs. They built a context-dependent HMM and then mod-
eled transition movements to alleviate the effects of move-
ment epenthesis. Experiments over the 64 phonemes extracted
from the 53 signs showed that modeling movement epenthesis
showed better performance than using context-dependent
HMMs. The reported best accuracy is 95.8%. In addition, they
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Fig. 1. Structure of a continuous SLR system based on TMMs.

used phonemes instead of whole signs as the basic units and
achieved similar recognition rates as sign-based approaches
over a vocabulary of 22 signs [18], [19].

Gao et al. [20], [21] used a dynamic programming method
to obtain context-dependent models for recognizing continuous
Chinese sign language (CSL). Datagloves were used as input
devices, and a state-tying HMM was used as the recognition
method. Their system can recognize 5177 CSL isolated signs
with 94.8% accuracy in real time and recognize 200 sentences
with 91.4% word accuracy. More recently, this system has been
improved and expanded to signer-independent SLR [22]–[24].

Previous research on SLR primarily focuses on small-
or medium-vocabulary continuous SLR. For large-vocabulary
continuous SLR, to the best of our knowledge, no research
report was found in the literature, except our early work in
which TMMs were proposed for continuous Chinese SLR [25].

III. SLR SYSTEM OVERVIEW

A. System Structure

The structure of a continuous SLR system based on TMMs
is shown in Fig. 1. Sign/sentence samples collected by input
devices are fed into the feature extraction module and then input
into two related parts: TMM training and recognition based
on TMMs. In the TMM training part, sign/sentence samples
are trained into sign models and TMMs by the model training
module (no TMMs in the first run). Then, these models are
used to segment continuous sentence samples into sign parts
and transition parts. Transition parts are clustered using the
temporal clustering algorithm. We iterate this process until the
convergence criterion is met. In the recognition part based
on TMMs, the estimated TMMs and sign models obtained
from the training part are viewed as candidates of the Viterbi
search algorithm, together with language models (Bigram) for
recognizing large-vocabulary continuous sign language.

B. CSL and Its Feature Extraction

Sign language, as a kind of gesture, is one of the most
natural ways of exchanging information for most deaf people.

CSL, as a kind of sign language, is the language of choice for
20.57 million deaf people in China. CSL consists of about
5500 conventional vocabularies, including postures and ges-
tures. With the evolution of CSL, up-to-date CSL can express
any meaning in natural spoken Chinese with the aid of finger
spelling. CSL has the following unique features: 1) CSL is a
kind of language using semantics as a main expressive way,
and its sentence has a similar word order to Chinese written
language and 2) finger spelling and Chinese character-imitating
gestures play two very important parts of CSL. Similar to
Stoke’s analysis of American sign language [26], each Chinese
sign can be broken into four parameters: hand shape, position,
orientation, and movement. Hand shapes are one of the primi-
tives of CSL and reflect information on the hand configuration.
They are very stable and can be used to distinguish most signs.
There are 75 basic hand shapes in CSL. The position of the hand
is usually partitioned in terms of the signer’s hand with respect
to the defined three parts of his body: head, chest, and below
chest. In each part, the position can be further subdivided into
the body’s left, right, and middle. In total, there are 12 positions
defined in CSL. The orientation of the hand can be described
in terms of two orthogonal directions: the facing of the palm
and the direction to which the hand is pointing. There are 15
different orientations widely used in CSL. Movement differs
from the other features because it is inherently temporal in
nature. Its trajectory, which indicates the shape of an object,
is described by time-series variation of hand position relative to
the body part. These parameters are performed simultaneously
and form multiple data streams, which are the basis of SLR.

Hand shapes are one of the primitives of sign language and
reflect information on the hand configuration. To more accu-
rately collect the variation information of hand shape and finger
status, two Cybergloves are employed with the 18-dimensional
data for each hand (see Fig. 2).

To collect the variation information of orientation and po-
sition, three Pohelmus 3SPACE-position trackers are used (see
Fig. 2). However, the outputs of trackers cannot be directly used
as sign language features because they vary with the position of
the transmitter, especially in the situation when the recognition
system is moved from one place to another. In order to extract
invariant features to the signer’s position, the following method
is proposed. First, two trackers are positioned on the wrist of
each hand, and another is mounted at the signer’s back. The
tracker at the signer’s back is chosen as the reference Cartesian
coordinate system. In addition, the position and orientation of
each hand with respect to the reference system are calculated
and can be taken as invariant features. By this transformation,
the data consist of a relative 3-D position vector and a 3-D
orientation vector for each hand, which do not change with the
signer position and orientation.

In total, a 48-dimensional vector is formed, including the
hand shape (36), position (6), and orientation vector (6) for
the two hands. The data from different signers are calibrated
by some fixed movements performed by each signer. In our
experiment, the 14 postures that represent the min–max value
ranges of the corresponding sensor and 75 basic hand shapes
are defined. As each component in the vector has a different
dynamic range, its value is normalized to [0, 1].
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Fig. 2. Input devices.

IV. TEMPORAL CLUSTERING

Since the transition movements of continuous sign language
are time-series vectors, the proposed clustering algorithm is re-
quired to handle not only spatial information but also temporal
information. Furthermore, there is no criterion to describe how
many clusters are reasonable, so the algorithm should be able
to dynamically cluster transition movements according to their
data distribution.

The k-means clustering algorithm cannot handle temporal
data because its distance measure only builds between two
spatial vectors. Wilpon and Rabiner [27] proposed a modified
k-means algorithm (MKM) for producing robust matching tem-
plates for speaker-independent speech recognition. However,
MKM cannot dynamically cluster the data. In this paper, a
temporal clustering algorithm based on MKM is proposed to
cluster time-series vectors. DTW is employed as the distance
computation criterion because it can measure the distance
between two temporal sequences by aligning different time
signals and normalizing them to a warping function. In the algo-
rithm, the corresponding skills are proposed to solve the issues
of cluster splitting and combination. The proposed algorithm
can automatically split and combine the centroids according
to their data distribution to obtain a more reasonable cluster
number and centers. The next subsection will discuss DTW-
based distance computation and temporal clustering algorithm
in detail.

A. DTW-Based Distance Computation

DTW is to search the best warping function using a dy-
namic programming technique so as to minimize the distance
between two temporal sequences. Myers and Rabiner [28]
have proposed several DTW algorithms for recognizing
connected speech words and compared their performances.
Let two temporal sequences be X = (X1,X2, . . . , XTX

)
and Y = (Y1, Y2, . . . , YTY

), where Xi and Yi are the 48-
dimensional vectors. Define the warping function as φ =
{φ(1), φ(2), . . . , φ(N)}, φ(n) = (φX(n), φY (n)), where N is
the “normal” duration of two sequences φX(n) ∈ {1, . . . , TX}
and φY (n) ∈ {1, . . . , TY }. The nth matching pair φ(n) con-
sists of the φX(n) vector in X and the φY (n) vector in Y .

The measure d(φX(n), φY (n)) is defined as the Euclidean
distance. The goal of DTW is to search the minimal accumulat-
ing distance and the associated warping path, i.e.,

D(X,Y ) = min
φ

N∑

n=1

d (φX(n), φY (n)) . (1)

The warping function in our experiment satisfies end-point
constraint, monotony constraint, and one-step local continuity
constraint. The one-step local constraint refers to the case in
which, when the current warping function pair is (i, j), its
last step has only three choices: (i− 1, j), (i− 1, j − 1), and
(i, j − 1). Unlike in speech recognition, we do not put any
region constraint to the DTW search so as to get the best path
among all the possible candidates.

The minimum partial accumulated distortion along a path
from (1, 1) to (iX , iY ) is defined as

D(iX , iY ) = min
φT ′

T ′∑

n=1

d (φX(n), φY (n)) (2)

where φX(T ′) = iX and φY (T ′) = iY .
The auxiliary parameter ψ(iX , iY ) is defined to record a

point before point (iX , iY ) in the local optimal path. The
recursive relations according to the constraints are given as
follows:

D(iX , iY ) = min
(i′

X
,i′

Y
)
[D(i′X , i

′
Y ) + d(iX , iY )] (3)

ψ(iX , iY ) = arg min
(i′

X
,i′

Y
)
[D(i′X , i

′
Y ) + d(iX , iY )] (4)

where (i′X , i
′
Y )∈{(iX−1, iY ), (iX−1, iY −1), (iX , iY −1)}.

Through the dynamic programming search, the minimal
distance D(X,Y ) between two temporal sequences and the
associated warping function pair φ are simultaneously obtained.

B. Temporal Clustering Algorithm

Let Π = {O1, O2, . . . , OV } be a data set with V temporal
sequences to be clustered. The temporal clustering algorithm
is used to dynamically cluster these data into c centers, i.e.,
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Fig. 3. Flowchart of the temporal clustering algorithm.

Π = ∪c
j=1Γj . The flowchart of the temporal clustering algo-

rithm is shown in Fig. 3.
The detailed algorithm is described as follows.

1) Initialization: Calculate all distances d(Oi, Oj) using
DTW. Set the initial parameters; c is the number of
clusters, C is the expected number of clusters, θN is
the minimum number of samples in each cluster, θC is
the threshold of the intercluster distance that determines
whether to combine or not, t is the number of itera-
tions, and tmax is the maximum iterations. The method
described in [27] is employed to set the initial cluster
centers. It splits the clusters from one to the expected
number by a one-to-two method step by step.

2) Classification: According to the minimum DTW distance
rule, each sample is classified into the corresponding
center.

For each cluster, if its sample number is less than θN ,
this cluster is discarded. Set c = c− 1, and then reclassify
the samples in this cluster.

3) Recalculate the Cluster Center: The recalculation is de-
scribed by the following two steps.

(a) First, find the pseudoaverage center O′. A particular
element in the cluster has the largest population of
elements (subset of the cluster) whose distance to the
particular sample falls within the threshold. If several
patterns have the same largest count of samples with
distances below the threshold, then the element that
has the smallest average distance to all samples in the
subcluster is chosen as the pseudoaverage center.

(b) Second, all samples in Γj are warped to the pseudoav-
erage centerO′. We then group the samples according
to their individual warping paths with respect to O′.

Fig. 4. TMM between two signs.

The vectors that are aligned to the same index i
are then averaged to produce an average vector for
the new cluster. The resultant sequence with vectors
indexed from 1 to TO′ (duration forO′) is the average
cluster center m(Γj).

4) If t mod 2 = 0 or c ≥ 2C, then GO TO step 6); else,
GO TO step 5).

5) Cluster Splitting: Calculate the intracluster distance λj

for each cluster j, i.e.,

λj =
1

‖Γj‖
∑

O∈Γj

d (m(Γj), O) , j = 1, 2, . . . , c. (5)

Find the cluster Γj max with the maximum intraclus-
ter distance. If ‖Γj max‖ ≥ 2θN or c ≤ C/2, then split
Γj max as follows: Search for two temporal sequences
Op1 and Op2 that satisfy d(Op1, Op2) ≥ d(Op3, Op4) for
any other pairs Op3, Op4 in Γj max. Two sequences Op1

and Op2 are used as new cluster centers to replace the
original cluster. Set c = c+ 1, and then GO TO step 7).

6) Cluster Combination: For all the cluster centers, calcu-
late the intercluster pairwise distances d(m(Γi),m(Γj)).
Find the pair with the minimum interclass distance
d(m(Γp),m(Γq)), if d(m(Γp),m(Γq)) < θC . Then,
combine Γp and Γq. Using DTW, the optimal path be-
tween the sequences Γp and Γq is obtained. Let T be
the warping path length for φ, and the new cluster m is
calculated as follows:

mk =
1
2

(
m(Γp)φX(k) +m(Γq)φY (k)

)
, k = 1, 2, . . . , T.

(6)

Replace these two clusters with the new cluster m, and
set c = c− 1.

7) t = t+ 1. If t < tmax, then return to step 2). Otherwise,
save the cluster data, and exit.

V. LARGE-VOCABULARY SLR BASED ON TMMS

For continuous SLR, the main issue is how to handle the
movement epenthesis. In fact, the method of modeling move-
ment epenthesis can alleviate the effect of movement epenthe-
sis. However, the number of all the possible combinations
between signs is so large, especially in a large vocabulary size,
that a large amount of continuous sentences is required to train
these combinative models. There are no such large corpora in
the SLR field at present. Furthermore, due to the lack of lexical
definition in the sign lexicon for the movement epenthesis, it is
difficult to model these movement epentheses using separately
collected sign data. However, movement epentheses are usually
related with the end of the preceding sign and the start of
the following sign. In Fig. 4, Sign U and Sign V denote any
two adjacent signs in continuous sign language, and T(V|U)
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Fig. 5. Trajectory of a sign in the sign space.

represents the TMM from Sign U to Sign V. Different transition
movements between two adjacent signs have identical and very
similar (end–start) sequences. Thus, we can reasonably cluster
them into one class. This will not only reduce the number of
transition movements to avoid the sparseness of training data
but also improve their generalization. These clustered models
are very suitable for large-vocabulary SLR.

In continuous sign language, the start and end points of
the corresponding signs cannot be known, so it is infeasible
to segment transition movements through manual annotation.
In this paper, the training algorithm of TMMs is proposed to
automatically segment transition movements from continuous
sentences and simultaneously estimate their model parameters.

The iterative segmentation algorithm of TMM training is
described in detail as follows.

1) With initial isolated HMM models, continuous sign
sentences with recorded text are segmented into the
corresponding isolated sign sequence using automatic
segmental clustering in HMM [29].

2) Set the transition parts from the last state of the preceding
sign to the first state of the following sign as the initial
values of current transition movements.

3) Cluster transition movements through the temporal clus-
tering algorithm. Then, train the TMMs with the clustered
transition data, and train the sign models with the seg-
mented sign data and isolated sign data.

4) Use the newly trained models (TMMs and sign models)
to segment continuous sentences into signs and the corre-
sponding transition movements. Judge whether the num-
ber of transition frames has changed compared with the
last segmentation. If it has changed, then return to step 3);
otherwise, save the trained models, and exit.

After the training, the TMMs and new sign models are
built. They are combined into the candidate models of the
Viterbi search algorithm [29] for recognizing large-vocabulary
continuous sign language. However, because the number of
candidate models is so big, the pruning operation has to be
employed to improve system performance.

Each sign has its trajectory in sign space. If an observation
vector is close to this trajectory, then the sign may be active at
that time; else, the sign will be inactive. Fig. 5 demonstrates
a trajectory of a sign in the sign space, where a black dot
represents an active sign and a white dot represents an inactive
sign. For each observation vector, judging whether a sign is
active is very important to speed up the recognition process.
If only a small fraction of signs is active at the current frame,

the most likely active signs are those which are active at
the previous frame due to the continuous property of gesture
movement trajectory. Only these active signs need to be further
searched at the next frame; thus, a large amount of computation
cost can be saved.

According to the preceding analyses, the rules of adding can-
didate words and removing candidate words are made during
the search process. The details are described as follows.

1) Adding candidate words: Calculate the first state prob-
ability of all the words, excluding the candidates of the
last frame. If the probability of a word is greater than
a certain threshold, this word will become a candidate
of the current frame. At the same time, the other state
probabilities of this word need not be further calculated
at the current frame.

2) Removing candidate words: For all the candidates of
the last frame, if all the state path scores of a word are
less than a certain threshold, then this word is removed
from the current candidates, and the paths with this frame
as the tail will not be further expanded.

VI. EXPERIMENTS AND DISCUSSIONS

In our experiments, two Cybergloves and three Pohelmus
3SPACE-position trackers are used as input devices. Two track-
ers are positioned on the wrist of each hand, and another is
fixed at the signer’s back (as the reference tracker). The Cyber-
gloves collect the variation information of the hand shape with
18-dimensional data for each hand, and the position trackers
collect the variation information of the orientation, position,
and movement trajectory.

Experimental data consist of 51130 sign samples over 5113
isolated signs from two signers, with each sign having ten
samples. The vocabulary is taken from the CSL dictionary.
Eight samples are used as the training set, and the rest of
the samples of each signer are used as the isolated sign test
set. The continuous sign language database consists of the
3000 sentence samples with 750 different sentences over a
vocabulary of 5113 signs. These data are collected from two
signers represented by S1 and S2, with each performing the
sentences twice. The sentences are extracted from the 200-MB
corpora, which are composed of China Daily between the years
1993 and 1995 and the Family Collection Book. The 200-MB
corpora are also used to estimate Bigram probabilities, where
Bigram is adopted as language models in our continuous SLR
framework. As sign language is somewhat different from nat-
ural language, e.g., the function words are always omitted and
sometimes the subject and the predicate are hyperbatic, some
adaptations to these linguistic characteristics are imposed on
the training corpora of the language models.

The first experiment validates that the proposed temporal
clustering algorithm can effectively cluster similar or the same
sequences into one class. The database consists of 1268 samples
from 317 signs, which are selected among 5113 signs at ran-
dom, and each sign has four samples. Because the correspond-
ing classes are known beforehand, we can judge whether the
clustering results are reasonable. The expected cluster center
is initially set to 317. After the processing of the temporal
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Fig. 6. Description of the signs J and Ninety. (Left) J. (Right) Ninety.

clustering algorithm, the 309 cluster centers can be obtained.
The 301 centers are the same as the sign data, i.e., each has
four samples. The remaining eight centers are the results of the
sample combinations of the two signs.

In the eight centers, they can be classified into three cate-
gories. One is that the two signs have the same action, such as
zhu-ren (director) and zhu-chi (preside). The second is that the
two signs have the same posture but only a small difference
in position, such as zhong-zu (race or tribe) and zhong-lei
(category). The third is that the two signs have the very similar
posture, where one has slight movement and the other has not.
For example: “J” and “jiu-shi” (“ninety”), where the sign J is
static and the sign ninety has slight movement of first finger.
Fig. 6 shows the description of the signs J and ninety.

From the preceding experiments, we know that the temporal
clustering algorithm can effectively cluster these segments with
high similarity into one class.

The second experiment is to analyze the factors influencing
the isolated sign accuracy. This is because the parameters of
isolated sign models, as a basis of continuous SLR, have direct
influence on the continuous SLR performance. Only when these
signs are correctly modeled is it possible for them to be recog-
nized in the continuous sentence. There are two factors that
directly influence the recognition accuracy: the number of states
N and the number of mixture components M in the HMM.
In the HMM training, these two factors need to be manually
set through experiments, and other parameters of models can
be automatically trained through reestimation. N depends on
the number of potential phonemes of the sign, where phoneme
is defined as a segment dynamic continuous sign data where
the variability of hand shape, position, and orientation is very
stable. The value of M is determined by the distribution of sign
data. It reflects the differences of training data for one sign,
and if the data difference is larger, the value of M is becoming
bigger. To obtain the best parameters for HMM, we perform
different experiments when N is set to 2, 3, 4, and 5 and M is
set to 1, 2, 3, 4, 5, and 6, respectively.

As shown in Fig. 7, the best accuracy of 95.4% can be
obtained on 5113 isolated signs when M = 3 and N = 3.
WhenM grows from 1 to 3, the recognition performance is also
improved. However, ifM increases from 3 to 6, the recognition
rate remains similar or even slightly decreases. Thus, M = 3
is viewed as the best number of mixture components. Though
N = 5 and N = 3 have the comparative accuracy from Fig. 7,
N = 3 is chosen because of its less computational complexity
in recognition.

The third experiment is used to evaluate the performance of
TMMs for continuous SLR. The 3000 samples are divided into

Fig. 7. Relations between the model parameters M and N and the isolated
sign recognition accuracy.

TABLE I
PERFORMANCES OF CONTINUOUS SLR BASED ON TMMs

two groups, with one group per signer (S1, S2). Among the
1500 sentence samples of each group, 750 sentences are used as
training, and another 750 samples are used as the test set. These
sentences consist of the words from 3 to 15, with an average of
6.6 words for each sentence.

All experiments are performed with Bigram language models
on the PIV1600 (512-MB memory) personal computer. S, I, and
D denote the number of substitution, insertion, and deletion
errors, respectively. The number of signs in the whole test
set is 4994, and the number of transition movements without
clustering is 3945. The expected cluster center is initially set to
800. After the processing of the temporal clustering algorithm,
the 546 cluster centers can be obtained. The candidates for
recognition consist of 546 clustered TMMs and 5113 sign
models, where their models are three states and three mix-
ture components. Table I shows that an average accuracy of
91.9% for TMMs is obtained on the test set. In the two test
sets, the insertion errors are I = 53 and I = 30, which is the
smallest proportion of all errors, respectively. Thus, we know
that the proposed method can effectively alleviate the effect
of movement epenthesis. Experiments also demonstrate that
when signers perform the sign sentence with natural speed,
continuous SLR based on TMMs can be performed in real time
without clear delay, which is about 1.27 s per word (s/w).

Table II demonstrates the comparison of different methods
in continuous SLR. Compared with context-dependent models,
our system has a better recognition rate of 94.3% on the test
set of 200 different sentences, which then increases by about
2.9%. On the test set over a large vocabulary of 5113 signs,
the experiments with TMM and without TMM are performed,
where the model without TMM is identical to direct HMM.
The accuracies of HMM and TMM are 78.2% and 91.9%,
respectively, on the test set of 750 different sentences with a
large vocabulary of 5113 signs. From their comparison, we
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TABLE II
COMPARISON OF DIFFERENT METHODS IN CONTINUOUS SLR

know that continuous SLR based on TMMs is better than
direct HMM. The reason is that HMM by segmenting transition
parts into two adjacent signs is difficult to use in modeling
various transition movements with great variations arisen from
a large vocabulary size and TMM by clustering transition
models can effectively solve this issue. Through TMM, we can
solve the transition movement issue in a large vocabulary size,
which direct HMM and context-dependent model cannot deal
with, while retaining comparable time complexity. Because the
clustered models improve TMM generalization, the proposed
model can scale well with the vocabulary size for recognizing a
larger vocabulary sign language.

VII. CONCLUSION

In this paper, continuous SLR based on TMMs is first imple-
mented on a large vocabulary of 5113 signs. For tackling mass
transition movements that have arisen from a large vocabulary
size, a temporal clustering algorithm is proposed to dynami-
cally cluster them; then, an iterative segmentation algorithm
for automatically segmenting transition parts from continuous
sentences and training these TMMs through a bootstrap process
is presented. The clustered models can improve the TMM
generalization and is very suitable for large-vocabulary contin-
uous SLR with certain training samples of typical sentences.
Experimental results demonstrate that continuous SLR has an
average accuracy of 91.9% on 1500 test sentence samples over
a large vocabulary of 5113 signs. Furthermore, the temporal
clustering algorithm can be further extended to extract the
basic units from CSL and automatically seek the anonymous
gestures.
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