
The FracPECE Subroutine for the Numerical
Solution of Differential Equations of Fractional
Order

∗Kai Diethelm and∗∗Alan D. Freed
∗Institut für Angewandte Mathematik, TU Braunschweig
∗∗Polymers Branch, NASA Lewis Research Center, Cleveland

Abstract

We present and discuss an algorithm for the numerical solution of nonlinear differential equations
of fractional (i.e., non-integer) order. This algorithm allows us to analyze in an efficient way a
mathematical model for the description of the behaviour of viscoplastic materials. The model
contains a nonlinear differential equation of orderβ, whereβ is a material constant typically in
the range0 < β < 1. This equation is coupled with a first-order differential equation. The
algorithm for the numerical solution of these equations is based on a PECE-type approach.

1 Introduction

In this paper we introduce an algorithm for the numerical solution of non-
linear differential equations of fractional orderβ, where the main emphasis
is placed on the case0 < β < 1. The development of this algorithm is
motivated by a concrete application, namely the problem of modeling the be-
haviour of viscoplastic materials under certain conditions. In particular, we
are interested in describing the strain and internal state reacting in response
to changes in stress and temperature. In the theory of viscoelasticity, it is well

57

known [4] that the constitutive equations governing these phenomena involve
differential equations of fractional order. Since the theory of viscoelastic-
ity is essentially a linear theory, these differential equations are also linear,
and therefore they may be solved using rather simple methods. We shall see
that, in our situation, we have to replace these linear equations by nonlinear
ones. The standard solution methods for the linear equations usually fail in
the nonlinear case. Thus we now present a new algorithm, calledFracPECE,
that allows us to solve the differential equations and thus analyze the model
in an efficient way. As the nameFracPECE indicates, the code is based on
the classical PECE (Predict, Evaluate, Correct, Evaluate) type approach, ap-
propriately modified to be able to handle the fractional differential operators.
In the derivation of the algorithm, we have taken particular care of the fact
that the model does not consist of fractional differential equations only, but
that first-order differential equations are contained too. This has imposed the
requirement to find coherent schemes for both types of differential equations.
The subroutine package has been implemented in the programming language
Oberon [8, 22] in an object-oriented manner.

The structure of this paper is as follows. We begin by introducing the math-
ematical model of viscoplasticity that we want to analyze. In particular, we
state the fractional differential equations that we want to solve. Together with
some necessary mathematical preliminaries, this is done in §2. The algorithm
itself is then presented in detail in §3. In particular, we shall mention its most
important properties and discuss possible modifications in order to enhance
the performance.

2 The Mathematical Model

In order to motivate the algorithm that we developed, we give a short de-
scription of (a slightly simplified version of) our mathematical model, thus
explaining the equations we want to solve. For this description of our model
of viscoplastic materials, it is useful to first briefly recall some key facts from
fractional calculus.

The Riemann-Liouville derivative of orderβ > 0 of a functionf with
respect to the pointt0 is denoted and defined by [18, p. 59]

Dβ
t0f(t) =

1
Γ(m− β)

dm

dtm

∫ t

t0

f(u)(t− u)m−β−1du (1)

wherem is the integer defined by the relationm−1 < β ≤ m. If β is a natural
number, then we recover the classical definition of the derivative. This form
of a derivative has got very nice and useful mathematical properties [18, 20],
but a direct application to physical problems frequently leads to difficulties

58

when attempting to handle initial conditions in a meaningful way. The reason
is that the fractional derivative of a constant is not identically zero. Therefore,
it is usual to look at Caputo’s [3] variant of the Riemann-Liouville derivative,
i.e.

dβ
t0f(t) = Dβ

t0

(
f −

m∑
k=0

(· − t0)k

k!
y(k)(t0+)

)
(t), (2)

wherem is as above; cf. also the survey article [16] and the references cited
therein. There is one particularly important property that both these (and
indeed all other) fractional derivatives share, namely the fact that these op-
erators are not local. This means that the value ofdβ

t0f(t) depends on all
the values off in the interval[t0, t] (i.e. on the entire history of the function
f). In sharp contrast to this, differential operators of integer order are always
local, i.e. they can be evaluated from functions values off in an arbitrarily
small neighborhood oft. This hereditary behavior makes fractional differ-
ential operators a natural choice when it comes to modeling path-dependent
phenomena. On the other hand, the property has got an influence on the
numerical scheme: The fact that we cannot neglect the past history off im-
plies an increased arithemtic complexity of the algorithm compared to similar
methods for integer-order equations.

In our model presented in [6] that we shall now briefly review, we have es-
sentially set up three sets of equations. The first set describes the hydrostatic
response (i.e. the dilatational kinetics), the second set deals with deviatoric
response (i.e. the distortional kinetics), and the last set covers the evolution
of an internal stress.

Our description starts with the first group of relations. We have decom-
posed the dilatational strain responsee additively into an elastic (reversible)
partee and a plastic (irreversible) partep, i.e.,

e = ee + ep, (3)

where the individual parts fulfil the relations

ee = 3α(T − T0) − p

κe
, (4)

ėp = − 1
τ0 exp(Q/RT)

ξp− x

κp
. (5)

Hereα is the mean coefficient of thermal expansion (and thus a material
constant),T is the current temperature,T0 is the temperature at the beginning
of the experiment,p is the pressure,κe andκp are the elastic and plastic bulk
moduli, τ0 is a characteristic time,R = 8.3145 J/mol K is the universal gas
constant,Q is the activation energy, andx is the hydrostatic component of

59

the internal stress. These relations describe the dilatational kinetics of the
model. Formulae (3–5) constitute the standard linear solid of viscolelasticity
in disguise, at least whenx = −κp[e − 3α(T − T0)]. This choice for a
constitutive relation was made because, based on our present knowledge of
hydrostatic data, this seems to be the best model currently available for the
problem at hand.

For the distortional responseE = Ee + Ep (also decomposed into elastic
and plastic components), we have found

Ee =
1

2µe
S (6)

and

Ėp =
1
τ

(‖S− X‖
µp(1 − ξ)

)
n S− X

2‖S− X‖ . (7)

In these equations,µe andµp are are the elastic and plastic shear moduli,S
is the deviatoric stress,τ = τ0 exp(Q/RT), ξ quantifies the ratio‖S‖/‖X‖
at saturation satisfying the restriction0 < ξ < 1, andn establishes the stress
dependence. These relations are motivated by corresponding models from
nonlinear viscoelasticity [12]. Note that the nonlinearity of our set of equa-
tions is evident here since the material constantn typically lies in a range
between 4 and 8.

Whereas fractional derivatives are a very natural and common tool in the
classical models of viscoelasticity [4], it seems that in the rather young area
of viscoplasticity, the only such model seems to have been proposed by Lion
[14]. Our approach distinguishes itself from his in that we consider a nonlin-
ear material model that is, we believe, more keeping in line with dislocation
physics.

There is abundant metallographic and experimental evidence implying that
microstructure evolves in a path-dependent manner and, as a consequence,
the state of stress that a microstructure generates will be hereditary in nature.
Therefore, as mentioned above, the internal stress can be considered as a
viable candidate for postulating fractional-order equations for its evolution.

Thus, for the evolution of the internal stressχ = X − xI (I being the
identity tensor), we demand in the model that

x = −κp (e− 3α(T − T0)) (8)

dβ
t0X =

2µe

τβ−1
0

(
Ėp − 1

τ

(‖S− X‖
µp(1 − ξ)

)
n X

2L

)
, (9)

dβ
t0L =

µp

ττβ−1
0

((‖S− X‖
µp(1 − ξ)

)
n

−
(

L

ξµp

)
n
)
, (10)

60

whereβ is a material constant. As in the first-order differential equation (7),
we see that the fractional-order differential equations (9) and (10) are also
highly nonlinear.

These equations fully describe our model for the viscoplastic material, ex-
pressing the unknown quantitiesχ (internal pressure) andL (limit strength of
χ) in terms of the control variablesT (temperature),S (deviatoric stress), and
p (pressure). Of course, we have to assume that initial values for the unknown
functions at timet = t0 are given.

The reader is referred to [6] for further details.

3 The Numerical Algorithm

3.1 Preliminary Remarks

The viscoplastic material model just presented, which we believe has the po-
tential to apply to plastics and metallics alike for a broad class of applications,
requires the simultaneous solution of a linear first-order differential equation
for the plastic dilatationep, a nonlinear first-order differential equation for
the plastic distortionEp, and two nonlinear fractional-order differential equa-
tions for the internal stressX and its limit strengthL. It is imperative that
one has a coherent numerical scheme for handling these various types of dif-
ferential equations simultaneously, which is what we now turn our attention
to. For the sake of simplicity, we restrict ourselves to the case important for
the application we have in mind, viz.0 < β < 1, and we only state here that
the considerations below can be generalized to arbitrary positiveβ.

The definition of the fractional derivative and some well known results
of fractional calculus (cf., e.g., [5]) tell us that we can interpret a fractional
differential equation

Dβ
t0(y − y0)(t) = f(t, y(t)), y(t0) = y0 (11)

as a Volterra integral equation of the second kind with a strongly singular
kernel,

1
Γ(−β)

∫ t

t0

y(u) − y0

(t− u)β+1
du = f(t, y(t)), y(t0) = y0 (12)

thus forcing us to regularize the integral in Hadamard’s finite-part sense. The
numerical methods developed for this purpose, however, are currently able
to cope with linear equations only [5, 7, 9]. Alternatively, we can apply a
fractional integral operator to the differential equation and incorporate the

61

initial conditions, thus converting the equation into the equivalent equation

y(t) = y(t0) +
1

Γ(β)

∫ t

t0

(t− u)β−1f(u, y(u))du (13)

which also is a Volterra equation of the second kind, but now with a weakly
singular kernel, such that a regularization is not necessary any more. It seems
[17] that there exists only a very small number of software packages for non-
linear Volterra equations [1, 2]. Moreover, these routines are tailored specifi-
cally for equations with smooth kernels, and it is known (cf., e.g., [2, p. 63])
that they fail to produce reliable results (and return error flags instead) even if
the kernels are continuous but not differentiable. In our situation the kernel is
not continuous (actually it even is unbounded), and therefore these classical
numerical algorithms are unable to handle our equation.

3.2 Description of the Algorithm

In the following, we shall now present our scheme for the numerical solu-
tion of the general fractional differential equation (11) that may of course
be used for the special case discussed in the previous section, viz., eqs. (9)
and (10). In the development we have in mind that these fractional differen-
tial equations are coupled with the first-order differential equations (4)–(7),
and thus we need to combine the fractional-order algorithm with a classical
method. The results of [15] give us the general advice to choose these two
algorithms in such a way that both methods are based on very similar con-
struction principles. We thus chose an Adams-Bashforth-Moulton approach
for both integrators. Whereas this approach is very well known for first-order
equations [10, 11], we shall give some more details for the fractional variant.

The key to the derivation of the method is to replace the original fractional
differential equation (11) by the equivalent weakly singular Volterra equation
(13) and to implement a product integration method for the latter. What we
do is simply use the product trapezoidal quadrature formula with nodest j

(j = 0, 1, . . . , n+1), taken with respect to the weight function(tn+1−·)β−1,
to replace the integral. In other words, we apply the approximation∫ tn+1

t0

(tn+1 − u)β−1g(u)du ≈
∫ tn+1

t0

(tn+1 − u)β−1gn+1(u)du (14)

wheregn+1 is the piecewise linear interpolant forg whose nodes and knots
are chosen at thetj , j = 0, 1, 2, . . . , n+1. An explicit calculation yields that
we can write the integral on the right-hand side of eq. (14) as∫ tn+1

t0

(tn+1 − u)β−1gn+1(u)du =
n+1∑
j=0

aj,n+1g(tj), (15)

62

where

aj,n+1 =
∫ tn+1

t0

(tn+1 − u)β−1φj,n+1(u)du, (16)

and

φj,n+1(u) =

{
(u − tj−1)/(tj − tj−1) if tj−1 < u < tj ,
(tj+1 − u)/(tj+1 − tj) if tj < u < tj+1,
0 otherwise.

(17)

In the case of equispaced nodestj = t0 + jh with some fixedh, the relations
of eq. (16) reduce to

aj,n+1 =




hβ

β(β + 1)
(
nβ+1 − (n− β)(n+ 1)β

)
if j = 0,

hβ

β(β + 1)
if j = n+ 1,

(18)

whereas for1 ≤ j ≤ n, we have

aj,n+1 =
hβ

β(β + 1)
(
(n− j + 2)β+1 − 2(n− j + 1)β+1 + (n− j)β+1

)
.

(19)
This then gives us our corrector formula, i.e. the fractional variant of the one-
step Adams-Moulton method, which is

yn+1 = y0 +
1

Γ(β)


 n∑

j=0

aj,n+1f(tj , yj) + an+1,n+1f(tn+1, y
P
n+1)


 .

(20)
The remaining problem is the determination of the predictor formula that

we require to calculate the valueyP
n+1. The idea we use to generalize the

one-step Adams-Bashforth method is the same as the one described above for
the Adams-Moulton technique: We replace the integral on the right-hand side
of eq. (13) by the product rectangle rule, i.e.

∫ tn+1

t0

(tn+1 − u)β−1g(u)du ≈
n∑

j=0

bj,n+1g(tj), (21)

where now

bj,n+1 =
∫ tj+1

tj

(tn+1 − u)β−1du =
1
β

(
(tn+1 − tj)β − (tn+1 − tj+1)β

)
.

(22)

63

Again, in the equispaced case, we have the simpler expression

bj,n+1 =
hβ

β

(
(n+ 1 − j)β − (n− j)β

)
. (23)

Thus, the predictoryP
n+1 is determined by

yP
n+1 = y0 +

1
Γ(β)

n∑
j=0

bj,n+1f(tj , yj). (24)

This completes the description of our basic algorithm, which is the fractional
version of the one-step Adams-Bashforth-Moulton method. Recapitulating,
we see that we first have to calculate the predictoryP

n+1 according to eq. (24),
then we evaluatef(tn+1, y

P
n+1), use this to determine the correctoryn+1 by

means of eq. (20), and finally evaluatef(tn+1, yn+1) which is then used
in the next integration step. Therefore, methods of this type are frequently
called predictor-corrector or, more precisely, PECE (Predict, Evaluate, Cor-
rect, Evaluate) methods.

3.3 Main Properties of the Algorithm

We shall now describe the main properties of the algorithm. In particular, we
find that, with respect to the most important questions, the behaviour of the
method is independent of the parameterβ and that it behaves in a way that
is very similar to the classical one-step Adams-Bashforth-Moulton method
(i.e. the caseβ = 1). Therefore, a combination of the fractional Adams-
Bashforth-Moulton scheme outlined in the previous subsection with its clas-
sical version is a very natural idea when the set of equations to be solved
consists, as in our application, of first-order differential equations combined
with fractional-order differential equations. Moreover, it is no problem to ex-
tend the concept to include more fractional order equations, even if the order
of the differential operators involved varies from equation to equation.

3.3.1 Stability

The issue of stability is very important when implementing the method on
a computer in finite-precision arithmetic because we must take into account
the effects introduced by rounding errors. It is known [11, Chapter IV] that
the classical Adams-Bashforth-Moulton method (for first-order equations) is
a reasonable and practically useful compromise in the sense that its stability
properties allow for a safe application to mildly stiff equations without undue
propagation of rounding errors, whereas the implementation does not require
extremely time consuming elements. From the results of [15] we can see that

64

these properties remain unchanged when we look at the fractional version of
the algorithm instead of the classical one, and therefore it is also clear that the
behaviour does not depend on the order of the differential operators involved.

3.3.2 Convergence

Of course, stability alone is not sufficient in practice to make sure that the
numerical solution is a good approximation to the exact solution. We must
also address the problem of error estimates, i.e. the question of convergence.
In this context, we can use some of the standard analysis techniques [13,
§§8.2 & 8.3] to derive that (assuming sufficient smoothness of the functions
involved) the convergence order of the scheme is 2, i.e. we have an error
bound of the form

max
j

|y(tj) − yj| = O(h2) (25)

whereh = maxj(tj+1 − tj) and where we assume that alltj ∈ [t0, t0 + t∗]
with some fixedt∗ > 0.

Second order convergence may seem somewhat slow, but one must keep in
mind that most of the parameters of our model (includingβ, the order of the
differential equation itself), and thus also the input values of our algorithm,
are material constants that are usually known only up to a very limited ac-
curacy (typically two or three decimal digits). Thus it does not make sense
to apply a high order method, especially when we bear in mind that high-
order methods frequently show inferior stability properties when compared
to low-order methods.

3.3.3 Arithmetic Complexity

As a final remark in this subsection, we point out that the arithmetic complex-
ity (i.e. the number of arithmetic operations) of the algorithm in the form pre-
sented so far is notO(maxj(tj+1−tj)−1) as in a comparable method for first
order equations. Instead of this, we find an operation count ofO(max j(tj+1−
tj)−2), as one would expect for a general algorithm for Volterra integral equa-
tions. The reason for this high complexity is, as mentioned above, the nature
of the differential operatorDβ

t0 : Whenβ is not an integer, then we see from
eq. (1) that the differential operator is not a local operator, i.e. in order to
evaluateDβ

t0y(t) it is not sufficient to know the values off in a small neigh-
bourhood oft. Rather, we need to have information about the entire “history”
of the functionf on the interval[t0, t]. Although this property stands in sharp
contrast to the behaviour of classical (integer-order) differential operators and
gives rise to higher complexity (and thus longer run time), it is a highly de-
sirable property for the application we have in mind because it represents,
in a mathematical form, the fact that the processes under consideration are
history-dependent.

65

3.4 Modified Versions of the Algorithm

In principle, the algorithm described so far is able to handle the problem
under consideration. However, we found it useful to introduce a few modi-
fications in order to improve the performance of the code. It is easily seen
that all these modifications (that we shall describe now) are independent of
each other. This gives the user the option to select any desired combination
of these enhancements when calling the subroutine.

3.4.1 Fading Memory

Probably the simplest and most benifitial modification that one can choose to
implement to enhance the overall performance of our numerical integrator is
to take advantage of a property known as fading memory. Volterra [21, p. 188]
precisely defined the notion of a fading memory, and called it “the principle of
the dissipation of hereditary action”. More recently, Podlubný [19] referred
to Volterra’s principle as the “short-memory principle”, and has applied it
to the first-order Grünwald-Letnikov definition of a fractional-order differ-
ence equation. The idea of a fading memory is the simple premise that the
contributions to a solution vector coming from the far past in an integration
can oftentimes be neglected when compared with the additional contributions
arising from the near past; specifically, fading memory supposes that a length
L exists such that

Dβ
t0y(t) ≈ Dβ

t−Ly(t), 0 < L ≤ t− t0, (26)

where Podlubný refers toL as the memory length.

An examination of the first-order quadrature weights listed in eq. (22) indi-
cates that these weights monotonically decrease (for fixed step size), provided
that0 < β < 1, as the independent variable of integration is made to approach
the initial state att0 from above. In contrast, these weights monotonically in-
crease, provided thatβ > 1, when the independent variable shrinks towards
the initial state att0. For this reason, the concept of a fading memory has no
role to play in fractional-order differential equations wheneverβ > 1, since
the beginning of the integration interval is weighted more heavily than the
end of the interval.

In what follows, the interval of integration[t0, t] is considered to be broken
up inton + 1 evenly spaced subintervals, each of lengthh > 0, such that
n � 1. The memory lengthL will then contain$ segments, such thatL = $h
with 0 < $ ≤ n+ 1. A first-order estimate for the error∆ resulting from the
fading-memory assumption of eq. (26), and based on the quadrature formula

66

(24), can be defined by

∆(t) = |Dβ
t0y(t) −Dβ

t−
hy(t)| ≈
1

Γ(β)

n−
∑
j=0

bj,n+1 |f(tj , yj)|. (27)

Because of the monotonic nature of these quadrature weights, this error will
be bounded from above by the relation

∆(t) ≤ n− $

Γ(β)
bn−
,n+1M, 0 < β < 1,

wherein
M =

n−

max
j=0

|f(tj , yj)|.

Evaluating eq. (23) produces the approximationbn−
,n+1 ≈ hβ/$ given that
$ � 1. By constraining this bounding error to be smaller than some spec-
ified error tolerance, sayε > 0, the following bound has been obtained for
the purpose of quantifying the number of integration subintervals defining a
memory length for our integrator, viz.,

$

n
≥ hβM

hβM + εΓ(β)
, 0 < β < 1. (28)

BecausehβM andεΓ(β) are both positive valued, the concept of a fading
memory will always be applicable, in principle, for those cases whereβ sat-
isfies0 < β < 1.

The principle of fading memory can be implemented by simply replacing
the sum

∑n
j=0 present in both eqs. (20 & 24) with the sum

∑n
j=n−
+1, where

$ must satisfy the constraint in the formula above. Although this will result
in some loss of accuracy in the solution, due to a truncation of the series, as
Podlubný [19] has noted, such a truncation also suppresses the accumulation
of roundoff errors, which could otherwise adversely affect the accuracy of
solution due to an excessive number of unnecessary addends.

We note, however, that even though the error induced by the truncation
is likely to be small from thenumerical (i.e. practical) point of view, the
analytical (theoretical) consequence of truncation is that even the very simple
equation

Dβ
t0y(t) = c, y(t0) = y0, (29)

wherec is a given non-zero constant, will not be solved exactly any more.
From this consequence, it follows that theoretical error bounds of the form
derived in subsection 3.3.2 cannot hold any more, not even if we are willing
to accept bounds involving smaller powers ofh. In practical calculations, this

67

not a real problem in view of the fact that these error bounds were derived
under the assumption that all calculations are done in exact arithmetic, which
is usually violated anyway.

Moreover, a short analysis of eq. (28) shows that, for fixedε andh → 0,
the memory length$ behaves asconst · hβ−1. Therefore, the overall arith-
metic complexity of the unmodified scheme, which isO(h−2), is reduced to
O(hβ−2). Even though this still is larger than theO(h−1) complexity present
in similar algorithms for integer-order differential equations, we can speed up
the algorithm somewhat.

3.4.2 Additional Corrector Iterations

Recall that in the case of a very stiff equation, we mentioned that the stability
properties of the Adams-Bashforth-Moulton integrator may not be sufficient.
However, it is well known [10, 11] that the pure one-step Adams-Moulton
method (i.e. the trapezoidal method) possesses extremely good stability prop-
erties. These are spoiled in the Adams-Bashforth-Moulton approach only by
the fact that, in eq. (20) we cannot replace the predictor approximationy P

n+1

on the right-hand side by the corrector valueyn+1 because, in general, we
cannot solve that equation exactly any more. The idea is now to find a better
approximation for the exact solution of that equation than the rather simple
one obtained by applying just one functional corrector iteration with the pre-
dictor as a starting value.

There are two main ways to achieve this goal. The first one is to use the
value obtained by the first iteration (the first corrector step) as a new predic-
tor and apply another corrector step. Obviously, this procedure can be iterated
any given number of times,M say; the resulting method is called a P(EC)M E
algorithm. In this way, we find a method that is “closer” to the pure Adams-
Moulton technique, and therefore, its stability properties are also closer to
the better properties of this method. Taking this idea to the extreme, we could
even refrain from stopping afterM iterations and continue to iterate until con-
vergence is achieved. This would (theoretically) lead to even better stability,
but the computational cost could be prohibitive, and it may even happen that
(due to rounding errors) convergence could not be achieved numerically in
finite precision. It is possible to make the P(EC)ME approach more efficient
by not using the same numberM of corrector iterations in every step. In re-
gions of higher stiffness, more steps may be taken in order to retain stability
and to keep the error under control; whereas, in regions where stiffness is not
a problem, high accuracy may be achieved already with a small choice ofM ,
thus speeding up the algorithm.

In practice, we have implemented this feature in such a way that the user
can supply an upper bound for the numberM of corrector steps to be taken.

68

Setting this bound to 1 is then equivalent to switching off this modification
completely. Moreover, the user can specify a toleranceε > 0 to the effect that
the iteration is stopped if two consecutive steps give results that differ by less
than this tolerance even if the maximum number of iterations is not reached
yet.

As mentioned above, this is not the only possible approach to get a bet-
ter approximation to the solution of the corrector equation. The second idea
that we may use to enhance the stability of the method is to find another
way of solving eq. (20) withyP

n+1 replaced byyn+1. The most obvious way
to do this would be to use a Newton iteration. As a starting value, we can
still use the Adams-Bashforth predictor. Since it is known that Newton it-
eration converges faster (locally) than the simple functional iteration of the
PECE process, we may expect to come very close to the pure Adams-Moulton
method in just a few iterations. However, in order to implement Newton’s
method, we need to work with the Jacobian of the right-hand side of the dif-
ferential equation. This can also be a source of numerical problems, and may
even lead to very long run times. At present, this feature is not implemented
in our code, but a future extension in this way is possible.

Note that, since we keep the second-order Adams-Moulton formula as the
basis of eq. (20), the convergence order of these modified algorithms remains
at 2. Moreover, this modification of the algorithm does not alter the order
of the arithmetic complexity in terms of the step sizeh. Only the stability is
affected by these modifications.

3.4.3 Mesh Spacing

In the standard version of the algorithm, we have implemented a uniformly
spaced mesh, i.e. we have chosen the discretization of the basic interval such
that the pointstj are given bytj = t0 + jh with some fixedh (to be provided
by the user). As noted in §3.2, this leads to some simplifications in the for-
mulae, thus reducing the administrative overhead. In particular, the weights
aj,n+1 andbj,n+1 can be expressed in a rather simple manner, allowing us
to store them without using much memory or to recalculate them quickly.
The use of a non-uniform grid means that, in the (n+ 1)st step, many of the
weights used in thenth step cannot be reused and need to be calculated anew
at run-time (thus slowing down the method) or a priori (thus increasing the
memory requirements). However, it may be that the user is willing to accept
these disadvantages because an equispaced grid is undesirable. This is pos-
sible, e.g., if some properties of the solution of the differential equation or
the right-hand side are known, such as highly non-smooth behaviour, rapid
variations or higher stiffness in some, but not in all, parts of the interval of

69

integration. Therefore, we allow the user to specify an arbitrary mesh and
pass it on to the subroutine to replace the default uniform mesh.

References

[1] Blom J. G., Brunner H. (1991) Algorithm 689: Discretized collocation and iterated col-
location for nonlinear Volterra integral equations of the second kind.ACM Trans. Math.
Software 17, 167–177

[2] Bownds J. M., Appelbaum L. (1985) Algorithm 627: A FORTRAN subroutine for solving
Volterra integral equations.ACM Trans. Math. Software 11, 58–65

[3] Caputo M. (1967) Linear models of dissipation whoseQ is almost frequency independent,
II. Geophys. J. Royal Astronom. Soc. 13, 529–539

[4] Caputo M., Mainardi F. (1971) A new dissipation model based on memory mechanism.
Pure and Applied Geophysics 91, 134–147

[5] Diethelm K. (1997) An algorithm for the numerical solution of differential equations of
fractional order.Elec. Transact. Numer. Anal. 5, 1–6.

[6] Diethelm K., Freed A. D. (1998) Viscoelastic/viscoplastic material modeling using the
fractional calculus. Submitted for publication

[7] Diethelm K., Walz G. (1997) Numerical solution of fractional order differential equations
by extrapolation.Numer. Algorithms 16, 231–253

[8] Fischer A., Marais H. (1996)The Oberon Companion: A Guide to Using and Program-
ming Oberon System 3. vdf Verlag, Zürich

[9] Gorenflo R. (1997) Fractional calculus: Some numerical methods. In: Carpinteri A.,
Mainardi F. (Eds.)Fractals and Fractional Calculus in Continuum Mechanics. Springer,
Wien, 277–290

[10] Hairer E., Nørsett S. P., Wanner G. (1993)Solving Ordinary Differential Equations I:
Nonstiff Problems, 2nd edn. Springer, Berlin

[11] Hairer E., Wanner G. (1991)Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems. Springer, Berlin

[12] Krempl E., Bordonaro C. M. (1995) A state variable model for high strength polymers.
Polymer Engineering and Science 35, 310–316

[13] Linz P. (1985)Analytical and Numerical Methods for Volterra Equations. SIAM, Philadel-
phia, PA

[14] Lion A. (1997) Constitutive modelling of viscoplastic material behaviour based on evolu-
tion equations of fractional order. In: Khan A. S. (Ed.)Physics and Mechanics of Finite
Plastic and Viscoplastic Deformation. Neat Press, Fulton, MD, 61–62

[15] Lubich C. (1986) Discretized fractional calculus.SIAM J. Math. Anal. 17, 704–719
[16] Mainardi F. (1997) Fractional calculus: Some basic problems in continuum and statisti-

cal mechanics. In: Carpinteri A., Mainardi F. (Eds.)Fractals and Fractional Calculus in
Continuum Mechanics. Springer, Wien, 291–348

[17] National Institute of Standards and Technology: Guide to Available Mathematical Soft-
ware. http://gams.nist.gov

[18] Oldham K. B., Spanier J. (1974)The Fractional Calculus. Academic Press, New York,
NY

[19] Podlubný I. (1997) Numerical solution of ordinary fractional differential equations by the
fractional difference method. In Elaydi S., Győri I., Ladas G. (Eds.)Advances in Differ-
ence Equations. Gordon and Breach, Amsterdam, 507–516

[20] Samko S. G., Kilbas A. A., Marichev O. I. (1993)Fractional Integrals and Derivatives:
Theory and Applications. Gordon and Breach, Yverdon

70

[21] Volterra V. (1931)Theory of Functionals: And of integral and integro-differential equa-
tions. Blackie & Son, London

[22] Wirth N., Reiser M. (1992)Programming in Oberon — Steps Beyond Pascal and Modula-
2. Addison-Wesley, Reading

71

