
 1

Developing Object-Oriented Frameworks Using Domain Models

MEHMET AKSIT

University of Twente, Department of Computer Science, P.O. Box 217, 7500 AE, Enschede, The Netherlands
<aksit@cs.utwente.nl>

FRANCESCO MARCELLONI

Università di Pisa, Dipartimento di Ingegneria della Informazione, Via Diotisalvi, 2 – 56156 Pisa, Italy
<france@iet.unipi.it>

BEDIR TEKINERDOGAN

University of Twente, Department of Computer Science, P.O. Box 217, 7500 AE, Enschede, The Netherlands
<bedir@cs.utwente.nl>

Abstract

In this paper we present an integrated approach to
model the domain knowledge related to a framework
and to map the identified domain models into object-
oriented concepts . We applied this approach to three
pilot projects. We discuss the problems we
encountered in mapping domain models into object-
oriented frameworks. Our experience indicates that
deriving a framework from the related domain
knowledge reduces the amount of framework
refinement time considerably.

Introduction

Although a large number of successful
frameworks have been developed during the last
several years, designing a high-quality
framework is still a difficult task [Schmidt and
Fayad 1997]. Existing framework development
practices span a considerable amount of
refinement time, and it is worthwhile to shorten
this time. We consider modeling domain
knowledge as an essential step to achieve this
objective.

Permission to make digital/hard copy of part or all of this work for
personal or classroom use is granted without fee provided that the
copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its
date appear, and notice is given that copying is by permission of
the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a
fee.
© 2000 ACM 00360-0300/00/0300es

In this paper, we present an integrated approach
to model the domain knowledge related to a
framework and to map the identified domain
models into object-oriented concepts. We
evaluate this approach based on our experience
in developing three frameworks: an atomic
transaction framework for a distributed car
dealer management system [Tekinerdogan
1994], an image processing framework for the
analysis of the human heart [Vuijst 1994], and a
fuzzy logic reasoning framework for supporting
the formalization of the object-oriented
development process [Broekhuizen 1996]. We
conclude the paper with a discussion about the
encountered problems in mapping domain
models into object-oriented concepts.

The Approach

We first model the top-level structure of
frameworks using the so-called knowledge
graphs [Bakker 1987]. The vertices and edges of
a knowledge graph correspond to domain
concepts and relations, respectively. Finding the
top-level knowledge graph of a framework
requires searching the related literature and
identifying the commonalities among various
publications. For example, the atomic
transaction knowledge graph shown in Figure 1
resulted by analyzing and comparing a
considerable number of textbooks and articles
written on atomic transactions (e.g. [Bernstein

 2

1987]). Here, the node TransactionManager
provides mechanisms for starting and
terminating the transaction. The node
PolicyManager determines the strategy for
optimizing the transaction behavior. The node
DataManager controls the access to the
DataObject, and includes the nodes Scheduler
and RecoveryManager. The node Scheduler
orders the incoming messages to achieve
serializability. Scheduler may include deadlock
avoidance and/or detection mechanisms. The
node RecoveryManager keeps track of changes
to the data object to recover from failures.

adapts

PolicyManager

DataManagerTransactionManager

adapts

coordinates

Scheduler RecoveryManager

coordinates

DataObject

controls

Figure 1. The top-level knowledge graph of an
atomic transaction system.

Second, we refine each node within a top-level
knowledge graph into an acyclic sub-knowledge
graph called knowledge domain . The nodes in a
knowledge domain correspond to a particular
specialization in the domain and the relations
typically represent generalization-specialization
relations. For example, the node Scheduler
corresponds to the knowledge domain shown in
Figure 2. The node Scheduler represents the
common characteristics of all schedulers.
Specializations of Scheduler define various
mechanisms to preserve consistent access to the
data object.

Scheduler

specializes

TimeStamp
Ordering
Scheduler

specializes specializes

specializes

TWR
Scheduler

specializes specializes

specializes

Serial
Scheduler

Optimistic
Scheduler

Locking
Scheduler

Optimistic
TimeStamp

Ordering
Scheduler

Optimistic
Locking

Scheduler

Figure 2. The knowledge domain corresponding to
Scheduler node.

Third, we identify which nodes in a knowledge
domain can be included together in the top-level
knowledge graph. This is needed because
specializations from different domains may
enforce constraints on each other. For example,
some specializations of Scheduler and
RecoveryManager may exclude each other
[Bernstein 1987]. The set of semantically correct
alternatives defines here the adaptability space.
Fourth, to verify whether the knowledge
domains model the relevant knowledge, we
match them against the use cases identified from
the user requirements. If necessary, the domain
analysis process is iterated to tailor domain
models to user requirements.
Finally, we map knowledge domains into object-
oriented concepts. We select the nodes of each
knowledge domain, which are considered
relevant by the user. We define a path from the
selected nodes of a knowledge domain to the
most abstract node in the domain. For example,
if the user requires Optimistic Locking
Scheduler, the nodes Optimistic Scheduler and
Scheduler must be selected as well. Typically, a
framework user requires a set of alternative
nodes, which correspond to multiple paths
connected to the same node. These paths are
used to identify the hot spots in the framework
[Pree 1994]. Note that the different possible
alternatives of a hot spot must meet the
adaptability space constraints. We try to realize
a one-to-one mapping of the selected nodes and
the corresponding relations into the object-
oriented concepts. Hot spots are generally
implemented using hook methods and hook
classes [Fayad and Schmidt 1997]. We refer to
design pattern catalogs when appropriate
[Schmidt et al. 1996].

Evaluation of Our Approach

We extensively tested these frameworks from
the perspective of robustness and adaptability. In
addition, we asked students to apply and, if
possible, extend the frameworks. For example,
in [Visser 1994], students modified the
knowledge domain shown in Figure 2 by a
hierarchical locking scheduler which had not
been considered before. The architecture of the
framework, however, was not affected by this
change. We concluded that knowledge graphs

 3

provide stable foundations for frameworks
because knowledge graphs are derived from
well-established concepts characterizing the
domains. Further, knowledge graphs help us
identify the adaptable part of the frameworks.
The overall development time of the frameworks
was considerable less than the ones presented in
the literature. In [Roberts and Johnson 1996], for
example, the overall time is much longer
because a framework is defined when a
sufficient knowledge is gained after a series of
implementations. The time spent during the
refinement process is longer than 50 percent of
the overall development time. In our approach
the domain analysis and the framework
refinement time took 35 and 25 percent of the
overall development time, respectively.
The success of our approach depends on two
factors. First, the domain knowledge has to be
characterized by well-established concepts.
Second, it must be possible to map knowledge
graphs into object-oriented modeling concepts
directly. Otherwise, software engineers may be
forced to represent some elements of knowledge
graphs in the operations of objects instead of
providing explicit representations. This reduces
adaptability and reusability of frameworks.

Defining Knowledge Graphs

The transaction framework was derived from
publications on transaction systems [Bernstein et
al. 1987]. The image-processing framework was
based on the principles of image algebra [Ritter
et al. 1987]. The fuzzy-logic framework was
derived from fuzzy-logic theory [Zadeh 1973].
In all these pilot projects, the related domain
knowledge is based on established theories,
which allowed us to derive knowledge graphs
using a reasonable effort.

Mapping Knowledge Models into Objects

We experienced the following problems because
not all the elements of the knowledge models
could be directly mapped into object-oriented
concepts.

Difficulties in expressing knowledge
specializations using class inheritance: We
observed that the generalization-specialization
hierarchies as defined in the knowledge domains

cannot always be mapped directly to the object-
oriented inheritance hierarchies. Generally
object-oriented inheritance semantics are
defined as inheritance of methods and instance
variables, and this cannot always represent
inheritance of knowledge domain specifications
[Aksit and Bergmans 1992]1.
In the fuzzy-logic reasoning framework, for
example, the language-based specifications of
linguistic variables require a grammar
specification for parsing. In the generalization-
specification hierarchy of the knowledge domain
Linguistic Variable, new linguistic variables are
added in specialization nodes. This corresponds
to the extension of the grammar rules. It is not
possible to map this grammar-based hierarchy
directly to a class-inheritance hierarchy.
Nevertheless, the problem of representing a
certain generalization-specialization hierarchy of
a knowledge domain can be solved by defining a
dedicated function in the application framework.
In [Aksit et al. 1990], for example, it is shown
that a dedicated grammar inheritance
mechanism can be defined as a structural
organisation of grammar rules. In this
organisation, a grammar inherits rules from
super-grammars and/or may have its own rules
inherited by sub-grammars.
Architectural constraints: Nodes from different
knowledge domains may not be composed
arbitrarily. This implies that whenever the
composition is changed, the consistency of the
new composition must be checked. The
enforcement of constraints on composition is
typically achieved through type-checking
mechanisms: by specifying a particular type for
each of the components, we can ensure that only
specializations of that type will be used as
components. However, this is not always
sufficient; a more powerful type checking
mechanism may be needed because several
complex rules may determine the architectural
constraints.

1 Note that it is usually possible to implement an object-

oriented application that provides correspondence to a
domain knowledge hierarchy. However, this may require
the creation of additional structures and interactions
because a one-to-one mapping is impossible.

 4

For example, complex architectural constraints
occur in the image processing framework. In this
framework, value and coordinate sets must be
homogeneous, ordering of elements in sets is
restricted, and algebraic operations impose type
compatibility among the elements of the sets. To
manage these problems, we have adopted
reflective processing techniques [Aksit et al.
1993]. Consider for example class Image as
shown by Figure 3. Image consists of coordinate
and value sets. The messages sent to an image
are intercepted by an instance of MetaFilter.
This object converts the received messages into
objects and passes them to an instance of
ConstraintChecker. ConstraintChecker accesses
the attributes of the message object. If the
attributes have the correct values, the message
object is converted back to an execution.

Image

Coordinates Values

ConstraintChecker

Meta
Filter

message

converted
message verified message

Figure 3. Enforcing constraints using reflective
processing techniques.

Dynamically Changing Implementations:
Sometimes, the implementation of an object is
not fixed but may change at execution time.
Implementation improvements, for instance,
may be needed for optimizing speed and space
performance of objects. We experienced the
need for dynamically changing implementations
in all the pilot projects. The Bridge and Strategy
[Gamma et al. 1995] patterns can be used for
this purpose. These patterns are based on
message forwarding principle; interface classes
forward messages to the encapsulated
implementation classes. Interface classes,
therefore, must declare all the forwarded
methods explicitly. This can be a tedious and
error-prone task. Further, the precise set of
methods and their arguments have to be fixed
when an interface class is defined.
A more flexible alternative to these patterns is
the delegation mechanism [Lieberman 1986].
Delegation can express dynamic
implementations through delegating requests to
implementation objects. The delegation

mechanism, therefore, eliminates the need for
declaring all the methods explicitly and supports
the evolution of implementation objects. The
conventional delegation mechanism, however,
cannot adequately support a conditional
delegation.
While building the transaction framework, for
example, we found it necessary to dynamically
change the implementation of the scheduler
object based on certain conditions such as the
state of network contention. To solve this
problem, we defined our own delegation
mechanism using the so-called Dispatch filter
[Aksit et al. 1993]. The messages sent to a
scheduler are intercepted by an instance of
DispatchFilter which delegates the received
message to the corresponding object based on
the value of a condition.

Conclusion

The main claim of this paper is that the
framework refinement time may be reduced
considerably by modeling the related domain
knowledge explicitly. We proposed a domain-
knowledge based approach and applied it to
developing three frameworks. We discussed the
problems encountered in mapping knowledge
domains into object-oriented concepts and how
these problems can be solved by extending the
object-oriented models.

REFERENCES

AKSIT, M., M OSTERT, R. AND HAVERKORT, B. 1990.
Compiler Generation Based on Grammar Inheritance,
Memoranda Informatica 90-07, University of
Twente.

AKSIT, M. AND BERGMANS, L. 1992. Obstacles in Object-
Oriented Software Development. In Proceedings
OOPSLA '92, ACM SIGPLAN Notices, 27, 10,
341-358.

AKSIT, M., WAKITA , K., BOSCH , J., BERGMANS, L., AND
YONEZAWA, A. 1993. Abstracting Object Interactions
Using Composition-Filters. In Proceedings of
ECOOP’93 Workshop Object-Based Distributed
Programming, R. Guerraoui et al., Eds., LNCS 791,
Springer-Verlag, 152-184.

BAKKER, R. 1987. Knowledge Graph: Representation and
Structuring of Scientific Knowledge. PhD Thesis,
University of Twente, Deptartment of Computer
Science, The Netherlands.

 5

BERNSTEIN, P.A., HADZILACOS, V. AND GOODMAN, N.
1987. Concurrency control and recovery in Database
Systems. Addison-Wesley.

BROEKHUIZEN, P. 1996. FLUENT: A Fuzzy Logic User
Environment for an OO Fuzzy Logic Reasoning
Framework. Msc thesis, University of Twente,
Deptartment of Computer Science, The Netherlands.

FAYAD, M. E. AND SCHMIDT, D. C. 1997. Object-Oriented
Application Frameworks. Communications of the
ACM, Vol. 40, No. 10, 32-38.

GAMMA , E., HELM, R., JOHNSON, R., AND VLISSIDES, J.
1995. Design patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley.

LIEBERMAN, H. 1986. Using Prototypical Objects to
Implement Shared Behavior. In Proceedings of
OOPSLA '86. ACM Sigplan Notices, 21, 11,
214-223.

PREE, W. 1994. Design patterns for Object-Oriented
Software Development, Addison-Wesley, Reading,
Mass.

RITTER, G. X., SHRADER-FRECHETTE M. A., AND WILSON, J.
N. 1987. Image Algebra: A Rigorous and Translucent
Way of Expressing All Image Processing Operations,
in Proceedings of the 1987 SPIE Tech. Symp.
Southeast on Optics, Elec.Opt. and Sensors, Orlando.

ROBERTS, D. AND JOHNSON, R. 1996. Evolving
Frameworks: A pattern language for Developing

Object-Oriented Frameworks, at URL: http://st-
www.cs.uiuc/edu/users/droberts/evolve.html.

SCHMIDT, D. C., AND FAYAD, M. E. 1997. Lessons Learned
Building Reusable OO Frameworks for Distributed
Software. Communications of the ACM, Vol. 40, No.
10, 85-87.

SCHMIDT, D. C., FAYAD, M. E., AND JOHNSON, R. 1996.
Software Patterns. Communications of the ACM, Vol.
39, No. 10.

TEKINERDOGAN, B. 1994. The Design of an Object-
Oriented Framework for Atomic Transactions, Msc
thesis, University of Twente, Department of
Computer Science, The Netherlands.

VUIJST, C. 1994. Design of an Object-Oriented Framework
for Image Algebra, Msc thesis, University of Twente,
Department of Computer Science, The Netherlands.

VISSER, B.S., EVERS, M.J. AND VAN DEN ENDE, C.W. 1994.
A multi-user software development environment
framework in Smalltalk, Design Project, University
of Twente, Department of Computer Science, The
Netherlands.

ZADEH, L. A. 1973. Outline of a New Approach to the
Analysis of Complex Systems and Decision
Processes. IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-3, No.1, 28-44.

.

